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Approximation algorithms for QMA-complete problems

Sevag Gharibian∗ Julia Kempe†

Abstract

Approximation algorithms for classical constraint satisfaction problems are one of the main re-
search areas in theoretical computer science. Here we definea natural approximation version of
the QMA-complete local Hamiltonian problem and initiate its study. We present two main results.
The first shows that a non-trivial approximation ratio can beobtained in the classNP using product
states. The second result (which builds on the first one), gives a polynomial time (classical) algo-
rithm providing a similar approximation ratio for dense instances of the problem. The latter result is
based on an adaptation of the “exhaustive sampling method” by Arora et al. [AKK99] to the quantum
setting, and might be of independent interest.

1 Introduction and Results

In the last few years, the quantum analog of the class NP, the class QMA [KSV02], has been exten-
sively studied, and several QMA-complete problems have been found [Liu06, Bra06, LCV07, BS07,
Ros09, JGL10, SV09, WMN10]. Arguably the most important QMA-complete problem is thek-local
Hamiltonian problem [KSV02, KR03, OT08, KKR06, AGIK09]. Here, the input is a set of Hamilto-
nians (Hermitian matrices), each acting on at mostk-qubits each. The task is to determine the largest
eigenvalue of the sum of these Hamiltonians. This problem generalizes the central NP-hard problem
MAX- k-CSP, where we are given a set of Boolean constraints onk variables each, with the goal to
satisfy as many constraints as possible. The local Hamiltonian problem is of significant interest to com-
plexity theorists and to physicists studying properties ofphysical systems alike (e.g. [BV05, AvDK+07,
BDOT08, AALV09, CV09, LLM+10, SC10]).

Moving to the classical scenario, the theory of NP-completeness is one of the great success stories
of classical computational complexity [AB09]. It was soon realized that many natural optimization
problems are NP-hard, and are hence unlikely to have polynomial time algorithms. A natural question
(both in theory and in practice) is to look for polynomial time algorithms that produce solutions that
are close to optimum. More precisely, one says that an algorithm achieves anapproximation ratio
of c ∈ [0, 1] for a certain maximization problem if on all inputs, the value of the algorithm’s output
is at leastc times that of the optimum solution. The closerc is to 1, the better the approximation.
The investigation of approximation algorithms is, after decades of heavy research, still a very active
area (e.g., [Hoc97, Vaz01]). For many central NP-hard problems, tight polynomial time approximation
algorithms are known.

In the context of QMA-complete problems, it is thus natural to search for approximation algorithms
for these problems, and in particular for the local Hamiltonian problem. The question we address here
is: How well can one efficiently approximate thek-local Hamiltonian problem?
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It should be noted that a large host of heuristics has been developed in the physics community to
approximate properties of local Hamiltonian systems (see,e.g., [CV09] for a survey) and this area is ex-
tremely important in the study of physical systems. However, the systematic complexity theoretic study
of approximation algorithms for QMA-complete problems is still very much in its infancy, and our work
is one of the first steps in this research direction. We note that there has been a lot of interest in re-
cent years [AALV09, Aar06] in establishing a so-called quantum PCP theorem (e.g. [AS98, ALM+98]),
which amounts to showing that for some constantc < 1 close enough to1, approximating thek-local
Hamiltonian (or related problems) to withinc is QMA-hard. Our results can also be seen as a natural
continuation of that investigation.

Our results: Let us start by precisely defining the optimization version of the local Hamiltonian prob-
lem, which is parameterized by two integersk andd, which we always think of as constants.

Definition 1 (MAX- k-local Hamiltonian problem ond-level systems (qudits)). An instance of the prob-
lem consists of a collection of(n

k) Hermitian matrices, one for each subset ofk qudits. The matrix
Hi1,...,ik

corresponding to some1 ≤ i1 ≤ · · · ≤ ik ≤ n is assumed to act on those qudits1, to be positive
semidefinite, and to have operator norm at most1. We call any pure or mixed stateρ on n qudits an
assignmentand define itsvalueto beTrHρ whereH = ∑i1,...,ik

Hi1,...,ik
. The goal is to find the largest

eigenvalue ofH (denotedOPT), or equivalently, the maximum value obtained by an assignment. We
say that an algorithm provides anapproximation ratioof c ∈ [0, 1] if for all instances, it outputs a value
that is betweenc · OPT andOPT.

This definition, we believe, is the natural quantum analog ofthe MAX-k-CSP problem. We note that
it differs slightly from the usual definition of thek-local Hamiltonian problem. Namely, we consider
maximization (as opposed to minimization), and also restrict the terms ofH to be positive semidefinite,
and have norm at most1. As long as one considers theexactproblem, these assumptions are without
loss of generality, and do not affect the definition, as seen by simply scaling the Hamiltonians and
adding multiples of identity as necessary. However, when dealing with theapproximationversion, these
assumptions are important for the problem to make sense; forinstance, one cannot meaningfully talk
about approximation ratios if the optimum can take both negative and positive values. That is why we
require the terms to be positive semidefinite. The requirement that the terms have operator norm at
most1 does not affect the problem and later allows us to conveniently define dense instances. Finally,
changing the maximization to a minimization would lead to anentirely different approximation problem:
the quantum analogue of MIN-CSP (e.g. [KSTW01]). Minimization problems are, generally speaking,
harder than maximization problems, and we leave this research direction for future work.

Before stating our results, we remark that there is a trivialway to get ad−k-approximation for MAX-
k-local Hamiltonian. Observe that the maximally mixed statehas at leastd−k overlap with the reduced
density matrix of the optimal assignment on anyk particles. A similar thing holds classically, where a
random assignment gives (in expectation) ad−k approximation of MAX-k-CSP. We now describe our
two main results.

Approximation by product states. One inherently quantum property of the local Hamiltonian prob-
lem is the fact that the optimal state might in general be highly entangled (and hence not efficiently
describable in polynomial time). This is why we do not require outputting the assignment itself in the
above definition. If, however, the optimal assignment (or some other good assignment) was guaranteed
to be atensor product state, then we could describe it efficiently. The following theorem shows just that.

Theorem 2. For an instance of MAX-k-local Hamiltonian with optimal valueOPT, there is a (pure)
product state assignment that has value at leastOPT/dk−1.

1Terms acting on less thank qudits can be incorporated by tensoring them with the identity.
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This result istight for product states in the case of2-local Hamiltonians (we remark that2-local
Hamiltonians are often the most relevant case from a physicsperspective). For example, consider the
Hamiltonian on2-qubits that projects onto the EPR state1√

2
(|00〉 + |11〉). It is easy to see that no

product state achieves value more than1/2. For generalk, we can only show that product states cannot
achieve an approximation ratio greater than1/d⌊k/2⌋ (see Sec. 3).

If we could efficiently find the best product state assignment, we would obtain an algorithm achiev-
ing a non-triviald−k+1 approximation ratio. Unfortunately, this problem is NP-complete, since it would
allow one to solve (e.g.) the special case of MAX-k-SAT, and hence we do not have such an algorithm.
Still, the theorem has the following interesting implication: It shows that unlessNP = QMA, approxi-
mating the local Hamiltonian problem to within a factor lessthand−k+1 is not QMA-hard. This follows
simply because product states have polynomial size classical descriptions.

A polynomial time approximation algorithm for dense instances. Our second result gives a clas-
sical polynomial time approximation algorithm fordenseinstances of the local Hamiltonian problem.
This result is perhaps our technically most challenging one, and we hope the techniques we develop
might turn out useful elsewhere.

Dense instances of classical constraint satisfaction problems have been studied in depth (see e.g. [dlV96,
FK96, GGR98, AKK99, dlVK00, AdlVKK02, BdlVK03, dlVKKV05]). Our result is inspired by work
of Arora et al. [AKK99] who provide a polynomial time approximation scheme, or PTAS (i.e., an ef-
ficient 1 − ε approximation algorithm for any fixedε > 0), for several types of dense constraint sat-
isfaction problems. In the classical case, dense (for2-local constraints) simply means that the aver-
age degree in the constraint graph isΩ(n), or equivalently, that the optimum isΩ(n2). In analogy,
we define an instance of MAX-k-local Hamiltonian to bedenseif OPT = Ω(nk), or equivalently, if
Tr(H Id

dn ) = Ω(nk).2

It is not hard to see that the (exact) dense local Hamiltonianproblem remains QMA-hard (see
Sec. 3.3). The dense case might be of practical interest to physicists who study systems of particles
by incorporating all possible interactions between them. Note that such instances are dense even if the
interactions between particles are weak, so long as the interaction strengths are constants independent
of n. Our second main result is the following:

Theorem 3. For all ε > 0 there is a polynomial time(1/dk−1 − ε) approximation algorithm for the
dense MAX-k-local Hamiltonian problem over qudits.

Thm. 3 follows immediately by combining Thm. 2 with the following theorem, which gives an
approximation scheme for the problem of optimizing over theset of product states.

Theorem 4. For all ε > 0 there is a polynomial time algorithm for dense MAX-k-local Hamiltonian
that outputs a product state assignment with value within1 − ε of the value of the best product state
assignment.

Proof ideas and new tools: The proofs of Thm. 2 and Thm. 4 are independent and employ different
techniques. To show the product state approximation guarantee, we show a slightly stronger statement:
Foranyassignment|Ψ〉, there is a way to construct a product assignment of at leastd−k+1 its value. The
proof is constructive (given|Ψ〉): we use a type of recursive Schmidt decomposition of|Ψ〉 to obtain a
mixture of product states whose value is off by at most the desired approximation factor (see Sec. 2).

Our second result is technically more challenging and introduces a few new ideas to this problem,
inspired by work of Arora et al. [AKK99] in the classical setting. We illustrate the main ideas for MAX-
2-local Hamiltonian onn qubits. Recall that our goal is to find a PTAS for the local Hamiltonian problem

2The equivalence follows from the fact that the mixed state assignmentId/dn has value betweenOPT andOPT/dk.
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over product states. The value of the optimal product state assignment,OPTP, can be written

OPTP = max
n

∑
i=1

∑
j∈N(i)

Tr(Hi,j(ρi ⊗ ρj)) s.t. ρi � 0 andTr(ρi) = 1 for 1 ≤ i ≤ n, (1)

whereN(i) is the set of indicesj for which a local Hamiltonian termHi,j is present. We might call this
aquadraticsemidefinite program, as the maximization is quadratic in the ρi (and as such not efficiently
solvable). Note, however, that if the terms in the maximization were linear, then we would obtain a
semidefinite program (SDP), which is efficiently solvable [GLS93]. To “linearize” our optimization, we
use the “exhaustive sampling method” developed by Arora et al. [AKK99] (a method which was later
key in many developments in property testing, e.g. [GGR98]). We write each Hamiltonian term in a
basis that separates its two qubits, for instance the Pauli basis{σ0, σ1, σ2, σ3}, Hi,j = ∑

3
k,l=0 α

ij
klσk ⊗ σl.

For i = 1, . . . , n andk = 0, 1, 2, 3, define

ci
k := ∑

j∈N(i)
∑

l

α
ij
klTr(σlρj).

If we knew the values ofci
k for the optimalρi, then solving the SDP below would yield the optimalρi:

max
n

∑
i=1

3

∑
k=0

ci
kTr(σkρi) s.t. ρi � 0 andTr(ρi) = 1 for 1 ≤ i ≤ n, (2)

∑
j∈N(i)

∑
l

α
ij
klTr(σlρj) = ci

k for 1 ≤ i ≤ n and0 ≤ k ≤ 3.

Of course, this reasoning is circular, as in order to obtain theci
k we need the optimalρi. The crucial idea

is now to usesamplingto estimatethe ci
k. More precisely, assume for a second that we could sample

O(log n) of the ρi randomly from the optimal assignment. Then, by standard sampling bounds, with
high probability over the choice of the sampled qubits we canestimate all theci

k to within an additive
error±εn for someε. If we had these estimatesai

k for the ci
k, we could solve the SDP above with the

slight modification that the last constraint should beai
k − εn ≤ ∑j∈N(i) ∑l α

ij
klTr(σlρj) ≤ ai

k + εn. With

high probability over the sampled qubits, this SDP will givea solution that is within an additiveεn2 of
the optimal one (more subtle technicalities and all calculations can be found in Sec. 3). Moreover, it is
possible to derandomize the sampling procedure to obtain a deterministic algorithm (Sec. 3.3).

Of course, we are still in the realm of wishful thinking, because in order to sample from the optimal
solution, we would need to know it, which is precisely what weset out to do. However, the number of
qubits we wish to sample is onlylogarithmic in the input size. Thus, to simulate the sampling procedure,
we can pick a random subset ofO(log n) qubits, and simplyiterate through all possible assignments
on them (with an appropriateδ-net over the density matrices, which incurs a small additional error) in
polynomial time! Our algorithm then runs the SDP for each iteration, and we are guaranteed that at least
one iteration will return a solution withinεn2 of the optimal one. Because the denseness assumption
guarantees thatOPTP is Ω(n2), our additive approximation turns into a factor(1 − ε)-approximation,
as desired. All details, the runtime of the algorithm and error bounds for the generalk-local case on
qudits are given in Sec. 3.

Previous and related work: We note that many heuristics have been developed in the physics com-
munity to approximate properties of local Hamiltonian systems and this area is extremely important
in the study of physical systems (e.g. [Whi92, Whi93,ÖR95, RÖ97, Sch05, PWKE98, CV09]). Our
focus here is, however, on rigorous bounds on the approximation guarantee of algorithms for the gen-
eral problem. In this area, to our knowledge, few results areknown. In a first result on polynomial
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time approximation algorithms, Bansal, Bravyi and Terhal [BBT09] give a PTAS for a special class of
the local Hamiltonian problem, so called quantum Ising spinglasses, for the case where the instance is
on a planar graph (and in particular of bounded degree). ThisPTAS is obtained by dividing the graph
into constant size chunks, which can be solved directly, andignoring the constraints between chunks
(this incurs an error proportional to the number of such constraints, which is small because the graph is
planar). More recently, there has been work proving rigorous approximations to ground states of one-
dimensional quantum systems under well-defined conditionsusing techniques such as density matrix
renormalization group [AAI10, SC10]. To our knowledge, we are the first to establish a bound on the
approximation factor by optimizing over the set of product states.

Discussion and open questions: Our two results give approximations to the local Hamiltonian prob-
lem. Although at first glance, our approximation ratio of1/dk−1 may appear an incremental improve-
ment over the trivial random assignment strategy, there aretwo important notes that should be kept
in mind: The first is that many classical NP-hard problems, such as MAX-3-SAT (a special case of
MAX- k-CSP where each constraint is the disjunction (“OR”) ofk variables or their negation), areap-
proximation resistant(e.g. [Hås07, AM08]), meaning that unless P=NP, there do not even exist non-
trivial approximation ratios beyond the random assignmentstrategy. For example, for MAX-3-SAT it
is NP-hard to do better than the approximation ratio of7/8 achieved by random assignment [Hås97].
Thus, showing the existence of a non-trivial approximationratio is typically a big step in the classical
setting. Moreover, it could have been conceivable that for MAX-k-local Hamiltonian, analogously to
MAX-3-SAT, outperforming the random assignment strategy would have beenQMA-hard. Yet our re-
sults show that unless NP=QMA, this is not the case. The second important note that should be kept in
mind is that the currentlybestapproximation algorithm for MAX-k-CSP gives an approximation ratio
of only about0.44k/2k for k > 2 [CMM07] (for k = 2, one can achieve0.874 [LLZ02]) and this
is, moreover, essentially the best possible under a plausible complexity theoretic conjecture (namely,
the unique games conjecture [Kho02]) [Tre98, Has05, ST06, AM08]. This is to be contrasted with our
2/2k-approximation ratio for the case ofd = 2 (i.e. qubit systems), which we show can be achieved by
product state assignments forarbitrary (i.e. even non-dense) MAX-k-local Hamiltonian instances. This
raises the important open question: is our approximation ratio tight?

Our product state approximation shows that approximating the local Hamiltonian problem to within
d−k+1 is in NP. It would be interesting to know if this approximation ratio could also be achieved in
polynomial time. If not, it might lead to an intriguing stateof affairs where for low approximation ratios
the problem is efficiently solvable, for medium ratios it is in NP but not efficiently solvable, and for high
ratios it is QMA-hard (assuming a quantum PCP theorem exists).

To obtain our results for the case of dense local Hamiltonians, we have introduced the exhaustive
sampling technique of Arora et al. [AKK99] to the setting of low-degree semidefinite programs. We
linearize such programs using exhaustive sampling in combination with a careful analysis of the error
coming from working withδ-nets on density matrices. We remark that it seems we cannot simply
apply the results of [AKK99] forsmooth Polynomial Integer Programsas a black-box to our setting.
This is due to our aforementioned need for aδ-net, as well as the requirement that our assignment be
a positive semidefinite operator. We address the latter issue by extending the techniques of [AKK99]
to the realm of positive semidefinite programs by introducing the notion of “degree-k inner products”
over Hermitian operators to generalize the concept of degree-k polynomials over real numbers, and
performing the more complex analysis that ensues. We hope that this technique will be of much wider
applicability, particularly considering the growing use of semidefinite programs in numerous areas of
quantum computing and information (e.g. [DPS04, JJUW10, LMRS10]).

Another open question is whether similar ideas can be used toapproximate other QMA-complete
problems, such as the consistency problem [Liu06]. Moreover, can we obtain polynomial time algo-
rithms without the denseness assumption? And are there special cases of the local Hamiltonian problem
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for which there is a PTAS (other than for planar Ising spin glasses [BBT09])? Of course, we do not
expect a PTAS for all instances of the local Hamiltonian problem, as this would contradict known hard-
ness results for special classical cases of the problem. However, perhaps there exist other classes of
physically relevant instances of the problem for which a PTAS does exist.

Structure of this paper: In Sec. 2, we prove our result on product state approximations (Thm. 9
and the ensuing proof of Thm. 2), show its tightness in the2-local case and provide the upper bound
of d−⌊k/2⌋ for the best possible approximation by product states. Sec.3 gives our polynomial time
approximation algorithm and develops the general samplingand SDP-based technique we use. It also
shows that the dense local Hamiltonian problem remains QMA-complete.

Notation: We useA � 0 to say operatorA is positive semidefinite, and denote byL(X ), H(X ),
andD(X ) the sets of linear, Hermitian, and density operators actingon complex Euclidean spaceX ,
respectively. We denote the Frobenius and operator norms ofA ∈ L(X ) as‖ A ‖F =

√

Tr(A†A) and
‖ A ‖∞ = max|x〉∈X s.t. ‖ x ‖2=1 ‖ A|x〉 ‖2, respectively.

2 Product states yield a1/dk−1-approximation for qudits

We now show that product state assignments achieve a non-trivial approximation ratio for MAX-k-local
Hamiltonian , i.e. Thm 2. The heart of our approach is what we call theMixing Lemma(Lem. 7), which
we use to prove Thm. 9. Thm. 2 will then easily follow. At the end of the section, we discuss the
tightness of the approximation guarantee given by Thm. 2. Webegin with two definitions.

Definition 5 (Recursive Schmidt Decomposition (RSD)). We define therecursive Schmidt decomposi-
tion of a state|ψ〉 ∈ (Cd)⊗n as the expression obtained by recursively applying the Schmidt decompo-
sition on each qudit from1 to n − 1 inclusive3. For example, the RSD for3-qubit |ψ〉 is

|ψ〉 = α1|a1〉 ⊗ (β1|b1〉|c1〉+ β2|b2〉|c2〉) + α2|a2〉 ⊗ (β′
1|b′1〉|c′1〉+ β′

2|b′2〉|c′2〉),

for α2
1 + α2

2 = β2
1 + β2

2 = β′
1

2 + β′2
2 = 1, {|ai〉}i an orthonormal basis for qubit1, {|bi〉}i and{|b′ i〉}i

orthonormal bases for qubit2, and{|ci〉}i and{|c′ i〉}i orthonormal bases for qubit3.

Definition 6 (Schmidt cut). For any|ψ〉 ∈ (Cd)⊗n with Schmidt decomposition|ψ〉 = ∑
d
i=1 αi|wi〉|vi〉,

where|wi〉 ∈ Cd and |vi〉 ∈ (Cd)⊗n−1, and for any|φ〉 ∈ (Cd)⊗m, we refer to the expansion|φ〉 ⊗
(

∑
d
i=1 αi|wi〉|vi〉

)

as theSchmidt cutat quditm + 1. We say that a projectorΠ crossesthis Schmidt

cut if Π acts on quditm + 1 and at least one quditi ∈ {m + 2, . . . , m + n}.

The heart of our approach is the following Mixing Lemma, which provides, forany assignment
|ψ〉 ∈ (Cd)⊗n, an explicit construction through which the entanglement across the first Schmidt cut of
|ψ〉 can be eliminated, while maintaining at least a(1/d)-approximation ratio relative to the value|ψ〉
achieves against any local HamiltonianH ∈ H((Cd)⊗n).

Lemma 7 (Mixing Lemma). Given state|ψ〉 on n qudits with Schmidt cut on qudit1 given by|ψ〉 =

∑
d
i=1 αi|wi〉|vi〉, where|wi〉 ∈ Cd and |vi〉 ∈ (Cd)⊗n−1, defineρ := ∑

d
i=1 α2

i |wi〉〈wi| ⊗ |vi〉〈vi|.
Then, given projectorΠ acting on some subsetS of the qudits, ifΠ crosses the Schmidt cut, then
Tr(Πρ) ≥ 1

d Tr(Π|ψ〉〈ψ|). Otherwise,Tr(Πρ) = Tr(Π|ψ〉〈ψ|).
3This definition is relative to some fixed ordering of the qudits. The specific choice of ordering is unimportant in our

scenario, as any decomposition output by such a process suffices to prove Thm. 2.
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Proof. Case2 follows easily by noting that the given Schmidt decomposition of |ψ〉 impliesTr1(ρ) =
Tr1(|ψ〉〈ψ|) andTr2,...,n(ρ) = Tr2,...,n(|ψ〉〈ψ|). To prove case1, we observe by straightforward expan-
sion that

Tr(Π|ψ〉〈ψ|) = Tr(Πρ) +∑
i<j

αiαj〈wi|〈vi|Π|wj〉|vj〉+ αiαj〈wj|〈vj|Π|wi〉|vi〉. (3)

Then, by defining for eachi vector|ai〉 := αiΠ|wi〉|vi〉, we have that

∑
i<j

αiαj〈wi|〈vi|Π|wj〉|vj〉+ αiαj〈wj|〈vj|Π|wi〉|vi〉 = ∑
i<j

〈ai|aj〉+ 〈aj|ai〉.

Applying the facts thatΠ2 = Π and〈a|b〉+ 〈b|a〉 ≤ ‖ |a〉 ‖2
2 + ‖ |b〉 ‖2

2 for |a〉, |b〉 ∈ (Cd)⊗n implies

∑
i<j

〈ai|aj〉+ 〈aj|ai〉 ≤ ∑
i<j

‖ |ai〉 ‖2
2 +

∥

∥ |aj〉
∥

∥

2

2
= (d − 1)∑

i

α2
i 〈wi|〈vi|Π|wi〉|vi〉 = (d − 1)Tr(Πρ),

from which the claim follows.

The following simple extension of Lem. 7 simplifies our proofof Thm. 9.

Corollary 8. Define |ψ′〉 := |φ〉 ⊗ |ψ〉, where|φ〉 ∈ (Cd)⊗m for m > 0 and |ψ〉 is defined as in
Lem. 7, and letρ ∈ D(Cd)⊗n be obtained from|ψ〉 as in Lem. 7. Then, for any projectorΠ acting on a
subsetS of the qudits, ifΠ crosses the Schmidt cut of|ψ′〉 at quditm + 1, we haveTr(Π|φ〉〈φ| ⊗ ρ) ≥
1
d Tr(Π|ψ′〉〈ψ′|). Otherwise,Tr(Π|φ〉〈φ| ⊗ ρ) = Tr(Π|ψ′〉〈ψ′|).
Proof. Immediate by applying the proof of Lem. 7 with the following modifications: (1) Define|ai〉 :=
αiΠ|φ〉|wi〉|vi〉, and (2) ifS ⊆ {1, . . . , m} ∪ {m + 2, . . . , m + n} (i.e. this is one of two ways forΠ
not to cross the cut — the other way is forS ⊆ {1, . . . , m + 1}), observe that by the same arguments as
in Lem. 7 for case2 and the product structure between|φ〉 and|ψ〉 in |ψ′〉 thatTrm+1(|φ〉〈φ| ⊗ ρ) =
Trm+1(|ψ′〉〈ψ′|).

Lemma 7 shows that the stateρ obtained bymixing the d Schmidt vectors of|ψ〉, as opposed to
taking theirsuperposition, suffices to achieve a(1/d)-approximation across the first Schmidt cut. By
iterating this argument overall n − 1 Schmidt cuts, we now prove that a mixture of all (product) states
appearing in the RSD of|ψ〉 achieves an approximation ratio of1/dk−1.

Theorem 9. For any n-qudit assignment|ψ〉 with RSD|ψ〉 = ∑
dn−1

i=1
√

pi|φi〉, where∑i pi = 1 and

{|φi〉}dn−1

i=1 is a set of orthonormal product vectors in(Cd)⊗n, defineρ := ∑
dn−1

i=1 pi|φi〉〈φi|. Then, for
any projectorΠ acting on some subsetS ⊆ {1, . . . , n} of qudits with|S| = k, we haveTr(Πρ) ≥

1
dk−1 Tr(Π|ψ〉〈ψ|).

Proof. Let Π be a projector with|S| = k, and definec ∈ {0, 1}n−1 such thatc(j) = 1 iff Π crosses
the Schmidt cut at quditj. For example, ifΠ acts on qudits{1, 2}, thenc = (1, 0, . . . , 0). Note that in
general‖ c ‖1 = k − 1. We proceed by iteratively stepping through each Schmidt cut in the RSD of|ψ〉.
Let ρ(0) := |ψ〉〈ψ|, and consider first the cut at qudit1, i.e. |ψ〉 = ∑

d
i=1 αi|wi〉|vi〉, for |wi〉 ∈ Cd and

|vi〉 ∈ (Cd)⊗n−1. Definingρ(1) := ∑
d
i=1 α2

i |wi〉〈wi| ⊗ |vi〉〈vi|, we have by Lem. 7 that

Tr(Π|ψ〉〈ψ|) ≤ dc(1)Tr(Πρ(1)), (4)

i.e. we lose a factor of1/d iff Π crosses the first cut.
Moving on to the second Schmidt cut, consider the state|w1〉|v1〉 ∈ Cd ⊗ (Cd)⊗n−1 appearing

in the expression forρ(1). Observe that it satisfies the preconditions for Cor. 8 withm = 1. Hence,
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via Cor. 8 there exists a stateσ1 acting on qudits{2, . . . , n} such thatTr(Π|w1〉〈w1| ⊗ |v1〉〈v1|) ≤
dc(2)Tr(Π|w1〉〈w1| ⊗ σ1). We can analogously find statesσi corresponding to|wi〉|vi〉 for all 1 ≤ i ≤
d. Thus,

Tr(Πρ(1)) =
d

∑
i=1

α2
i Tr(Π|wi〉〈wi| ⊗ |vi〉〈vi|) ≤ dc(2)

[

d

∑
i=1

α2
i Tr(Π|wi〉〈wi| ⊗ σi)

]

. (5)

Hence, by definingρ(2) := ∑
d
i=1 α2

i |wi〉〈wi| ⊗ σi, we have via Eqns. (4) and (5) that

Tr(Π|ψ〉〈ψ|) ≤ dc(1)+c(2)Tr(Πρ(2)).

Since by Cor. 8, theσi are mixtures of Schmidt vectors from the second Schmidt cut,we can now
iteratively apply the same procedure to the (at mostd2) pure states appearing in the expression forρ(2)

when considering the third Schmidt cut. Note in particular that each of these terms will have a product
structure between qudits{1, 2} and{3, . . . , n}, as required by Cor. 8 for the next iteration.

More generally, when considering thepth Schmidt cut, we apply Cor. 8 withm = p − 1 to each of
the at mostdp−1 terms appearing in the expansion ofρ(p−1). We continue iterating in this fashion until
we have exhausted alln − 1 Schmidt cuts, at which point the resulting mixtureρ(n−1) we are left with
is in fact theρ from the statement of the claim (seen by noting that our procedure essentially iteratively
computes the RSD of|ψ〉, mixing the Schmidt vectors it computes at each step). Moreover, due to the
repeated application of Cor. 8, we have

Tr(Π|ψ〉〈ψ|) ≤ d‖ c ‖1Tr(Πρ(n−1)). (6)

Recalling that‖ c ‖1 = k − 1 completes the proof.

Proof of Thm. 2: Simply apply Thm. 9 to each projector in the spectral decompositions of each
(positive semidefinite)Hi in our MAX-k-local Hamiltonian instanceH = ∑i Hi, and let|ψ〉 denote
the optimal assignment forH. It is important to note that we can exploit Thm. 9 in this fashion due to
the fact that theρ constructed by Thm. 9 isindependentof the projectorΠ — i.e. for any fixed|ψ〉 and
k, the stateρ provides the same approximation ratio againstanyk-local projectorΠ encountered in the
spectral decompositions of theHi. Finally, note that one can find apure product state achieving this
approximation guarantee sinceρ is a convex mixture of pure product states.

Upper bound of d−⌊ k
2 ⌋ for product state approximations. Is the result of Thm. 2 tight? In the case

of MAX- 2-local Hamiltonian on qudits, yes — consider a single clauseprojecting onto the maximally
entangled state1√

d
∑i |ii〉, for which a product state achieves value at most1/d. On the other hand, for

MAX- 3-local Hamiltonian on qubits, the worst case clause for a3-qubit product state assignment is the
projector onto the state|W〉 = 1√

3
(|001〉 + |010〉 + |100〉) [TWP09]. But here product states achieve

value4/9 [WG03], implying the bound of1/4 from Thm. 2 is not tight.
A simple construction shows that the true optimal ratio is upper bounded byd−⌊ k

2 ⌋. To see this, con-
sider a single clause which is the tensor product of maximally entangled bipartite states4. For example,
for n = 4, consider the clause|φ+〉〈φ+| ⊗ |φ+〉〈φ+|, where|φ+〉 = 1√

2
(|00〉+ |11〉). The maximum

value a product state can attain is1/4, as claimed. In the qubit setting (d = 2), one can further improve
this construction for oddk by replacing the term|φ+〉〈φ+| ⊗ I on the last three qubits with|W〉〈W|.
For example, fork = 5, setting our instance to be the clause|φ+〉〈φ+| ⊗ |W〉〈W| yields an upper bound

of (1/2)(4/9) = 2/9 < 1/4 = d−⌊ k
2 ⌋ (where we again use the value4/9 for |W〉 from the previous

paragraph). For general oddk > 1, this improved bound generalizes to2
−k+7

2 /9.

4For oddk, we assume the odd qudit out projects onto the identity.
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3 Optimizing over the set of separable quantum states

Section 2 showed that there alwaysexistsa product state assignment achieving a certain non-trivial
approximation ratio. In this section, we show how to efficiently find such a product state. Our main
theorem of this section is the following (Thm. 10), from which Thm. 4 follows easily (see discussion at
end of Sec. 3.3).

Theorem 10. Let H be an instance of MAX-k-local Hamiltonian acting onn qudits, and letOPTP

denote the optimum value ofTr(Hρ) over allproductstatesρ ∈ D((Cd)⊗n). Then, for any fixedǫ > 0,
there exists a polynomial time (deterministic) algorithm which outputsρ1 ⊗ · · · ⊗ ρn ∈ D((Cd)⊗n)
such thatTr(Hρ1 ⊗ · · · ⊗ ρn) ≥ OPTP − ǫnk.

We first outline our approach by generalizing the discussionin Sec. 1, introducing tools and notation
we will require along the way. The optimal valueOPTP over product state assignments for any MAX-
k-local Hamiltonian instance can be expressed as the following program, denotedP1:

OPTP = max
n

∑
i1,...,ik

Tr(Hi1,...,ik
ρi1 ⊗ · · · ⊗ ρik

) s.t. ρi � 0 and Tr(ρi) = 1 for 1 ≤ i ≤ n. (7)

As done in Eqn. (2), we now recursively decompose our objective function as a sequence of nested sums.
Let {σi}d

i=1 be a traceless, Hermitian orthogonal basis for the set of Hermitian operators acting onCd,
such thatTr(σiσj) = 2δij (for δij the Kroenecker delta) (see, e.g. [Kim03]). Then, by rewriting each

Hi1,...,ik
in terms of{σi}d

i=1, our objective function becomes

n

∑
ik,...,i1

Tr

[(

d2

∑
jk ,...,j1=1

ri1,...,ik

j1 ,...,jk
σjk ⊗ · · · ⊗ σj1

)

ρik
⊗ · · · ⊗ ρi1

]

=

∑
ik,jk

Tr(σjk ρik
)

[

∑
ik−1,jk−1

Tr(σjk−1
ρik−1

)

[

· · ·
[

∑
i1

Tr

((

∑
j1

ri1,...,ik
j1 ,...,jk

σj1

)

ρi1

)]]]

, (8)

where eachri1,...,ik ∈ Rd2
. We henceforth think of the objective function above as a “degree-k inner

product”, i.e. as a sequence ofk nested sums involving inner products, in analogy to the degree-k
polynomials of Ref. [AKK99]. In this sense, a degree-1 inner product would refer to only the innermost
sums overi1 and j1, and a degree-k inner product would denote the entire expression in Eqn. (8). More
formally, we denote5 a degree-b inner product for1 ≤ b ≤ k using maptb : H(Cd)×n 7→ R, defined

such that6 tb(ρ1, . . . , ρn) := ∑ib,jb
Tr(σjb ρib

)
[

· · ·
[

∑i1
Tr
((

∑j1
ri1 ,...,ik

j1 ,...,jk
σj1

)

ρi1

)]]

.

Our approach is to “linearize” the objective function ofP1 using exhaustive sampling and recursion
to estimate its degree-(k − 1) inner products. To do so, we will require the Sampling Lemma.

Lemma 11(Sampling Lemma [AKK99]). Let (ai) be a sequence ofn real numbers with|ai| ≤ M for
all i, and let f > 0. If we choose a multiset ofs = g log n of theai at random (with replacement), then

their sumq satisfies∑i ai − nM
√

f
g ≤ q n

s ≤ ∑i ai + nM
√

f
g with probability at least1 − n− f .

The proof of Lemma 11 follows from a simple application of theHöffding bound [Höf64]. To use
the Sampling Lemma in conjunction with exhaustive sampling, we will discretize the space of1-qudit
density operators using aδ-net G ⊆ H(Cd), such that for allρ ∈ D(Cd), there existsσ ∈ G such that
‖ ρ − σ ‖F ≤ δ. We now show how to constructG.

5See the beginning of App. A for more elaborate notation used in the proofs of the claims of Sec. 3.
6Note thattb implicitly depends on parametersib+1, . . . , ik andjb+1, . . . , jk.
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To obtainG, we instead construct aδ-net for a subset ofH(Cd) whichcontainsD(Cd), namely the
set7 A(Cd) :=

{

A ∈ H(Cd) | maxi,j |A(i, j)| ≤ 1
}

. Creating aδ-net overA(Cd) is simple: we cast a
(δ/d)-net over the unit disk for each of the complexd(d − 1)/2 matrix entries above the diagonal, and
likewise over[−1, 1] for the entries on the diagonal. Lettingm andn denote the minimum number of
points required to create such(δ/d)-nets for each of the diagonal and off-diagonal entries, respectively,

we have that|G| = m
d(d−1)

2 nd. For example, simple nets of sizem ≈ d/δ and n ≈ d2/δ2 can be
obtained by placing a 1D and 2D grid over[−1, 1] and the length2 square in the complex plane centered
at (0, 0), respectively, implying|G| ∈ O(1) whend ∈ O(1). To show thatG is indeed aδ-net, we now
bound the Frobenius8 distance between arbitraryρ ∈ D(Cd) and the closest̃ρ ∈ G. Specifically, let
A := ρ − ρ̃. Then:

‖ A ‖F =
√

Tr(A† A) =

√

∑
ij

|A(i, j)|2 ≤
√

∑
ij

(δ/d)2 =
δ

d
(d) = δ.

Finally, we remark that ourdenseassumption on MAX-k-local Hamiltonian instances is only nec-
essary to convert the absolute error of Thm. 10 to a relative one [GK1] (this conversion is detailed in
Sec. 3.3). The remaining sections are organized as follows:In Sec. 3.1, we show how to recursively
estimate degree-b inner products using the Sampling Lemma. We then use this estimation technique in
Sec. 3.2 to linearize our optimization problemP1. Sec. 3.3 brings everything together by presenting and
analyzing the complete approximation algorithm. To ease reading of the remaining sections, all techni-
cal proofs are found in App. A. Please see the beginning of App. A for definitions of the more elaborate
notation used in these proofs.

3.1 Estimating degree-k inner products using the Sampling Lemma

Our recursive procedure, EVAL, for estimating a degree-k inner product using the Sampling Lemma is
stated as Alg. 12. There are two sources of error we must analyze: the Sampling Lemma, and ourδ-net
over Cd. We claim that EVAL estimates the degree-b inner producttb(ρ1, . . . , ρn) to within additive
error±ǫbnb, whereǫb is defined as follows. Set∆ :=

√
2d(1 + δ), for δ from ourδ-net. Then,

ǫb := d
k
2

(
√

f

g
+ δ

)

(

∆b − 1

∆ − 1

)

. (9)

The following lemma formalizes this claim. We adopt the convention of [AKK99] and letx ∈ y ± z
denotex ∈ [y, z]. Alg. 12 is our operator analogue of the algorithmEval in Section 3.3 of [AKK99].

Lemma 13. Let tk : H(Ck)×n 7→ R be defined using set
{

Hi1,...,ik

}

⊆ H((Cd)⊗k) (as in Eqn. (8)). Let
S ⊆ {1, . . . , n} such that|S| = g log n have its elements chosen uniformly at random with replacement.
Letρ1, . . . , ρn ∈ D(Cd) be some assignment on alln qudits, and{ρ̃i : i ∈ S} a set of elements in ourδ-
net such that‖ ρi − ρ̃i ‖F ≤ δ for all i ∈ S. Then, for1 ≤ b ≤ k, with probability at least1 − d2bnb− f ,
we haveEVAL(tb, S, {ρ̃i : i ∈ S}) ∈ tb(ρ1, . . . , ρn)± ǫbnb, whereǫb is defined as in Eqn. (9).

3.2 Linearizing our optimization problem

Our procedure, LINEARIZE, for “linearizing” the objectivefunction ofP1 using EVAL from Sec. 3.1 is
stated as Alg. 14. Alg. 14 takes as inputP1 and a set of sample points{ρ̃i}, and outputs a semidefinite
program (SDP) which we shall henceforth refer to asP2. We remark that LINEARIZE is our version of

7Note: A net overA(Cd) may allow non-positive assignments for a qudit. See Sec. 3.3for why this is of no consequence.
8We use the Frobenius norm as it allows a simple analysis. It isstraightforward, however, to switch to say the trace norm

using the fact that‖ X ‖F ≤
√

d ‖ X ‖tr for all X ∈ Cd.
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Algorithm 12. EVAL( tb , S , {ρ̃i : i ∈ S} ).

• Input: (1) A degree-b inner producttb : H(Cd)×n 7→ R for 1 ≤ b ≤ k
(2) A subsetS ⊆ {1, . . . , n} of size|S| = O(log n)
(3) Sample points{ρ̃i : i ∈ S} such that‖ ρ̃i − ρi ‖F ≤ δ for all i ∈ S

• Output: x ∈ R such thatx ∈ tb(ρ1, . . . , ρn)± ǫbnb (for ǫb defined in Eqn. (9)).

1. For alli ∈ S andj = 1 . . . d2:
(a) (Base Case) ifb = 1, seteij = 1.

(b) (Recurse) else, seteij = EVAL(t
ij
b−1, S, {ρ̃i : i ∈ S}).

2. Return n
|S| ∑i∈S

[

∑
d2

j=1 Tr(σjρ̃i)eij

]

.

the procedureLinearizein Sec. 3.4 of [AKK99], extended to the setting of operators and a more complex
error structure. Although LINEARIZE is presented as linearizing an objective function here, the same
techniques straightforwardly apply in linearizing constraints involving high-degree inner products.

To prove correctness of our final approximation algorithm, we require the following two important
lemmas regardingP2. The first shows that any feasible solution(ρ1, . . . , ρn) for P1 consistent with the
sample set{ρ̃i : i ∈ S} fed into LINEARIZE is also a feasible solution forP2 with high probability.

Lemma 15. Let tk, assignment(ρ1, . . . , ρn), S, and{ρ̃i : i ∈ S} be defined as in Lem. 13. Then, for any
f , g > 0, calling LINEARIZE with parameterstk, {ρ̃i : i ∈ S}, andǫ = ǫk (for ǫk defined in Eqn. (9))
yields an SDPP2 for which the assignment{ρ1, . . . , ρn} is feasible with probability at least1− d2knk− f .

The second lemma is a bound on how far the optimal solution ofP2 is from the optimal solution for
P1. We adopt the convention of [AKK99] and write[x, y]± z to denote interval[x − z, y + z].

Lemma 16. LetOPTP be the optimal value forP1 with corresponding assignmentρOPTP := (ρ
opt
1 , . . . , ρ

opt
n ),

and let{ρ̃i : i ∈ S} be such that
∥

∥

∥
ρ̃i − ρ

opt
i

∥

∥

∥

F
≤ δ for all i ∈ S for someS ⊆ {1, . . . , n}. LetP2 denote

the SDP obtained by calling LINEARIZE withS, and denote byǫm for 1 ≤ m ≤ k the error parameter
passed with maptm into a (possibly recursive) call to LINEARIZE. Then, letting OPT2 denote the opti-
mal value ofP2, we have with probability at least1 − d2knk− f (for parameters set as in Lem. 15) that

OPT2 ∈ OPTP ± d(d +
√

2)
[

∑
k−1
m=1(

√
2d)k−1−mǫm

]

nk.

3.3 The final algorithm

We finally present our approximation algorithm, APPROXIMATE (Alg. 17), in its entirety, which ex-
ploits our ability to linearizeP1 using LINEARIZE (Alg. 14). This proves Thm 10, which in turn im-
plies Thm. 4. We first clarify a few points about APPROXIMATE,then analyze its runtime, and follow
with further discussion, including the algorithm’s derandomization and a proof that dense MAX-k-local
Hamiltonian remains QMA-hard.

We begin by explaining the rationale behind the constants inAlg. 17. The constantεsdp is the
additive error incurred when solving an SDP [GLS93]. We chooseǫ′ so that after running LINEARIZE
and solvingPi

2, the total additive error is at mostǫ, as desired. We choosef to ensure the probability of
success is at least1/2. Finally, we setg large enough andδ (for our δ-net) small enough to ensure that
ǫ′ matches the error bounds for EVAL in Lem. 13.
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Algorithm 14. LINEARIZE( tb , N , S, {ρ̃i : i ∈ S}, ǫ, U, L ).

• Input: (1) A degree-b inner producttb : H(Cd)×n 7→ R for 1 ≤ b ≤ k.
(2) A set of linear constraintsN (e.g. “ρi � 0”).
(3) A subsetS ⊆ {1, . . . , n} of size|S| = O(log n).
(4) Sample points{ρ̃i : i ∈ S} consistent with some feasible solution(ρ1, . . . , ρn) for

P1 such that‖ ρ̃i − ρi ‖F ≤ δ for all i ∈ S.
(5) An error parameterǫ > 0.
(6) (Optional) upper and lower boundsU, L ∈ R. If U andL are not provided, we

assumeU, L = ∞.

• Output: (1) (Optional) A linear objective functionf : (L(Cd))×n → R.
(2) An updated set of linear constraints,N .

1. (Base case) Ifb = 1, then
(a) (Trivial: Initial objective function was linear) IfU = L = ∞, return [tb, N ].
(b) (Reached bottom of recursion) Else, return [N ∪ {“L ≤ tb(ρ1, . . . , ρn) ≤ U”}].

2. (Recursive case) Fori = 1 . . . n andj = 1 . . . d2 do

(a) Seteij := EVAL(t
ij
b−1, S, {ρ̃i : i ∈ S}).

(b) Setǫ′ := ǫ − d
k
2

(
√

f
g + δ

)

∆b−1, for ∆ defined in Eqn. (9).

(c) Setlij := eij − ǫ′nb−1 anduij := eij + ǫ′nb−1.

(d) Call LINEARIZE(tij
b−1,N , S, {ρ̃i : i ∈ S}, ǫ′, uij, lij).

3. (a) (Entire computation done) IfU = L = ∞, return
[

∑ij Tr(σjρi)eij,N
]

.

(b) (Recursive call done) Else, return
[

N ∪
{

“L − ǫ′d2nb ≤ ∑ij Tr(σjρi)eij ≤ U + ǫ′d2nb”
}]

.

We now analyze the runtime of Alg. 17. Let|G| denote the size of ourδ-net G for a qudit. Then,
for each of the|G|g log n iterations of line 6, we first takeO(nk−1) time to run LINEARIZE, out-
putting O(nk−1) new linear constraints (seen via a simple inductive argument). We then solve SDP
Pi

2, which can be done in time polynomial inn and log(1/εsdp) using the ellipsoid method [GLS93]
(see, e.g., [Wat09]). Letr(n, εsdp) denote the maximum runtime required to solve any of thePi

2.

Then, the overall runtime for Alg. 17 isO(ng log|G|(nk−1 + r(n, εsdp))), which is polynomial inn for

ǫ, d, k ∈ O(1) (recall from Sec. 3 that|G| ∈ O(( d
δ )

d), and thatδ andg are constant in our setting). Note
that, due to the implicit dependence ofg on ǫ, this runtime scales at least exponentially with varyingǫ.

Before moving to further discussion, we make two remarks. First, one can convert the output of
Alg. 17 to apurestate with the same guarantee by adapting the standard classical method of conditional
expectations[Vaz01]. To demonstrate, suppose{ρi} is output by Alg. 17. Then, setρ′1 to be the
eigenvector|ψj〉〈ψj| of ρ1 for which the assignment|ψj〉〈ψj| ⊗ ρ2 ⊗ · · · ⊗ ρn performs best9 for P1.
Let our new assignment beρ′1 ⊗ ρ2 ⊗ · · · ⊗ ρn. Now repeat for eachρi for 2 ≤ i ≤ n. The final state
ρ′1 ⊗ · · · ⊗ ρ′n is pure, and by convexity is guaranteed to perform as well asρ1 ⊗ · · · ⊗ ρn.

Second, recall from Sec. 3 that we constructed aδ-net over a space larger thanD(Cd), allowing pos-
sibly non-positive assignments for a qudit. We now see that this is of no consequence, since regardless of
which samples (positive or not) we use to derive our estimates with the Sampling Lemma, any feasible
solution toPi

2 in Alg. 17 is a valid assignment forP1. Moreover, we know that for each optimalρi for

9If the spectrum ofρi is degenerate, begin by fixing an arbitrary choice of spectral decomposition forρi.
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Algorithm 17. APPROXIMATE(H , ǫ).

• Input: (1) Ak-local HamiltonianH = ∑i1,...,ik
Hi1,...,ik

for eachHi1,...,ik
∈ H((Cd)k).

(2) An error parameterǫ > 0.

• Output: A product assignmentρ1 ⊗ · · · ⊗ ρn that with probability at least1/2, has value at least
OPTP − ǫnk, for OPTP the optimal value forH over all product state assignments.

1. Setεsdp := ε/10.

2. Defineh : R → R such that for any error parameterǫ input to LINEARIZE,h(ε)nk is the
absolute value of the bound on additive error given by Lem. 16. Then, defineǫ′ implicitly so that
h(ǫ′) + εsdp = ǫ holds.

3. Define constantf such that1 − d2knk− f
> 1/2.

4. Define constantsg andδ implicitly so thatǫ′ = d
k
2

(
√

f
g + δ

) (

∆k−1
∆−1

)

, for ∆ defined in Eqn. (9).

5. Chooseg log n indicesS ⊆ {1, . . . , n} independently and uniformly at random.
6. For each possible assignmenti from ourδ-net to the qudits inS:

(a) Call LINEARIZE(tk, {P1’s constraints}, S, i, ǫ′) to obtain SDPPi
2.

(b) Letαi denote the value ofP1 obtained by substituting in the optimal solution ofPi
2.

7. Return the assignment corresponding to the maximum over all αi.

P1, there must besomeoperator (positive or not) within distanceδ in our net, ensuring our estimates
obtained using the Sampling Lemma are within our error bounds.

Converting the absolute error of Algorithm 17 into relative error. To convert the absolute error
±ǫnk of Alg. 17 into arelative error of 1 − ǫ′ for any ǫ′, define constantc such thatcnk is the value
obtained for a MAX-k-local Hamiltonian instance by choosing the maximally mixed assignmentI/dn

(analogous to a classical random assignment). SinceI/dn can be written as a mixture of computational
basis states, we haveOPTP ≥ cnk. It follows that by settingǫ = cǫ′, Alg. 17 returns an assignment
with value at leastOPTP − cǫ′nk ≥ OPTP − ǫ′OPTP ≥ OPTP(1 − ǫ′), as desired.

Derandomizing Algorithm 17. The source of randomness in our algorithm is Lem. 11. By a stan-
dard argument in [AKK99] (see also [BR94, BGG93]), this randomness can be eliminated with only
polynomial overhead. Specifically, we replace the random selection of g log n indices in the Sampling
Lemma with the set of indices encountered on a random walk of lengthO(g log n) along a constant
degree expander [Gil93]. Since the expander has constant degree, we can efficiently deterministically
iterate through allnO(g) such walks, and since such a walk works with probability1/nO(1), at least one
walk will work for all poly(n) sampling experiments we wish to run.

QMA-hardness of dense MAX-k-local Hamiltonian. It is easy to see that (exact) MAX-2-local
Hamiltonian remains QMA-hard for dense instances (a similar statement holds for MAX-2-SAT [AKK99]).
For any MAX-2-local Hamiltonian instance with optimal valueOPT, we simply addn qudits, between
any two of which we place the constraint|00〉〈00| (no constraints are necessary between old and new qu-
dits). Then, the new Hamiltonian has optimal valueOPT+ (n

2), making it dense, and the ability to solve
this new instance implies the ability to solve the original one. The argument extends straightforwardly
to MAX-k-local Hamiltonian fork > 2.
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[RÖ97] S. Rommer and S.̈Ostlund. Class of ansatz wave functions for one-dimensional spin
systems and their relation to the density matrix renormalization group.Physical Review
B, 55:2164–2181, 1997.

[Ros09] B. Rosgen. Testing non-isometry is QMA-complete.arXiv:0910.3740v2, 2009.

[SC10] N. Schuch and J. I. Cirac. Matrix product state and mean-field solutions for one-
dimensional systems can be found efficiently.Physical Review A, 82:012314, 2010.
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A Technical proofs for Section 3

Expanded Notation. We now expand on our previous notation for analyzing Eqn. (8)in order to
facilitate proofs of the claims in Sec. 3. First, to recursively analyze a clauseHi1,...,ik

⊆ H((Cd)⊗k), let
Hb ∈ H((Cd)⊗b) for any1 ≤ b ≤ k denote the action ofHi1,...,ik

restricted to the firstb of its k target

qubits, i.e.Hb := ∑
d2

jb,...,j1
ri1,...,ik

j1 ,...,jk
σjb ⊗ · · · ⊗ σj1 . For example,H1 = ∑

d2

j1
ri1 ,...,ik

j1 ,...,jk
σj1 andHk = Hi1,...,ik

.
Note thatHb implicitly depends on variablesi1, . . . , ik, jb+1, . . . , jk, but to reduce clutter, our notation
does not explicitly denote this dependence unless necessary. Next, to recursively analyze a degree-
a inner product, we defineta,b : H(Cd)×n 7→ R for any 0 ≤ a ≤ k and 1 ≤ b ≤ k such that

ta,b(ρ1, . . . , ρn) := ∑
n
ia,...,i1

Tr
(

Hi1,...,ik

b ρib
⊗ · · · ⊗ ρi1

)

(where settinga = 0 eliminates the sum over

indicesi). For example,tk,k is our full “degree-k” objective function in Eqn. (7), and more generally,tb,b

is the degree-b inner product in Eqn. (8). Allowing different values fora andb greatly eases our technical
analysis. We use the shorthandtb to denotetb,b, and again only explicitly denote the dependence ofta,b

on parametersia+1, . . . , ik andjb+1, . . . , jk when necessary.

Lemma 18. Let {ρi}n
i=1 ⊆ H(Cd). For any MAX-k-local Hamiltonian instance

{

Hi1,...,ik

}

⊆ H(Cdk
)

with decomposition for theHi1,...,ik
as given in Eqn. (8), we have for any0 ≤ a ≤ k and1 ≤ b ≤ k that

|ta,b(ρ1, . . . , ρn)| ≤
(

maxib,...,i1

∥

∥ ρib

∥

∥

F
· · · ‖ ρi1 ‖F

)

d
k
2 na.

Proof of Lem. 18. By the triangle inequality and the Hölder inequality for Schattenp-norms, we have

|ta,b| =
∣

∣

∣

∣

∣

n

∑
ia,...,i1

Tr (Hbρib
⊗ · · · ⊗ ρi1)

∣

∣

∣

∣

∣

≤
n

∑
ia,...,i1

‖ Hb ‖F

∥

∥ ρib
⊗ · · · ⊗ ρi1

∥

∥

F

≤
(

max
ib,...,i1

∥

∥ ρib

∥

∥

F
· · · ‖ ρi1 ‖F

) n

∑
ia,...,i1

‖ Hb ‖F ,

where we have used the fact that‖ A ⊗ B ‖F = ‖ A ‖F ‖ B ‖F for all A, B ∈ L(Cd). If we can now
show that‖ Hb ‖F ≤ ‖ Hk ‖F for all 1 ≤ b ≤ k, then we would be done since we would have

∑
n
ia,...,i1

‖ Hb ‖F ≤ ‖ Hk ‖F na ≤ d
k
2 na, where‖ Hk ‖F ≤ d

k
2 since‖ Hk ‖∞ ≤ 1 by definition. In-

deed, we claim that for any fixed1 ≤ b ≤ k, we have‖ Hb ‖F ≤ 2
b
2 ‖ Hk ‖F. To see this, note by

straightforward expansion of the Frobenius norm and the fact thatTr(σiσj) = 2δij that

‖ Hb ‖F =
√

Tr(H2
b ) = 2

b
2

√

∑
jb,...,jk

(ri1,...,ik

j1 ,...,jk
)2 ≤ 2

b
2

∥

∥

∥
r

i1 ,...,ik

∥

∥

∥

2
= 2

b−k
2

(

2
k
2

∥

∥

∥
r

i1,...,ik

∥

∥

∥

2

)

,

wherer
i1,...,ik is the coordinate vector ofHi1,...,ik

from Eqn. (8). By the second equality in the chain

above, we see that in fact‖ Hk ‖F = 2
k
2

∥

∥ r
i1 ,...,ik

∥

∥

2
, completing the proof of our claim.
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Proof of Lem. 13. We first derive the error bound ofǫb, and subsequently prove the probability bound.
We follow [AKK99], and proceed by induction onb. For the base caseb = 1, EVAL(H1, S, {ρ̃i : i ∈ S})
attempts to estimate

t1(ρ1, . . . , ρn) = ∑
i1

[

∑
j1

ri1 ,...,ik

j1 ,...,jk
Tr(σj1 ρi1)

]

using our flawed sample points{ρ̃i : i ∈ S}. To analyze the error of its output, assume first that our
sample points are exact, i.e.ρ̃i = ρi for all i ∈ S. Then, by setting “ai” in Lem. 11 to ti1

0,1 for i = i1,

and by using Lem. 18 with parametersa = 0 andb = 1 to obtain upper boundM = d
k
2 , we have by the

Sampling Lemma that (with probability at least1 − n− f )

n

|S| ∑
i1∈S

[

∑
j1

ri1,...,ik

j1 ,...,jk
Tr(σj1 ρi1)

]

∈ t1(ρ1, . . . , ρn)± d
k
2

√

f

g
n. (10)

This bound holds if we sum over exact sample points. If we instead sum over flawed sample points
{ρ̃i : i ∈ S}, the additional error is bounded byn|S| times

∣

∣

∣

∣

∣

∑
i1∈S

[

∑
j1

ri1 ,...,ik

j1 ,...,jk
Tr(σj1 (ρi1 − ρ̃i1))

]
∣

∣

∣

∣

∣

≤ ∑
i1∈S

∣

∣

∣

∣

∣

∑
j1

ri1,...,ik

j1 ,...,jk
Tr(σj1(ρi1 − ρ̃i1))

∣

∣

∣

∣

∣

≤ ∑
i1∈S

(‖ ρi1 − ρ̃i1 ‖F d
k
2 ) ≤ d

k
2 δn,

(11)
where the second inequality uses Lem. 18 with parametersa = 0 andb = 1 and the promise of our
δ-net. We conclude for the base case that

EVAL(H1, S, {ρ̃i : i ∈ S}) = n

|S| ∑
i1∈S

[

∑
j1

ri1,...,ik

j1 ,...,jk
Tr(σj1 ρ̃i1)

]

∈ t1(ρ1, . . . , ρn)± d
k
2

(
√

f

g
+ δ

)

n,

as desired.
Assume now that the inductive hypothesis holds for1 ≤ m ≤ b − 1. We prove the claim for

m = b. To do so, suppose first that the recursive calls on line 1(b) of Alg. 12 return theexactvalues
of t

ij
b−1(ρ1, . . . , ρn), and that we have exact samples{ρi : i ∈ S}. Then, since by calling Lem. 18 with

a = b − 1 we have
∣

∣

∣∑j Tr(σjρi)t
ij
b−1(ρ1, . . . , ρn)

∣

∣

∣
≤ d

k
2 nb−1, it follows by the Sampling Lemma that

n

|S| ∑
i∈S

[

∑
j

Tr(σjρi)t
ij
b−1(ρ1, . . . , ρn)

]

∈
n

∑
i=1

[

∑
j

Tr(σjρi)t
ij
b−1(ρ1, . . . , ρn)

]

± d
k
2

√

f

g
nb. (12)

To first adjust for using flawed samples, observe that an analogous calculation to Eqn. (11) yields
∣

∣

∣

n
|S| ∑i∈S

[

∑j Tr(σj(ρi − ρ̃i))
]
∣

∣

∣
≤ d

k
2 δnb, where we have called Lem. 18 witha = b − 1. Thus, using

flawed samples, the output of Alg. 12 satisfies

n

|S| ∑
i∈S

[

∑
j

Tr(σjρ̃i)t
ij
b−1

]

∈
n

∑
i=1

[

∑
j

Tr(σjρi)t
ij
b−1

]

± d
k
2

(
√

f

g
+ δ

)

nb. (13)

To next drop the assumption that our estimateseij on line 1(b) are exact, apply the induction hypothesis
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to conclude thateij ∈ t
ij
b−1(ρ1, . . . , ρn)± ǫb−1nb−1. Then,

n

|S| ∑
i∈S

[

∑
j

Tr(σjρ̃i)eij

]

∈ n

|S| ∑
i∈S

[

∑
j

Tr(σj ρ̃ij)
(

t
ij
b−1 ± ǫb−1nb−1

)

]

⊆ n

|S| ∑
i∈S

[

∑
j

Tr(σj ρ̃i)t
ij
b−1

]

± ǫb−1nb

|S| ∑
i∈S

[

d2

∑
j=1

Tr(σjρ̃i)

]

⊆ n

|S| ∑
i∈S

[

∑
j

Tr(σj ρ̃i)t
ij
b−1

]

± ǫb−1

√
2d(1 + δ)nb, (14)

where the last statement follows since
∣

∣

∣

∣

∣

d2

∑
j=1

Tr(σj ρ̃i)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

d2

∑
j=1

Tr

(

σj

(

d2

∑
m=1

r̃mσm

))∣

∣

∣

∣

∣

≤ 2
d2

∑
m=1

|r̃m| ≤ 2d ‖ r̃ ‖2 ≤
√

2d(1 + δ), (15)

wherer̃ denotes the coordinate vector ofρ̃i with respect to basis{σm}, and we have used the facts that
Tr(σiσj) = 2δij, that‖ x ‖1 ≤

√
d ‖ x ‖2 for x ∈ Cd, that‖ ρ̃i ‖F =

√
2 ‖ r̃ ‖2 for any ρ̃i ∈ H(Cd),

and that‖ ρ̃i ‖F ≤ 1 + δ (which follows from ourδ-net and the triangle inequality). Thus, recalling that
∆ =

√
2d(1 + δ) and substituting Eqn. (13) into Eqn. (14), we have that

n

|S| ∑
i∈S

[

∑
j

Tr(σj ρ̃i)eij

]

∈ tb(ρ1, . . . , ρn)±
[

d
k
2

(
√

f

g
+ δ

)

+ ǫb−1∆

]

nb.

We hence have the recurrence relationǫb ≤ d
k
2

(
√

f
g + δ

)

+ ǫb−1∆, which when unrolled yields

ǫb ≤ d
k
2

(
√

f

g
+ δ

)

b−1

∑
m=0

∆m = d
k
2

(
√

f

g
+ δ

)

(

∆b − 1

∆ − 1

)

,

as desired. This concludes the proof of the error bound.

To prove the probability bound, we instead prove the stronger bound of1 −
(

∑
b−1
m=0 d2mnm

)

n− f

by induction onb. The base caseb = 1 follows directly from our application of the Sampling Lemma
in Eqn. (10). For the inductive step, define for brevity of notation γ := d2n, and apply the induction
hypothesis to line 1(b) of Alg. 12 to conclude that each of theγ calls to EVAL fails will probability
at most(∑b−2

m=0 γm)n− f . Then, by the union bound, the probability that at least one call fails is at
most (∑b−1

m=1 γm)n− f . Similarly, since our application of the Sampling Lemma in line 2 of Alg. 12

fails with probability at mostn− f , we arrive at our claimed stronger bound of1 −
(

∑
b−1
m=0 γm

)

n− f , as

desired.

Proof of Lem. 15. We begin by observing that if one setsǫ = ǫk, then the value ofǫ′ in line 2(b) of
Alg. 14 is preciselyǫk−1, and more generally, theǫ passed into the recursive call of line 2(e) ontb

for any 1 ≤ b ≤ k is ǫb. Now, focus on some recursive call ontb for b > 1 (the case ofb = 1 is
straightforward by Lem. 13). If the estimateseij in line 2(a) succeed, then by Lem. 13, we know that

eij ∈ t
ij
b−1(ρ1, . . . , ρn) ± ǫb−1nb−1, implying t

ij
b−1(ρ1, . . . , ρn) ∈ [lij, uij]. Now, lij and uij are only

incorporated into linear constraints in recursive calls ont
ij
b−1, yielding constraints of the form

lib jb − ǫb−2d2nb−1 ≤ ∑
ib−1,jb−1

Tr(σjb−1
ρib−1

)eib−1jb−1
≤ uib jb + ǫb−2d2nb−1. (16)
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But {ρ1, . . . , ρn} must now satisfy this constraint, since recall

tb−1(ρ1, . . . , ρn) = ∑
ib−1,jb−1

Tr(σjb−1
ρib−1

)t
ib−1 jb−1

b−2 (ρ1, . . . , ρn),

and there ared2n termseib−1 jb−1
in Eqn. (16) each yielding an additional error of at mostǫb−2nb−2

(assuming EVAL succeeded ontib−1 jb−1

b−2 in line 2(a)) above and beyond the boundst
ij
b−1(ρ1, . . . , ρn) ∈

[lij, uij] we established above.

We conclude that if, forall b, i, andj, EVAL succeeds in producing estimatese
ij
ib

, then{ρ1, . . . , ρn}
is a feasible solution forP2, as desired. The probability of this happening is, by the proof of Lem. 13, at
least1− d2knk− f , since EVAL recursively estimates precisely the same termsduring its execution10.

Proof of Lem. 16. We begin by proving that for any recursive call to LINEARIZE on tb with valid upper
and lower boundsU andL (i.e. U, L 6= ∞), respectively, we have forany feasible solution(ρ1, . . . , ρn)
to P2 that

tb(ρ1, . . . , ρn) ∈ [L, U]± d(d +
√

2)

[

b−1

∑
m=1

(
√

2d)b−1−mǫm

]

nb. (17)

We prove this by induction onb, following [AKK99]. For base caseb = 1, the claim is trivial by
line 1(b) of the algorithm. Now, assume by induction hypothesis that

t
ij
b−1(ρ1, . . . , ρn) ∈ [lij, uij]± d(d +

√
2)

[

b−2

∑
m=1

(
√

2d)b−2−mǫm

]

nb−1.

By substituting the values oflij anduij from line 2(c), we have

t
ij
b−1(ρ1, . . . , ρn) ∈ eij ±

(

d(d +
√

2)

[

b−2

∑
m=1

(
√

2d)b−2−mǫm

]

+ ǫb−1

)

nb−1.

We conclude that

tb(ρ1, . . . , ρn) = ∑
ij

Tr(σjρi)t
ij
b−1(ρ1, . . . , ρn)

⊆
[

∑
ij

Tr(σjρi)eij

]

+

(

d(d +
√

2)

[

b−2

∑
m=1

(
√

2d)b−2−mǫm

]

+ ǫb−1

)[

∑
ij

Tr(σjρi)

]

nb−1

⊆
[

∑
ij

Tr(σjρi)eij

]

+
√

2d

(

d(d +
√

2)

[

b−2

∑
m=1

(
√

2d)b−2−mǫm

]

+ ǫb−1

)

nb (18)

⊆
[

[L, U]± ǫb−1d2nb
]

+
√

2d

(

d(d +
√

2)

[

b−2

∑
m=1

(
√

2d)b−2−mǫm

]

+ ǫb−1

)

nb

⊆ [L, U]± d(d +
√

2)

[

b−1

∑
m=1

(
√

2d)b−1−mǫm

]

nb,

where the third statement follows from a calculation similar to Eqn. (15), and the fourth statement from
line 3(b) of Alg. 14. This proves the claim of Eqn. (17).

10This holds even though on line 1 of Alg. 12, we only estimated2 |S| of the termseij (i.e. EVAL does not actually estimate
all terms in the recursive decomposition oftk, as it does not need to) — this is because in our analysis of theprobability bound
for Alg. 12, we actually produced a looser bound by assuming all n termseij are estimated.
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To complete the proof of Lem. 16, observe that by Lem. 15, the assignmentρopt is feasible for
P2 with probability at least1 − d2knk− f . Thus, pluggingρopt into each of thed2n linear constraints

produced by the recursive calls to LINEARIZE on eacht
ij
k−1, we have by Eqns. (17) and (18) that (with

probability1 − d2knk− f )

OPTP = tk(ρ
opt) = ∑

ij

Tr
(

σjρ
opt
i

)

t
ij
k−1(ρ

opt)

⊆
[

∑
i,j

Tr(σjρ
opt
i )eij

]

±
√

2d

(

d(d +
√

2)

[

k−2

∑
m=1

(
√

2d)k−2−mǫm

]

+ ǫk−1

)

nk

⊆ OPT2 ±d(d +
√

2)

[

k−1

∑
m=1

(
√

2d)k−1−mǫm

]

nk,

where the last statement follows sinceρopt is not necessarily the optimal solution toP2.
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