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Abstract

Approximation algorithms for classical constraint sattdfon problems are one of the main re-
search areas in theoretical computer science. Here we defiizéural approximation version of
the QMA-complete local Hamiltonian problem and initiate study. We present two main results.
The first shows that a non-trivial approximation ratio carob&ined in the classlP using product
states. The second result (which builds on the first onegsgavpolynomial time (classical) algo-
rithm providing a similar approximation ratio for densetarsces of the problem. The latter result is
based on an adaptation of the “exhaustive sampling methpAidra et al. [AKK99] to the quantum
setting, and might be of independent interest.

1 Introduction and Results

In the last few years, the quantum analog of the class NP, l#ss QMA [KSV02], has been exten-
sively studied, and several QMA-complete problems hava heend [Liu06, BraO6, LCVQ7, BS07,
Ros09/[ JGL10, SV09, WMN10]. Arguably the most important QMdmplete problem is thi-local
Hamiltonian problem[[KSV02, KR03, OT08, KKRD6, AGIKD9]. kg the input is a set of Hamilto-
nians (Hermitian matrices), each acting on at nmkeqtibits each. The task is to determine the largest
eigenvalue of the sum of these Hamiltonians. This problenmegsizes the central NP-hard problem
MAX- k-CSP, where we are given a set of Boolean constrainté eariables each, with the goal to
satisfy as many constraints as possible. The local Hanmltoproblem is of significant interest to com-
plexity theorists and to physicists studying propertieplofsical systems alike (e.d. [BV05, AvDK7,
BDOT08,AALV09,[CV09/ LLM*10,[SC10]).

Moving to the classical scenario, the theory of NP-comples$s is one of the great success stories
of classical computational complexity [AB09]. It was soaalized that many natural optimization
problems are NP-hard, and are hence unlikely to have poligidime algorithms. A natural question
(both in theory and in practice) is to look for polynomial @nalgorithms that produce solutions that
are close to optimum. More precisely, one says that an dtgorachieves ampproximation ratio
of ¢ € [0,1] for a certain maximization problem if on all inputs, the \&lof the algorithm’s output
is at leastc times that of the optimum solution. The closers to 1, the better the approximation.
The investigation of approximation algorithms is, aftecaldes of heavy research, still a very active
area (e.g./[Hoc97, VazD1]). For many central NP-hard rmoisl tight polynomial time approximation
algorithms are known.

In the context of QMA-complete problems, it is thus natuceséarch for approximation algorithms
for these problems, and in particular for the local Hamikkonproblem. The question we address here
is: How well can one efficiently approximate thdocal Hamiltonian problem?
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It should be noted that a large host of heuristics has beeelaj@d in the physics community to
approximate properties of local Hamiltonian systems (sag, [CV09] for a survey) and this area is ex-
tremely important in the study of physical systems. Howeter systematic complexity theoretic study
of approximation algorithms for QMA-complete problemsti#i gery much in its infancy, and our work
is one of the first steps in this research direction. We naté tthere has been a lot of interest in re-
cent years [AALV09, Aar06] in establishing a so-called cuamPCP theorem (e.d. [AS98, ALM]),
which amounts to showing that for some constart 1 close enough td, approximating thé-local
Hamiltonian (or related problems) to withinis QMA-hard. Our results can also be seen as a natural
continuation of that investigation.

Ourresults: Let us start by precisely defining the optimization versibthe local Hamiltonian prob-
lem, which is parameterized by two integérandd, which we always think of as constants.

Definition 1 (MAX- k-local Hamiltonian problem od-level systems (qudits))An instance of the prob-
lem consists of a collection df) Hermitian matrices, one for each subsetiofudits. The matrix
H;, i corresponding to some< iy < --- < i < nisassumed to act on those qLﬂjtto be positive
semidefinite, and to have operator norm at mhste call any pure or mixed stageon n qudits an
assignmenaind define itwvalueto be TrHp whereH = ) ; ;. H; ;. The goalis to find the largest
eigenvalue ofH (denotedOPT), or equivalently, the maximum value obtained by an assagmmwWwe
say that an algorithm provides approximation ratiof ¢ € [0, 1] if for all instances, it outputs a value
that is between - OPT and OPT.

This definition, we believe, is the natural quantum analotpeMMAX-k-CSP problem. We note that
it differs slightly from the usual definition of the-local Hamiltonian problem. Namely, we consider
maximization (as opposed to minimization), and also retstinie terms ofH to be positive semidefinite,
and have norm at modt As long as one considers tle®actproblem, these assumptions are without
loss of generality, and do not affect the definition, as seemiimply scaling the Hamiltonians and
adding multiples of identity as necessary. However, wheting with theapproximationversion, these
assumptions are important for the problem to make senséngtance, one cannot meaningfully talk
about approximation ratios if the optimum can take both tieg@nd positive values. That is why we
require the terms to be positive semidefinite. The requirgrnti®at the terms have operator norm at
most1 does not affect the problem and later allows us to convegieletfine dense instances. Finally,
changing the maximization to a minimization would lead teeatirely different approximation problem:
the quantum analogue of MIN-CSP (elg. [KSTWO01]). Minimiaatproblems are, generally speaking,
harder than maximization problems, and we leave this reBefrection for future work.

Before stating our results, we remark that there is a trive to get ai—*-approximation for MAX-
k-local Hamiltonian. Observe that the maximally mixed steds at least —* overlap with the reduced
density matrix of the optimal assignment on d@nparticles. A similar thing holds classically, where a
random assignment gives (in expectationj & approximation of MAX%-CSP. We now describe our
two main results.

Approximation by product states. One inherently quantum property of the local Hamiltoniaakpr
lem is the fact that the optimal state might in general be liigintangled (and hence not efficiently
describable in polynomial time). This is why we do not requautputting the assignment itself in the
above definition. If, however, the optimal assignment (ens@ther good assignment) was guaranteed
to be atensor product statehen we could describe it efficiently. The following themrshows just that.

Theorem 2. For an instance of MAX-local Hamiltonian with optimal valu®©PT, there is a (pure)
product state assignment that has value at |€BT /d* 1.

ITerms acting on less thanqudits can be incorporated by tensoring them with the itkenti



This result istight for product states in the case ®focal Hamiltonians (we remark th&tlocal
Hamiltonians are often the most relevant case from a phymcspective). For example, consider the
Hamiltonian on2-qubits that projects onto the EPR sta\’}g(\oo) +]11)). It is easy to see that no

product state achieves value more tha. For generak, we can only show that product states cannot
achieve an approximation ratio greater ta¥/2) (see Sedl3).

If we could efficiently find the best product state assignmertwould obtain an algorithm achiev-
ing a non-triviald —**1 approximation ratio. Unfortunately, this problem is NRvgaete, since it would
allow one to solve (e.g.) the special case of MAXSAT, and hence we do not have such an algorithm.
Still, the theorem has the following interesting implicat 1t shows that unlessIP = QMA, approxi-
mating the local Hamiltonian problem to within a factor Iéisand —**1 is not QMA-hard. This follows
simply because product states have polynomial size cis#scriptions.

A polynomial time approximation algorithm for dense instances. Our second result gives a clas-
sical polynomial time approximation algorithm fdenseinstances of the local Hamiltonian problem.
This result is perhaps our technically most challenging, @mel we hope the techniques we develop
might turn out useful elsewhere.

Dense instances of classical constraint satisfactiong@mbhave been studied in depth (see e.g. [dIV96,
[FK96,[GGR98| AKK99| dIVK0D, AdIVKKO2| BdIVK03[ dIVKKVO05]) Our result is inspired by work
of Arora et al. [AKK99] who provide a polynomial time approxation scheme, or PTAS (i.e., an ef-
ficient 1 — ¢ approximation algorithm for any fixeel > 0), for several types of dense constraint sat-
isfaction problems. In the classical case, dense Zftwcal constraints) simply means that the aver-
age degree in the constraint graph(i$n), or equivalently, that the optimum @(»?). In analogy,
we define an instance of MAX-local Hamiltonian to bedenseif OPT = Q(n), or equivalently, if
Tr(HY) = 0(n*)B

It is not hard to see that the (exact) dense local Hamiltopiagblem remains QMA-hard (see
Sec[3.B). The dense case might be of practical interestysigsts who study systems of particles
by incorporating all possible interactions between themateNhat such instances are dense even if the
interactions between particles are weak, so long as theagtten strengths are constants independent
of n. Our second main result is the following:

Theorem 3. For all ¢ > 0 there is a polynomial timé1/d*~1 — ¢) approximation algorithm for the
dense MAXelocal Hamiltonian problem over qudits.

Thm.[3 follows immediately by combining Thrial 2 with the follimg theorem, which gives an
approximation scheme for the problem of optimizing overgbeof product states.

Theorem 4. For all ¢ > 0 there is a polynomial time algorithm for dense MAXecal Hamiltonian
that outputs a product state assignment with value within ¢ of the value of the best product state
assignment.

Proof ideas and new tools: The proofs of Thm[ 12 and Thral 4 are independent and emplogrdiit
techniques. To show the product state approximation gtegawe show a slightly stronger statement:
Foranyassignment¥), there is a way to construct a product assignment of at fedst! its value. The
proof is constructive (givefi?)): we use a type of recursive Schmidt decompositiofifof to obtain a
mixture of product states whose value is off by at most th@e@spproximation factor (see Sét. 2).
Our second result is technically more challenging and éhtoes a few new ideas to this problem,
inspired by work of Arora et al JAKK99] in the classical satf. We illustrate the main ideas for MAX-
2-local Hamiltonian o qubits. Recall that our goal is to find a PTAS for the local Hegnian problem

2The equivalence follows from the fact that the mixed staségmsnentld /d" has value betwee®PT andOPT/d*.



over product statesThe value of the optimal product state assignm@&mT p, can be written

n
OPTp = max Y Y. Tr(H(pi®p;)) st pi=0andTr(p;) =1 for1<i<mn, (1)
i=1jeN(i)

whereN (i) is the set of indiceg for which a local Hamiltonian terni; ; is present. We might call this
aquadraticsemidefinite program, as the maximization is quadratic épft{and as such not efficiently
solvable). Note, however, that if the terms in the maximarawerelinear, then we would obtain a
semidefinite program (SDP), which is efficiently solvabl&B®3]. To “linearize” our optimization, we
use the “exhaustive sampling method” developed by Arord. (a method which was later
key in many developments in property testing, €.9. [GGR98Yg write each Hamiltonian term in a
basis that separates its two qubits, for instance the Pasis oo, 01,02, 03}, H; j = 22,,:0 uc;jlak ® 0.
Fori=1,...,nandk =0,1,2,3, define

=Y. ZDCZIT}’((TIPJ').

jeN(i) 1
If we knew the values oa‘;'{ for the optimalp;, then solving the SDP below would yield the optirpal

n 3
max Y Y ¢ Tr(owpi) st pi=0andTr(p;) =1 for1<i<mn, )
i=1k=0
Y. Y a)Tr(oip;) = ¢, for1<i<mnand0<k<3.
JEN(i) I

Of course, this reasoning is circular, as in order to obtaé’t we need the optimal;. The crucial idea

is now to usesamplingto estimatethe ¢;. More precisely, assume for a second that we could sample
O(logn) of the p; randomly from the optimal assignment. Then, by standardoagbounds, with
high probability over the choice of the sampled qubits we estimate alll ther;'( to within an additive
error -en for somee. If we had these estimates$ for the c;, we could solve the SDP above with the
slight modification that the last constraint shouldabe- en < Y;cn i) ¥ o Tr(o1p;) < aj + en. With

high probability over the sampled qubits, this SDP will gaveolution that is within an additive:? of

the optimal one (more subtle technicalities and all cateuia can be found in SeE] 3). Moreover, it is
possible to derandomize the sampling procedure to obtagteardinistic algorithm (SeE.3.3).

Of course, we are still in the realm of wishful thinking, basa in order to sample from the optimal
solution, we would need to know it, which is precisely whatse¢ out to do. However, the number of
gubits we wish to sample is onlggarithmicin the input size. Thus, to simulate the sampling procedure,
we can pick a random subset Of log ) qubits, and simplyiterate through all possible assignments
on them (with an appropriat®net over the density matrices, which incurs a small addtti@rror) in
polynomial time! Our algorithm then runs the SDP for eacteiien, and we are guaranteed that at least
one iteration will return a solution withian? of the optimal one. Because the denseness assumption
guarantees th&PTp is Q(n?), our additive approximation turns into a factdr — ¢)-approximation,
as desired. All details, the runtime of the algorithm andrehbounds for the generétlocal case on
qudits are given in Setl] 3.

Previous and related work: We note that many heuristics have been developed in thegshgem-
munity to approximate properties of local Hamiltonian sys$ and this area is extremely important
in the study of physical systems (e.n. [WHi92, Whi@BR95, RD97, Schob, PWKE98, CV09]). Our
focus here is, however, on rigorous bounds on the approkimguarantee of algorithms for the gen-
eral problem. In this area, to our knowledge, few resultska@vn. In a first result on polynomial
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time approximation algorithms, Bansal, Bravyi and Terf&EBT09] give a PTAS for a special class of
the local Hamiltonian problem, so called quantum Ising gp@sses, for the case where the instance is
on a planar graph (and in particular of bounded degree). FSS is obtained by dividing the graph
into constant size chunks, which can be solved directly, igndring the constraints between chunks
(this incurs an error proportional to the number of such trairgs, which is small because the graph is
planar). More recently, there has been work proving rigerapproximations to ground states of one-
dimensional quantum systems under well-defined conditi@isg techniques such as density matrix
renormalization groud [AAI10, SC10]. To our knowledge, we the first to establish a bound on the
approximation factor by optimizing over the set of produetess.

Discussion and open questions: Our two results give approximations to the local Hamiltonpsob-
lem. Although at first glance, our approximation ratiolgfi*~! may appear an incremental improve-
ment over the trivial random assignment strategy, therevapeimportant notes that should be kept
in mind: The first is that many classical NP-hard problemghsas MAX-3-SAT (a special case of
MAX- k-CSP where each constraint is the disjunction (“OR"kafariables or their negation), aegp-
proximation resistan{e.g. [Has07,_ AM08]), meaning that unless-RP, there do not even exist non-
trivial approximation ratios beyond the random assignnstrategy. For example, for MAX-3-SAT it
is NP-hard to do better than the approximation rati& 68 achieved by random assignment [Has97].
Thus, showing the existence of a non-trivial approximatiatio is typically a big step in the classical
setting. Moreover, it could have been conceivable that fééXvk-local Hamiltonian, analogously to
MAX-3-SAT, outperforming the random assignment strate@uid have beei®MA-hard Yet our re-
sults show that unless NFQMA, this is not the case. The second important note thatldhmikept in
mind is that the currentlpestapproximation algorithm for MAXk-CSP gives an approximation ratio
of only about0.44k/2* for k > 2 [CMMO7Y] (for k = 2, one can achieve.874 [LLZ02]) and this

is, moreover, essentially the best possible under a plaustdimplexity theoretic conjecture (namely,
the unique games conjectufe [Kho02]) [TreQ8, Has05, STMEOZ]. This is to be contrasted with our
2/2%-approximation ratio for the case df= 2 (i.e. qubit systems), which we show can be achieved by
product state assignments fanbitrary (i.e. even non-dense) MAX-local Hamiltonian instances. This
raises the important open question: is our approximatito tight?

Our product state approximation shows that approximatieddcal Hamiltonian problem to within
d—*1 s in NP. It would be interesting to know if this approximaticatio could also be achieved in
polynomial time. If not, it might lead to an intriguing staiéaffairs where for low approximation ratios
the problem is efficiently solvable, for medium ratios itrdNP but not efficiently solvable, and for high
ratios it is QMA-hard (assuming a quantum PCP theorem gxists

To obtain our results for the case of dense local Hamilta@)iare have introduced the exhaustive
sampling technique of Arora et al. [AKK99] to the setting ofi-degree semidefinite programs. We
linearize such programs using exhaustive sampling in coatioin with a careful analysis of the error
coming from working withd-nets on density matrices. We remark that it seems we carmqiys
apply the results of JAKK99] fosmooth Polynomial Integer Progranas a black-box to our setting.
This is due to our aforementioned need fo¥-aet, as well as the requirement that our assignment be
a positive semidefinite operator. We address the latteeibguextending the techniques of [AKK99]
to the realm of positive semidefinite programs by introdgdine notion of “degreé-inner products”
over Hermitian operators to generalize the concept of @dgneolynomials over real numbers, and
performing the more complex analysis that ensues. We ha@aettis technique will be of much wider
applicability, particularly considering the growing uskesemidefinite programs in numerous areas of
guantum computing and information (e.g. [DPS04, JJUW10RSMO0]).

Another open question is whether similar ideas can be usegpooximate other QMA-complete
problems, such as the consistency problem [Liu06]. Moreasen we obtain polynomial time algo-
rithms without the denseness assumption? And are ther@abpases of the local Hamiltonian problem




for which there is a PTAS (other than for planar Ising spirsgés [BBT0B])? Of course, we do not
expect a PTAS for all instances of the local Hamiltonian peoh as this would contradict known hard-
ness results for special classical cases of the problem. eiAmwperhaps there exist other classes of
physically relevant instances of the problem for which a BTHes exist.

Structure of this paper: In Sec.[2, we prove our result on product state approximsti@mnm.[9
and the ensuing proof of Thrial 2), show its tightness in2Hecal case and provide the upper bound
of d~¥/2] for the best possible approximation by product states. Begves our polynomial time
approximation algorithm and develops the general samglitd) SDP-based technique we use. It also
shows that the dense local Hamiltonian problem remains ddsplete.

Notation: We useA > 0 to say operator is positive semidefinite, and denote byX’), H(X),
andD(X) the sets of linear, Hermitian, and density operators acimgomplex Euclidean spack,
respectively. We denote the Frobenius and operator nors®fL(X) as|| A ||z = /Tr(AtA) and
| Al = maxyex s.t.|x|,=1 | A[x) [, respectively.

2 Product states yield al /d*~!-approximation for qudits

We now show that product state assignments achieve a nal-aipproximation ratio for MAXk-local
Hamiltonian , i.e. Thnil2. The heart of our approach is what aletbe Mixing LemmgLem.[7), which
we use to prove Thni]9. Thril 2 will then easily follow. At thedeof the section, we discuss the
tightness of the approximation guarantee given by THm. 2b®¢in with two definitions.

Definition 5 (Recursive Schmidt Decomposition (RSD))e define thaecursive Schmidt decomposi-
tion of a statgly) € (Cd)®” as the expression obtained by recursively applying the &ittdecompo-
sition on each qudit from ton — 1 inclusivél. For example, the RSD f&-qubit i) is

) = ailar) @ (B1[b1)|c1) + B2|b2)|c2)) + azlaz) @ (B1['1)[c'1) + Balb2)|c"2)),

for a2 + a3 = B2 + B2 = B}> + B> = 1, {|a;) }, an orthonormal basis for qubit {|b;)}, and{|’;)},
orthonormal bases for quiilf and{|c;) }; and{|c’;) }; orthonormal bases for quist

Definition 6 (Schmidt cut) For any|y) € (C4)®" with Schmidt decompositiohp) = Y4, a;|w;)|v;),
where|w;) € C% and|v;) € (C%)®"~1, and for any|¢) € (C%)™, we refer to the expansiojp) ®
(Zf-l:l ai|w;) |Ui>) as theSchmidt cutat quditm + 1. We say that a projectdrl crosseghis Schmidt
cut if IT acts on quditn 4+ 1 and at least one qudite {m +2,...,m + n}.

The heart of our approach is the following Mixing Lemma, wWhjarovides, forany assignment
lp) € (C%)®", an explicit construction through which the entanglememoss the first Schmidt cut of
|) can be eliminated, while maintaining at leastla d)-approximation ratio relative to the valyg)
achieves against any local Hamiltonighe H((C4)®").

Lemma 7 (Mixing Lemma) Given stately) onn qudits with Schmidt cut on quditgiven by|y) =
T ailw)|or), where|w;) € €7 andv;) € (€)1, definep = T, a?|w;) (wil @ [v;)(vil.
Then, given projectol ] acting on some subs& of the qudits, if[T crosses the Schmidt cut, then
Tr(Ilp) > JTe(IL|y)(y]). OtherwiseTr(I1p) = Tr(I1|y)(y|).

3This definition is relative to some fixed ordering of the gadifThe specific choice of ordering is unimportant in our
scenario, as any decomposition output by such a processesuti prove Thni]2.



Proof. Case2 follows easily by noting that the given Schmidt decompositof |) implies Try (p) =
Tri () (¢|) andTra, ,(p) = Tra,u(|1) (¥]). To prove casé, we observe by straightforward expan-
sion that

Tr(IT[) (]) = Tr(TTp) + ) aiery(wil (vi | TTwp) o) + x| vy | TT[wi) o). )

i<j
Then, by defining for eachvector|a;) := a;11|w;)|v;), we have that

Y wiaj(w;| (v |TT|w;) [0;) 4 e (w;| (01T w;) o) =Y (aila;) + (a;]a;).

i<j i<j
Applying the facts that 12 = IT and (a|b) + (bla) < || |a) |5+ || |b) |5 for |a), |b) € (C%)®" implies

Y (aila;) + (ajla;) < Y| lai) 15+ || laj) ||2 = (d — 1) Z“?(wi\@i!mwiﬂvﬁ = (d = 1)Tr(ITp),

i<j i<j
from which the claim follows. O
The following simple extension of Lerl 7 simplifies our pradfThm.[9.

Corollary 8. Define|y') = |¢) @ |¢), where|p) € (CH)®™ for m > 0 and |y) is defined as in
Lem[T, and lep € D(C?)*" be obtained fronjyp) as in Lem[V. Then, for any projectdr acting on a
subsetS of the qudits, if I crosses the Schmidt cutlaf') at quditm + 1, we havelr(I1|¢) (¢| @ p) >

aTe(ITy") (y']). Otherwise Tr(IT|¢)(¢| ® p) = Tr(IT|g") (¢']).

Proof. Immediate by applying the proof of Lef. 7 with the followingodifications: (1) Defings;) :=
aII|p)|w;)|v;), and (2) ifS C {1,...,m} U{m+2,...,m+n} (i.e. this is one of two ways forl
not to cross the cut — the other way is f8rC {1, ..., m + 1}), observe that by the same arguments as
in Lem.[7 for case and the product structure betwegr and|y) in |¢) thatTr,,1(|¢) (¢| ® p) =

Tena ([97) (¢'])- a

LemmalY shows that the stagteobtained bymixing the d Schmidt vectors ofy), as opposed to
taking theirsuperposition suffices to achieve @l /d)-approximation across the first Schmidt cut. By
iterating this argument ovexll n — 1 Schmidt cuts, we now prove that a mixture of all (productjesta
appearing in the RSD df) achieves an approximation ratio bfdk1.

Theorem 9. For any n-qudit assignmenty) with RSD|y) = Y, \/Fi|¢:), wherey; p; = 1 and
{|<pi>}?:11 is a set of orthonormal product vectors (€4)*", definep := Z?:ll pil$i) (¢i|. Then, for
any projectorIT acting on some subs& C {1,...,n} of qudits with|S| = k, we haveTr(ITp) >
T (L) ().

Proof. Let IT be a projector withS| = k, and defina € {0,1}" " such thatc(j) = 1 iff II crosses
the Schmidt cut at qudjt For example, it T acts on qudit{1,2}, thenc = (1,0,...,0). Note that in
general| c ||, = k — 1. We proceed by iteratively stepping through each Schmidindhe RSD of|).

Let o := |y)(y|, and consider first the cut at quditi.e. |¢) = Y7, a;|w;)|v;), for |w;) € C? and
;) € (C4)®=1, Definingp™ := Y9, a?|w;) (w;| @ |0;) (v;|, we have by Len]7 that

Te(I1y) (y]) < d“DTe(11p1"), (4)

i.e. we lose a factor of /d iff T1 crosses the first cut.
Moving on to the second Schmidt cut, consider the statg [v;) € C? @ (C4)*"~! appearing
in the expression fop(l). Observe that it satisfies the preconditions for Cbr. 8 with= 1. Hence,
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via Cor.[8 there exists a state acting on qudits{2,...,n} such thatTr(IT|w;) (w| ® |v1)(v1]) <
d“@ATr(I1|w;) (w;| ® 07). We can analogously find statescorresponding tdw;)|v;) forall 1 < i <
d. Thus,

d d
Tr(IIp) = Y a?Tr(I|w;) (wi| @ |v;) (0i]) < d*®) | Y a?Te(IT]w;) (w;| @ 07) | - (5)
i=1 i=1

Hence, by defining® := Y7 | a2|w;) (w;| ® o;, we have via Eqns14) andl (5) that
Tr(TI[y) () < d“MT P Te(1Tp1?),

Since by Cor[B, ther; are mixtures of Schmidt vectors from the second Schmidt wetcan now
iteratively apply the same procedure to the (at naB$tpure states appearing in the expressior]ofé)r
when considering the third Schmidt cut. Note in particutatteach of these terms will have a product
structure between qudifsl, 2} and{3, ..., n}, as required by Caf] 8 for the next iteration.

More generally, when considering tipéh Schmidt cut, we apply Cdr] 8 withh = p — 1 to each of
the at mostl/’~! terms appearing in the expansionpéf*l). We continue iterating in this fashion until
we have exhausted all— 1 Schmidt cuts, at which point the resulting mixtw@*l) we are left with
is in fact thep from the statement of the claim (seen by noting that our gloeessentially iteratively
computes the RSD dfp), mixing the Schmidt vectors it computes at each step). M@ealue to the
repeated application of Ca@d 8, we have

Tr(I1[y) (p]) < dl<lTe(T1p" ). (6)

Recalling that| ¢ ||, = k — 1 completes the proof. O

Proof of Thm. 2: Simply apply Thm[D to each projector in the spectral decasitjpms of each
(positive semidefiniteH; in our MAX-k-local Hamiltonian instancél = ), H;, and let|y) denote
the optimal assignment fdd. It is important to note that we can exploit Thinh. 9 in this fashdue to
the fact that the constructed by Thni]9 imdependenof the projectod1 — i.e. for any fixed|y) and
k, the statep provides the same approximation ratio agaarsf k-local projectorlI encountered in the
spectral decompositions of thé;. Finally, note that one can find @ure product state achieving this
approximation guarantee sinpés a convex mixture of pure product states.

Upper bound of d—13) for product state approximations. Is the result of Thni]2 tight? In the case
of MAX- 2-local Hamiltonian on qudits, yes — consider a single clgugecting onto the maximally
entangled state\}—a Y_; |ii), for which a product state achieves value at nig'st. On the other hand, for
MAX- 3-local Hamiltonian on qubits, the worst case clause f®+cbit product state assignment is the
projector onto the statgV) = \%(\OOD +(010) + |100)) [TWPO9]. But here product states achieve
value4/9 [WGO03], implying the bound of /4 from Thm.[2 is not tight.

A simple construction shows that the true optimal ratio isermbounded b;i*L'ifJ. To see this, con-
sider a single clause which is the tensor product of maxinaitangled bipartite statbsFor example,
for n = 4, consider the claus@™) (¢ | ® [¢T) (¢T|, where|p™) = \%(]00} + [11)). The maximum
value a product state can attainli4, as claimed. In the qubit settind & 2), one can further improve
this construction for odd by replacing the ternmip™) (¢*| ® I on the last three qubits witfW) (W]|.
For example, fok = 5, setting our instance to be the clayge ) (¢ | ® |W)(W| yields an upper bound
of (1/2)(4/9) =2/9<1/4 = d-L3) (where we again use the valdg9 for |W) from the previous
paragraph). For general o&d> 1, this improved bound generalizeszf)kz—+7 /9.

4For oddk, we assume the odd qudit out projects onto the identity.



3 Optimizing over the set of separable quantum states

Section[2 showed that there alwagsistsa product state assignment achieving a certain non-trivial
approximation ratio. In this section, we show how to effithgriind such a product state. Our main
theorem of this section is the following (Thm.]10), from wiithm.[4 follows easily (see discussion at
end of Sed_3]3).

Theorem 10. Let H be an instance of MAX-local Hamiltonian acting orm qudits, and |etOPTp
denote the optimum value Bf( Hp) over allproductstateso € D((C?)®"). Then, for any fixed > 0,
there exists a polynomial time (deterministic) algorithrnish outputse; ® - -- ® p, € D((C%)®")
such thaflr(Hp; ® - - - ® p,) > OPTp — enk.

We first outline our approach by generalizing the discussid@ec[1, introducing tools and notation
we will require along the way. The optimal val@PTp over product state assignments for any MAX-
k-local Hamiltonian instance can be expressed as the fallpywrogram, denotef;:

n
OPTp = max Y Tr(Hj, ipi ® - ®p;) St p; =0 and Tr(p;) =1 for1 <i<n. (7)

l‘l,.‘.,lk

As done in Eqn[{2), we now recursively decompose our oledtinction as a sequence of nested sums.
Let {Ui}flzl be a traceless, Hermitian orthogonal basis for the set afifi@an operators acting o8¢,
such thafTr(c;07) = 26;; (for J;; the Kroenecker delta) (see, e.g. [Kim03]). Then, by rewgiteach

Hj,, i interms of{ai}le, our objective function becomes

n d?
ZTr[<,Z r]l (71k®"’®(7]'1>pik®"'®pi1

ik,...,il ]k,...,]1:1

ZTI'(UjkPZk [ Z Tie( (T]k 1004 [ [ZTI‘ ((Zr U]l) Pﬁ)]]] . (8
Lerk Ik—1,k-1 I

where eachii € R¥. We henceforth think of the objective function above as afdek inner
product”, i.e. as a sequence bfnested sums involving inner products, in analogy to the ekegr
polynomials of Ref.[[AKK99]. In this sense, a degre@ner product would refer to only the innermost
sums ovet; andj;, and a degreé-inner product would denote the entire expression in Hdn.N®ye
formally, we denofd a degreés inner product forl < b < k usmg maptb (Cd)X” — IR, defined

ol ) T, T ) [, ((5, ) )]
Our approach is to “linearize” the objective functionl’(’;fusmg exhaustive sampling and recursion
to estimate its degrege — 1) inner products. To do so, we will require the Sampling Lemma.

Lemma 11 (Sampling Lemma [AKK9D]) Let (a;) be a sequence of real numbers witha;| < M for
all i, and letf > 0. If we choose a multiset 6f= glog n of thea; at random (with replacement), then

their sumg satisfiesy ; a; — nM\/g <q% <Yia+ nM\/g with probability at leastl — n /.

The proof of Lemma 111 follows from a simple application of tHéffding bound [H6f64]. To use
the Sampling Lemma in conjunction with exhaustive samplimg will discretize the space dfqudit
density operators usingd&anetG C H(CY), such that for alp € D(C¥), there existsr € G such that
| p—0o|lg < 6. We now show how to construd.

5See the beginning of ApRA for more elaborate notation usehé proofs of the claims of Sdd. 3.
SNote thatt;, implicitly depends on parametess, 1, . . ., iy andjy. 1, . . -, ji-



To obtainG, we instead constructd&net for a subset of (C) which containsD(C“), namely the
sell A(C?) := {A e H(CY) | max;; |A(i,j)| < 1}. Creating a-net overA(C?) is simple: we cast a
(6/d)-net over the unit disk for each of the compléid — 1) /2 matrix entries above the diagonal, and
likewise over[—1,1] for the entries on the diagonal. Lettimgandn denote the minimum number of

points required to create su¢h/d)-nets for each of the diagonal and off-diagonal entriepeetvely,

we have thalG| = m"“ ‘=" n?. For example, simple nets of size ~ d/5 andn ~ d*/&? can be

obtained by placing a 1D and 2D grid oVer1, 1] and the lengti2 square in the complex plane centered
at(0,0), respectivellﬁ/s,dimplyingG] € O(1) whend € O(1). To show thai is indeed a&-net, we now
bound the Frobenifisdistance between arbitragy € D(C?) and the closest € G. Specifically, let
A:=p—p. Then:

I 41l = yTx(4%4) = [EIAGHPE < [(0747 = 5

Finally, we remark that oudenseassumption on MAXk-local Hamiltonian instances is only nec-
essary to convert the absolute error of Thl. 10 to a relatmes [€K1] (this conversion is detailed in
Sec[3.B). The remaining sections are organized as follbwSec[3.]l, we show how to recursively
estimate degrek-nner products using the Sampling Lemma. We then use thimatsbn technique in
Sec[3.2 to linearize our optimization probldin Sec[3.B brings everything together by presenting and
analyzing the complete approximation algorithm. To eaadirg of the remaining sections, all techni-
cal proofs are found in App.JA. Please see the beginning of Aifpr definitions of the more elaborate
notation used in these proofs.

) =4.

Q..I%

3.1 Estimating degreek inner products using the Sampling Lemma

Our recursive procedure, EVAL, for estimating a degtaener product using the Sampling Lemma is
stated as Ald.12. There are two sources of error we must zaiallye Sampling Lemma, and atinet
over C?. We claim that EVAL estimates the degreeénner productt,(ps, .. .,0,) to within additive
error+e,n’, wheree, is defined as follows. Set := \/2d(1 + 6), for ¢ from ours-net. Then,

€ = d? <\/§+5> (A:__11>. 9)

The following lemma formalizes this claim. We adopt the aamion of [AKK9S] and letx € y +z
denotex € [y, z]. Alg.[I2 is our operator analogue of the algoritBwval in Section 3.3 of [AKK99].

Lemma 13. Lett; : H(CF)*" — R be defined using sétH,, ; } € H((C?)®¥) (as in Eqn.[(B)). Let
S C{1,...,n} suchthatS| = glogn have its elements chosen uniformly at random with replaoeme
Letos, ..., 0n € D(CY) be some assignment on alfjudits, and{p; : i € S} a set of elements in oy
net such thaf| p; — p; ||z < é forall i € S. Then, forl < b < k, with probability at leastt — d?’n®~/,
we haveEVAL(ty, S, {p; :i € S}) € ty(p1, - .., pn) = epn’, whereey, is defined as in EqnlX9).

3.2 Linearizing our optimization problem

Our procedure, LINEARIZE, for “linearizing” the objectifanction of P; using EVAL from Sed_311 is
stated as Ald._14. Ald. 14 takes as indjtand a set of sample poin{; }, and outputs a semidefinite
program (SDP) which we shall henceforth refer ta’asWe remark that LINEARIZE is our version of

"Note: A net over.A(Cd) may allow non-positive assignments for a qudit. See [Setfo8\8hy this is of no consequence.
8We use the Frobenius norm as it allows a simple analysis.stragghtforward, however, to switch to say the trace norm
using the fact thaf X || < v/d | X ||,, for all X € €.
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Algorithm 12. EVAL( t,,S,{p;:i € S}).

e Input: (1) A degrees inner product;, : H(C%)*" — Rfor1 <b <k
(2) AsubsetS C {1,...,n} of size|S| = O(logn)
(3) Sample pointgp; : i € S} such that| g; — p; || < dforallie S

e Output:x € R such thatc € t,(p1,...,0n) £ eyn’ (for €, defined in Eqn.[9)).

1. Foralli € Sandj =1...d%
(@) (Base Case) if = 1, sete;; = 1.
(b) (Recurse) else, sef = EVAL(t] |, S, {pi:i € S}).

2 ~
2. Returnyg 3 es [2}1:1 Tf(‘TjPi)eij}'

the proceduréinearizein Sec. 3.4 of [AKK99], extended to the setting of operatard a more complex
error structure. Although LINEARIZE is presented as lingag an objective function here, the same
techniques straightforwardly apply in linearizing coasits involving high-degree inner products.

To prove correctness of our final approximation algorithre, require the following two important
lemmas regardind,. The first shows that any feasible solutigm, . .., p,) for P; consistent with the
sample se{g; : i € S} fed into LINEARIZE is also a feasible solution fé% with high probability.

Lemma 15. Lett,, assignmenfps, ..., p,), S, and{p; : i € S} be defined as in Lem.113. Then, for any
f,g > 0, calling LINEARIZE with parameters, {g; : i € S}, ande = ¢ (for ¢, defined in Eqn.[{9))
yields an SDRP, for which the assignmedis, . . ., 0, } is feasible with probability at leadt — d*n*—/,

The second lemma is a bound on how far the optimal solutid? @ from the optimal solution for
P;. We adopt the convention of [AKK99] and wrife, y| & z to denote intervalx — z, y + z|.

Lemma 16. LetOPT be the optimal value faP; with corresponding assignmesf®®™» := (oSP", ..., po"),
andlet{p; : i € S} be such thaH i — P HF < dforalli € SforsomeS C {1,...,n}. LetP, denote

1
the SDP obtained by calling LINEARIZE wifh and denote by,, for 1 < m < k the error parameter
passed with map,, into a (possibly recursive) call to LINEARIZE. Then, legti@PT, denote the opti-
mal value ofP,, we have with probability at leadt— d%n*—/f (for parameters set as in Lef.]15) that

OPT, € OPTp +d(d + /2) [25,1131(\/551%—1—%4 k.

3.3 The final algorithm

We finally present our approximation algorithm, APPROXIMATAIg. [17), in its entirety, which ex-
ploits our ability to linearizeP; using LINEARIZE (Alg.[14). This proves Thin 10, which in turmi
plies Thm[4. We first clarify a few points about APPROXIMATtEen analyze its runtime, and follow
with further discussion, including the algorithm’s derandzation and a proof that dense MAlocal
Hamiltonian remains QMA-hard.

We begin by explaining the rationale behind the constant8lgn [I7. The constant,yy, is the
additive error incurred when solving an SDP [GL593]. We alead so that after running LINEARIZE
and soIvingPﬁ, the total additive error is at most as desired. We choogeto ensure the probability of
success is at lea$y' 2. Finally, we sefg large enough and (for our 5-net) small enough to ensure that
€’ matches the error bounds for EVAL in Leml] 13.

11



Algorithm 14. LINEARIZE(t,, N, S, {g;:i€ S}, e, U, L).

e Input: (1) A degrees inner product, : H(C%)*" — Rfor1 < b < k.

(2) A set of linear constraintd/ (e.g. ‘o; = 07).

(3) Asubsets C {1,...,n} of size|S| = O(logn).

(4) Sample pointg{p; : i € S} consistent with some feasible solutidpy, ..., p,) for
Py such that]| p; — p; ||z < dforalli € S.

(5) An error parametes > 0.

(6) (Optional) upper and lower bounds L € R. If U andL are not provided, we
assumdl, L = oo.

e Output: (1) (Optional) A linear objective functioh: (L(C%))*" — R.
(2) An updated set of linear constraints’.

1. (Base case) i = 1, then

(@) (Trivial: Initial objective function was linear) Bl = L = oo, return f;,, N].

(b) (Reached bottom of recursion) Else, retuk\ U {“L < t,(p1,...,00) < U"}].
2. (Recursive case) For=1...nandj =1...d%> do

(@) Sete; := EVAL(t) S, {p::i € S}).
(b) Sete’ := e — d* (\/g n 5) AP-1, for A defined in Eqn.{9).
(C) Setll-]- =g — e'nt—1 andui]- =g + e'nt-1,
(d) Call LINEARIZE(t] |, N,S,{pi:i€ S}, €, uj,lj).
3. (a) (Entire computation done)lf = L = oo, return [Zij Tr(cr]-pz-)ei]-,/\/'] .
(b) (Recursive call done) Else, retu[n/'u {”L —€ed*n® < ¥ Te(ojp;)e; < U+ e’dznb”}].

We now analyze the runtime of AIg.117. LEE| denote the size of ouf-net G for a qudit. Then,
for each of the|G|$'°8" iterations of line 6, we first tak€(n*~1) time to run LINEARIZE, out-
putting O(nk‘l) new linear constraints (seen via a simple inductive argimewe then solve SDP
Pi, which can be done in time polynomial inandlog(1/esqp) using the ellipsoid method [GLSB3)]
(see, e.g.,[[Wat09]). Let(n,esqp) denote the maximum runtime required to solve any of Be
Then, the overall runtime for AIg_17 ©(n81°8/5! (n*~1 4 r(n, £545))), Which is polynomial irv: for
€,d,k € O(1) (recall from Sed 13 thdiG| € O((£)?), and thath andg are constant in our setting). Note
that, due to the implicit dependencegbn e, this runtime scales at least exponentially with varyéing

Before moving to further discussion, we make two remarksstfFone can convert the output of
Alg. [I7 to apurestate with the same guarantee by adapting the standaritaelasgthod of conditional
expectationgVaz01]. To demonstrate, suppoge;} is output by Alg.[IV. Then, se] to be the
eigenvectory;) (;| of p1 for which the assignmerjt;) (| ® p2 ® - - - ® p, performs beBtfor P;.
Let our new assignment hg ® p» ® - - - ® p,. Now repeat for eacp; for 2 < i < n. The final state
p] ® - -+ ® pj, is pure, and by convexity is guaranteed to perform as welhas - - - ® p,,.

Second, recall from Seld 3 that we constructéeh@t over a space larger tha{C?), allowing pos-
sibly non-positive assignments for a qudit. We now see thigais$ of no consequence, since regardless of
which samples (positive or not) we use to derive our estismaith the Sampling Lemma, any feasible
solution toPﬁ in Alg. [I7 is a valid assignment fd?;. Moreover, we know that for each optimal for

°If the spectrum op; is degenerate, begin by fixing an arbitrary choice of sped&#eomposition fop;.
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Algorithm 17. APPROXIMATE(H , €).

e Input: (1) Ak-local HamiltonianH = }; ; H;

i,..i, foreachH;, ;€ H((C*)¥).
(2) An error parametee > 0.

e Output: A product assignmept ® - - - ® p, that with probability at leasl /2, has value at least
OPTp — enk, for OPTp the optimal value fo over all product state assignments.

1. Setﬁsdp = ¢/10.

Defineh : R — R such that for any error parametes input to LINEARIZEh(s)n" is the
absolute value of the bound on additive error given by et Th&n, define’ implicitly so that
h(€") + esqp = € holds.

Define constanf such thatl — d?n*=f > 1/2.
k

Define constantg andd implicitly so thate’ = d2 (\/g + 5) (AAkjll) , for A defined in Eqn[{9).
Chooseglogn indicesS C {1,...,n} independently and uniformly at random.
For each possible assignmerftom ourd-net to the qudits irs:
(a) Call LINEARIZE#, {P,'s constraintg, S, i,€’) to obtain SDPP;.
(b) Leta; denote the value d?, obtained by substituting in the optimal squtionRéf
7. Return the assignment corresponding to the maximum diver. a

N

ok~ w

Py, there must besomeoperator (positive or not) within distan@ein our net, ensuring our estimates
obtained using the Sampling Lemma are within our error beund

Converting the absolute error of Algorithm {7 into relative error. To convert the absolute error
+enk of Alg. 7 into arelative error of 1 — €’ for any e/, define constant such thaicn* is the value
obtained for a MAXk-local Hamiltonian instance by choosing the maximally ndixessignment /4"
(analogous to a classical random assignment). Sifidé can be written as a mixture of computational
basis states, we ha@®PTp > cn*. It follows that by settinge = ce’, Alg. L7 returns an assignment
with value at leasOPTp — ce'nk > OPTp — /OPTp > OPTp(1 — €'), as desired.

Derandomizing Algorithm [7l The source of randomness in our algorithm is LEn. 11. By a stan
dard argument in_[AKK99] (see alsb [BR94, BGG93]), this ramuhess can be eliminated with only
polynomial overhead. Specifically, we replace the randoecten of glog » indices in the Sampling
Lemma with the set of indices encountered on a random walkrgfthO(glogn) along a constant
degree expander [Gil93]. Since the expander has constgréalewe can efficiently deterministically
iterate through alh®(8) such walks, and since such a walk works with probability:°(1), at least one
walk will work for all poly(rn) sampling experiments we wish to run.

QMA-hardness of dense MAX%-local Hamiltonian. It is easy to see that (exact) MAXHocal
Hamiltonian remains QMA-hard for dense instances (a siretitement holds for MAX-SAT [AKK99]).
For any MAX-2-local Hamiltonian instance with optimal val@PT, we simply add: qudits, between
any two of which we place the constraj0) (00| (no constraints are necessary between old and new qu-
dits). Then, the new Hamiltonian has optimal vaBT + (), making it dense, and the ability to solve
this new instance implies the ability to solve the originako The argument extends straightforwardly
to MAX-k-local Hamiltonian fork > 2.
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A Technical proofs for Section[3

Expanded Notation. We now expand on our previous notation for analyzing Egh.ir{8rder to
facilitate proofs of the claims in Sed. 3. First, to recuetjvanalyze a clausB;, ; C H((C?)%*), let
H, € H((Cd)®b) for anyl < b < k denote the action aff;, _; restricted to the firsh of its k target

qubits, i.e.H), := Z]b i ]1 Ziajb ® -+ ®0j,. For exampleH; = Zh . ”‘ah andHy = H;,_,.
Note thatH, implicitly depends on variables, ..., i, jp+1,.- .,k but to reduce clutter, our notation
does not explicitly denote this dependence unless negesbhxt, to recursively analyze a degree-

a inner product, we defing,; : H(Cd)x” — R forany0 < a < kand1l < b < k such that
top(01, - 0n) = L0 i Tr <H£1""’ikpib ® - ® pil) (where setting: = 0 eliminates the sum over
indicesi). For examplety x is our full “degreek” objective function in Eqn.[{7), and more generaly,

is the degree-b inner product in Edn. (8). Allowing differgalues forz andb greatly eases our technical

analysis. We use the shorthahdo denotet, ,, and again only explicitly denote the dependence, pf
on parametersg, 1, ..., iy andj.1, . . ., jx when necessary.

Lemma 18. Let{p;}!_; C H(Cd) For any MAXk-local Hamiltonian instance] H;,_;, }
with decomposition for thel; ; as givenin Eqn[d8) we have for afly< a < k and1 1<
ltap(p1, -, n)| < (mMax;,. i H Qi Hp |l ei llg) dint.

Proof of Lem.[I8 By the triangle inequality and the Holder inequality forh@&ttenp-norms, we have

C H(c®)
b < k that

n

|tap| = Z Tr (Hppi, @ - - - ® p;,)

la,...,il

n
< Z ||Hb HFHpib®”'®pil HF
lg,eely

n
(max s e ) 32 11 Ei i,
'“" Qg1

IN

where we have used the fact tHal @ B ||y = || A ||z || B||g for all A,B € L(CY). If we can now
show that|| Hp [ < ||Hk|lg forall1l < b < k, then we would be done since we would have

Y' I Hy|le < ||Hgllgn® < dén”, where || Hy ||z < d5 since H; < 1 by definition. In-
Tgyeesi1 F F F 00

deed, we claim that for any fixet < b < k, we have|| Hy ||z < 2 || Hy |lg- To see this, note by
straightforward expansion of the Frobenius norm and thietffet Tr(c;07) = 20;; that
2) ’

b
I Hy llp =/ Te(Hf) =22

whereri¥ is the coordinate vector dfl;, i from Eqgn. [8). By the second equality in the chain
above, we see that in fatHy || = 25 || £~k || ,, completing the proof of our claim. O

—k

fic || = 9% <22 ‘ ik

2
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Proof of Lem.[I3 We first derive the error bound ef,, and subsequently prove the probability bound.
We follow [AKK99], and proceed by induction dn For the base cage= 1, EVAL(Hy, S, {p; : i € S})
attempts to estimate

t(o1,. .-, 0n) —Z[Zr lkTr UﬁPtj)]
I

using our flawed sample pointg; : i € S}. To analyze the error of its output, assume first that our
sample points are exact, i.; = p; for alli € S. Then, by setting#;” in Lem.[1] totg1 fori = i,

and by using Lenl. 18 with parameters= 0 andb = 1 to obtain upper bound! = dlf, we have by the
Sampling Lemma that (with probability at ledst- 1)

’S’ Z [ZT’ lkTr O}Ipil)] S t1<p1,...,pn);|:dlzf\/§n‘ (10)

i1€S

This bound holds if we sum over exact sample points. If weesdtsum over flawed sample points
{p; : i € S}, the additional error is bounded by times

<)

l]GS

Zf” “Tr(0j, (01, — i,)
it

Z [Zrll lkTr (75, (piy — Pi))

1165

~ k k
< Z(lel — Qi HFdZ) <d2¢n,
€S

(11)
where the second inequality uses Lém. 18 with paramaters0 andb = 1 and the promise of our
é-net. We conclude for the base case that

EVAL(Hy,S,{p;:i € S}) = Z [Zr lkTr ajlpil)] € tipy,...,pn) £d2 <\/§+5> n,

1165

as desired.
Assume now that the inductive hypothesis holds foK m < b — 1. We prove the claim for
m = b. To do so, suppose first that the recursive calls on line 1f{B)iqx L2l return theexactvalues

of f;j,l(m, ...,pPn), and that we have exact samplgs : i € S}. Then, since by calling Ler. 18 with

a=b—1we have‘zj Tr(Ujpi)tgil(pl, cepn)| < din’~1, it follows by the Sampling Lemma that

tdo Lt (12)
t

To first adjust for using flawed samples, observe that an goak calculation to Eqn[{1L1) yields
‘ﬁ Yics [Z]- Tr(oj(p;i — pi))} ‘ < d%6n’, where we have called Lefi:118 with= b — 1. Thus, using

flawed samples, the output of Alg.]12 satisfies
- K f b
ZTrcT]pl bl e) +d> §+5 n'. (13)
i=1

To next drop the assumption that our estimatgen line 1(b) are exact, apply the induction hypothesis

n ..
EP] | SCRT BRI E of L EH IS
i=1 |

i€eS

5 &

i€eS

) Tr(gipi)ty)
]
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to conclude thag;; € f;j,l(m, ee,0n) £ep_1nP~1. Then,

m

ysyZ[ZTf 0ipi eu] %Z Y Tr(0ji7) (tZ_lieblnb—1)]

i€S eS| j

b 4
n ~ €p_1N ~
- ] ) ZTr(U]pl)tlb] NE= 5 ) LZTT(UjPi)]
= _j ies |j=1
C ﬁ YA Te(oip)t) | +ep_1v2d(1+0)nt, (14)
€S Lj
where the last statement follows since
a2 42 a2 42
Y Te(oi) | = [} Tr (U;‘ (Z fmtfm)) <2 Y |l <24 F], < V2d(1+0),  (15)
j=1 j=1 m=1 m=1

wheref denotes the coordinate vector@fwith respect to basi§c,, }, and we have used the facts that
Tr(0i0;) = 26, that|[x ||, < Vd || x|, for x € C%, that || p; || = V2| ¥||, for anyp; € H(C?),
and that|| p; ||z < 1+ ¢ (which follows from ours-net and the triangle inequality). Thus, recalling that
A = v/2d(1 + §) and substituting Eqn_{13) into EqfL_{14), we have that

d% <\/§—|—(5> —|—€b_1A 1’lb

We hence have the recurrence relatign< d> <\/§ + 5) + €p_1 A, which when unrolled yields

% f = m __ f A -1
e <d <\/;+5>n;0A =d <\/;+5><A_1>,

as desired. This concludes the proof of the error bound.

To prove the probability bound, we instead prove the strofgeind of1 — (an;lo dzmn’”) n—f
by induction onb. The base case = 1 follows directly from our application of the Sampling Lemma
in Eqn. [10). For the inductive step, define for brevity ofatmin y := d?n, and apply the induction
hypothesis to line 1(b) of Ald.12 to conclude that each of thealls to EVAL fails will probability
at most(zm 0" )n —f. Then, by the union bound, the probability that at least caiefails is at
most(zm L y™)n~/. Similarly, since our application of the Sampling Lemmaiimel2 of Alg.[12

’5| Z [ZTT (ij eu] € tb(plz---/Pn) +

ieS

[STE

fails with probability at most:—/, we arrive at our claimed stronger boundlof (2;;10 fy’“) nf, as
desired. ]

Proof of Lem.[I5. We begin by observing that if one sets= ¢, then the value o€’ in line 2(b) of
Alg. [I4 is preciselye,_1, and more generally, the passed into the recursive call of line 2(e) Bn
foranyl < b < kise€,. Now, focus on some recursive call enfor b > 1 (the case ob = 1 is
straightforward by Leni13). If the estimate;;in line 2(a) succeed, then by Lem.]13, we know that

eij S tzb],l(Plr' . /Pn) +€,_ 11’lb 1 |mpIy|ng tb 1(Pl" . .,pn) € [li]', I/li]']. Now, lz] and u;; are onIy
incorporated into linear constraints in recursive callsbb_r], yielding constraints of the form

Lijy — €0—2dn" 1 < Y Tr(oj, i, )ei, iy < iy, + Epadn” (16)

ip—1,fo-1
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But {p1, ..., pn} must now satisfy this constraint, since recall

ty1(o1,- o) = Y Te(oy, 00 ) (01,0 00),
ip—1,jb-1
and there arei’n termse;, ;. in Eqn. [I6) each yielding an additional error of at megt,n’~

(assuming EVAL succeeded o)ifl Ur-1 i line 2(a)) above and beyond the bouﬁgs1 (01,..-,pn) €
[1ij, u;;] we established above.

We conclude that if, foall b, i, andj, EVAL succeeds in producing estlmatéfs then{p1,...,on}
is a feasible solution foPs, as desired. The probability of this happening is, by th@pod Lem.[13, at
leastl — d%n*~f, since EVAL recursively estimates precisely the same telumisig its executiddl. O

Proof of Lem.[I6 We begin by proving that for any recursive call to LINEARIZE @ with valid upper
and lower boundsl andL (i.e. U, L # o), respectively, we have f@anyfeasible solutior(ps, ..., on)
to P, that

ty(o1,...,00) € [L,U] £d(d +V2) rzl (\fzd)b—l—mem] nt 17)

m=1

We prove this by induction oh, following [AKK99]. For base casé = 1, the claim is trivial by
line 1(b) of the algorithm. Now, assume by induction hypsteehat

B (0 ou) € i) = d(d + V2) rz_:zl(\/id)bzmem] =y

+€b—1> nt= 1.

By substituting the values @f; andu;; from line 2(c), we have

m=1

1P ) € € E <d<d+ V2) rzzmgz)b—z—mem

We conclude that

t(p1,--pn) = Y Te(pi)ty_y(P1,- - on)
1

C )Y Tr(ojpi)e;j (d(d—i— V2) [g(ﬁd)b_z_mem —|—€b_1> [ZTr i ] -1
1] m=1 i

C ZTr(U]-pi)ei]- +\@d< d(d+V2) [i (V2d)P2 ey, | + ey 1> ’ (18)
ij 1

C :[L, U] ieb_1d2nb} +V2d | d ( (d+V2) [Z (vV2d)P—2 e +€b—1> n?

C [LU]+d(d+V2)

Z\/_d)blm ]Tl,

where the third statement follows from a calculation simitaEqgn. [I5), and the fourth statement from
line 3(b) of Alg.[14. This proves the claim of Eqh.{17).

10This holds even though on line 1 of Alg.J12, we only estim#¢S| of the terms;; j (i.e. EVAL does not actually estimate
all terms in the recursive decompositiontpf as it does not need to) — this is because in our analysis @rtitEability bound
for Alg.[I2, we actually produced a looser bound by assumiing trmse;; are estimated.
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To complete the proof of Leni. 16, observe that by LEni. 15, segamento°P! is feasible for
P, with probability at leasti — d*n*~/. Thus, pluggingo®* into each of thei*n linear constraints

produced by the recursive calls to LINEARIZE on eai'f_hl, we have by Eqns[_(17) and (18) that (with
probability 1 — d%n*—/)

OFTy = (p™) = LTr (05 ) £ (o)

- [ZTr(ajp?pt)eij iﬁd( d(d +V2) [Z (V2d)k2me +ek1> n*
ij =1
k-1
C OPT,xd(d+V2) | Y (V2d)*"' e, | n*,
m=1
where the last statement follows sine®" is not necessarily the optimal solution . O
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