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Abstract—In 1997, Håstad showed NP-hardness of
(1 − ε, 1/q + δ)-approximating Max-3Lin(Zq); however
it was not until 2007 that Guruswami and Raghaven-
dra were able to show NP-hardness of (1 − ε, δ)-
approximating Max-3Lin(Z). In 2004, Khot–Kindler–
Mossel–O’Donnell showed UG-hardness of (1 − ε, δ)-
approximating Max-2Lin(Zq) for q = q(ε, δ) a sufficiently
large constant; however achieving the same hardness for
Max-2Lin(Z) was given as an open problem in Raghaven-
dra’s 2009 thesis.

In this work we show that fairly simple modifications to
the proofs of the Max-3Lin(Zq) and Max-2Lin(Zq) results
yield optimal hardness results over Z. In fact, we show a
kind of “bicriteria” hardness: even when there is a (1−ε)-
good solution over Z, it is hard for an algorithm to find a
δ-good solution over Z, R, or Zm for any m ≥ q(ε, δ) of
the algorithm’s choosing.

I. INTRODUCTION

In this paper we consider one of the most fundamental
algorithmic tasks: solving systems of linear equations.
Given a ring R, the Max-kLin(R) problem is defined
as follows: An input instance is a list of linear equa-
tions of the form a1xi1 + · · · + akxik = b, where
a1, . . . , ak, b ∈ R are constants and xi1 , . . . , xik are
variables from the set {x1, . . . , xn}. Each equation also
comes with a nonnegative rational weight; it is assumed
the weights sum up to 1. The algorithmic task is to
assign values from R to the variables so as to maximize
the total weight of satisfied equations. We say that an
assignment is γ-good if the equations it satisfies have
total weight at least γ. We say that an algorithm achieves
(c, s)-approximation if, whenever the instance has a c-
good solution, the algorithm is guaranteed to find an
s-good solution.
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A. Prior work on Max-3Lin(Z)

It is an old result of Arora–Babai–Stern–
Sweedyk [ABSS93] that for all 0 < δ < 1 there
exists ε > 0 and k ∈ Z+ such that it is NP-hard to
(ε, δε)-approximate Max-kLin(Q). Håstad’s seminal
work from 1997 [Hås01] showed hardness even for
very sparse, near-satisfiable instances: specifically, he
showed that for all constant ε, δ > 0 and q ∈ N, it is
NP-hard to (1−ε, 1/q+δ)-approximate Max-3Lin(Zq).
This is optimal in the sense that it is algorithmically
easy to (1, 1)-approximate or (c, 1/q)-approximate
Max-3Lin(Zq). Håstad’s hardness result even holds for
the special case of Max-Γ-3Lin(Zq), meaning that all
equations are of the form xi1 − xi2 + xi3 = b.

Håstad’s proof does not strictly generalize the
ABSS [ABSS93] result on Max-kLin(Q) because there
is no obvious reduction from hardness over Zq to
hardness over Q. Indeed, it was not until much later,
2006, that NP-hardness of (1 − ε, δ)-approximating
Max-kLin(Q) was shown [FGKP06], [GR06]. Finally, in
2007 Guruswami and Raghavendra [GR07] generalized
all of [ABSS93], [FGKP06], [GR06] by showing NP-
hardness of (1 − ε, δ)-approximating Max-Γ-3Lin(Z).
As we will see shortly, this easily implies the same
hardness for Max-Γ-3Lin(Q) and Max-Γ-3Lin(R). In-
deed, it shows a kind of “bicriteria” hardness: given a
Max-Γ-3Lin(Z) instance with a (1 − ε)-good solution
over Z, it is NP-hard to find a δ-good solution even
over R. Guruswami and Raghavendra’s proof followed
that of Håstad’s to some extent, but involved somewhat
technically intricate derandomized Long Code testing,
using Fourier analysis with respect to a certain expo-
nential distribution on Z+.

We would also like to mention the very recent
work of Khot and Moshkovitz [KM10]. Motivated by
proving the Unique Games Conjecture, they showed a
strong NP-hardness result for a homogeneous variant
of Max-3Lin(R). Specifically, they considered the case
where all equations are of the form a1xi1 + a2xi2 +
a3xi3 = 0 with a1, a2, a3 ∈ [ 1

2 , 2]. Very roughly



speaking, they showed there is a universal δ > 0
such that for all ε > 0 the following problem is NP-
hard: given an instance where there is a “Gaussian-
distributed” real assignment which is (1− ε)-good, find
a Gaussian-distributed assignment in which the weight
of equations satisfied to within margin δ

√
ε is at least

1−δ. This result is incomparable to the one in [GR07].

B. Prior work on Max-2Lin

Following Håstad’s work there was five years of no
progress on Max-2Lin(R) for any ring R. To circumvent
this, in 2002 Khot [Kho02] introduced the Unique
Games (UG) Conjecture, which would prove to be
very influential (and notorious!). Khot showed a strong
“UG-hardness” result for Max-2Lin(Z2) (crediting the
result essentially to Håstad), namely that for all t >
1/2 and sufficiently small ε > 0 it is UG-hard to
(1 − ε, 1 − εt)-approximate Max-2Lin(Z2). This result
is essentially optimal due to the Goemans–Williamson
algorithm [GW95].

In 2004, Khot–Kindler–Mossel–O’Donnell
[KKMO07] (using [MOO05]) extended this work by
showing that for all ε, δ > 0, there exists q ∈ N such that
(1 − ε, δ)-approximating Max-Γ-2Lin(Zq) is UG-hard,
and hence in fact UG-complete. Here Γ-2Lin means
that all equations are of the form xi1−xi2 = b. KKMO
gave a quantitative dependence as well: given ε and q
one can choose any δ > qΛ1−ε(1/q) ≈ (1/q)ε/(2−ε),
where Λ1−ε(1/q) is a certain correlated Gaussian
quadrant probability.

The following natural question was left open by
KKMO [KKMO07]:

Question.: Is it true that for all ε, δ > 0 it is
UG-hard to (1− ε, δ)-approximate Max-Γ-2Lin(Z)?

The key technical tool used in the KKMO hardness
result for Max-2Lin(Zq), namely the Majority Is Sta-
blest Theorem [MOO05], has a bad dependence on the
parameter q. Thus pushing q to be “superconstantly”
large seemed to pose a fundamental problem. The
question above is one of the open problems posed at
the end of Raghavendra’s monumental thesis [Rag09].

C. Our results

In this paper we show that it is relatively easy to
modify the proofs of the hardness results known for
Max-Γ-2Lin(Zq) and Max-Γ-3Lin(Zq) to obtain (1 −
ε, δ)-approximation hardness results for Max-Γ-2Lin(Z)
and Max-Γ-3Lin(Z). (Here Γ-3Lin means that all equa-
tions are of the form xi1 + xi2 − xi3 = b.) Thus we re-
solve the open question about Max-Γ-2Lin(Z) and give
a simpler proof of the Guruswami–Raghavendra [GR07]
result. Our results also hold over R and over “super-
constantly large” cyclic groups Zq (we are not aware

of previously known hardness results over Zq when q
is superconstant and prime). The results also have an
essentially optimal quantitative tradeoff between ε, δ,
and the magnitudes of the “right-hand side constants”
b.

To state our two theorems, let us define
B-Bounded-Max-Γ-2Lin and B-Bounded-Max-Γ-3Lin
to be the special cases of Max-Γ-3Lin and Max-Γ-2Lin
in which all right-hand side constants b are integers
satisfying |b| ≤ B. Given an instance I of Max-Γ-kLin
with integer constants b, we use the notation OptR(I)
to denote the maximum weight of equations that can
be satisfied when the equations are evaluated over R.

Theorem I.1. For all constant ε, γ, κ > 0 and constant
q ∈ N, given a q-Bounded-Max-Γ-2Lin instance I it is
UG-hard to distinguish the following two cases:
• (Completeness.) There is a (1 − ε − 3γ)-good

assignment over Z; i.e., OptZ(I) ≥ 1− ε− 3γ.
• (Soundness.) There is no (qΛ1−ε(1/q) + κ)-

good assignment over Zq; i.e., OptZq (I) ≤
qΛ1−ε(1/q) + κ.

Note that qΛ1−ε(1/q) ≈ (1/q)ε/(2−ε) is the
same soundness proved by KKMO [KKMO07] for
Max-Γ-2Lin(Zq).

Theorem I.2. For all constant ε, κ > 0 and q ∈ N,
given a q-Bounded-Max-Γ-3Lin instance I it is NP-
hard to distinguish the following two cases:
• (Completeness.) There is a (1−O(ε))-good assign-

ment over Z, i.e., OptZ(I) ≥ 1−O(ε).
• (Soundness.) There is no (1/q + κ)-good assign-

ment over Zq; i.e., OptZq (I) ≤ 1/q + κ.

Note that OptZ(I) ≤ OptZq (I) since we can convert
a δ-good assignment over Z to a δ-good assignment
over Zq by reducing the integer solution modulo q.
Therefore our hardness results are of the strongest
“bicriteria” type: even when promised that there is near-
perfect solution over Z, it is hard for an algorithm
to find a slightly good solution over Zq . Indeed, by
virtue of Lemma A.1 in Appendix A, by losing just
a constant factor in the soundness, we can show that
it is also hard for an algorithm to find a slightly good
solution over any ring {R,Z,Zq+1, Zq+2, . . .} of the
algorithm’s choosing. Our results subsume and unify all
aforementioned results on Max-3Lin(Zq), Max-3Lin(Z),
and Max-2Lin(Zq), and also provide an optimal UG-
hardness result for Max-Γ-2Lin(Z).

II. PRELIMINARIES

A. Notations and Definitions

We write Zq for the integers modulo q, and we
identify the elements with {0, 1, . . . , q − 1} ∈ Z. We
sometimes write ⊕q for addition of integers modulo q



and + for addition over the integers. For two vectors
x, y ∈ Zn, both x ⊕q y and x + y are coordinate-wise
add. We will also write ∆q for the set of probability
distributions over Zq . We can identify ∆q with the
standard (q − 1)-dimensional simplex in Rq . We also
identify an element a ∈ Zq with a distribution in ∆q ,
namely, the distribution that puts all of its probability
mass on a.

Fix x ∈ Znq , a random variable y is (1−ε)-correlated
to x, i.e. y ∼1−ε x, if y can be get by rerandomizing
each coordinate of x independently with probability ε.

We recall some standard definitions from the har-
monic analysis of boolean functions (see, e.g., [Rag09]).
We will be considering functions of the form f : Znq →
R. The set of all functions f : Znq → R forms an inner
product space with inner product

〈f, g〉 = E
x∼Znq

[f(x) · g(x)],

where x ∼ Znq means that x is uniform randomly
chosen from Znq . We also write ‖f‖2 =

√
〈f, f〉 as

usual.
The following Efron–Stein decomposition theorem is

well-known; see [KKMO07].

Theorem II.1. Any f : Znq → R can be uniquely
decomposed as a sum of functions

f(x) =
∑
S⊆[n]

fS(x),

where
• fS(x) depends only on xS = (xi, i ∈ S),
• for every S ⊆ [n], for every S′ such that S\S′ 6= ∅,

and for every y ∈ Znq , it holds that

E
x∼Znq

[fS(x)|xS′ = yS′ ] = 0.

Definition II.2 (Influences). For functions f : Znq → R,
define the influence of the i-th coordinate on f to be

Inf i(f) =
∑
S3i
‖fS‖22,

where ‖fS‖22 = Ex[fS(x)2]. For functions f : Znq →
∆m, let

Inf i(f) =
∑
a∈Zm

Inf i(fa),

where fa(x) = f(x)a,∀x ∈ Znq .

Definition II.3 (Noise operators). For functions f :
Znq → R, define the noise operator T1−η to be

T1−ηf(x) = E
y∼1−ηx

[f(y)].

For functions f : Znq → ∆m, let T1−η be the noise
operator so that (T1−ηf)a = T1−η(fa),∀a ∈ Zq .

Definition II.4 (Noisy-influences). For functions f :
Znq → R and functions f : Znq → ∆m, define the (1−
η)-noisy-influence of the i-th coordinate of f to be

Inf (1−η)
i (f) = Inf i(T1−ηf).

Fact II.5. For functions f : Znq → ∆m, we have∑
i∈Zq

Inf (1−η)
i (f) ≤ 1/η.

Fact II.6. Let f (1), . . . , f (t) be a collection of functions
Znq → Rm. Then

Inf (1−η)
i

[
avg
k∈[t]

{
f (k)

}]
≤ avg
k∈[t]

{
Inf (1−η)

i [f (k)]
}
.

Here for any c1, c2, ...ct ∈ R (or Rm), we use the
notation avg(c1, . . . , ct) to denote their average:∑t

i=1 ci
t

.

Definition II.7 (Noise stability). For functions f :
Znq → R, define its stability against ε noise to be

Stab1−ε[f ] = E
x∼Znq ,y∼1−εx

[f(x)f(y)].

One tool we need is the Majority Is Stablest Theorem
from [MOO05]. (We state here a version using a small
noisy-influences assumption rather than a small “low-
degree influences” assumption; see, e.g., Theorem 3.2
in [Rag09] for a sketch of the small modification
to [MOO05] needed.)

Theorem II.8. For every function f : Znq → [0, 1] such
that Inf (1−η)

i [f ] ≤ τ for all i ∈ [n], Let µ = E[f ].
Then for any 0 < ε < 1,

Stab1−ε[f ] ≤ Λ1−ε(µ) + e(τ, q, η).

Here if we fix η, q, e(τ, η, q) goes to 0 when τ goes to
0.

In the above theorem, the quantity Λ1−ε(µ) is defined
to be Pr[x,y ≤ t] when (x,y) are joint standard
Gaussians with covariance 1 − ε and t is defined by
Pr[x ≤ t] = µ.

III. REVIEW OF PROOFS OF Max-Γ-2Lin(Zq) AND
Max-Γ-3Lin(Zq) HARDNESS

As mentioned, we prove Theorems I.1 and I.2 by
fairly easy modifications of the known hardness results
for Max-Γ-2Lin(Zq) and Max-Γ-3Lin(Zq), due respec-
tively to Khot–Kindler–Mossel–O’Donnell [KKMO07]
and Håstad [Hås01]. In this section, we review several
places in the two proofs that are related to our modi-
fications. We also assume the reader’s familiarity with
these works.



A. Max-Γ-2Lin

Let us begin with Max-Γ-2Lin. As shown
in [KKMO07], to prove UG-hardness of (1 − ε, δ)-
approximating Max-Γ-2Lin(Zq) for constant κ
and q, where δ = qΛ1−ε(1/q) + κ, it suffices to
construct a “Dictator vs. Small Low-Degree-Influences
Test” (or, Dictator Test for short) for functions
f : ZLq → ∆q which uses Γ-2Lin constraints and
has completeness 1 − ε, soundness δ. We recall the
definition of Dictator Test as follows.

Generally speaking, a 1 − ε vs. δ Dictator Test for
functions f : ZLq → Zq is defined by a distribution
over Γ-2Lin constraints (over the entries of f ). We say
f passes the test when a random constraint (from the
distribution) is satisfied by f . At the completeness side,
all the L dictators (i.e., f(x) = xi for some i ∈ L)
pass the test with probability at least 1 − ε. At the
soundness side, all functions with small noisy-influences
(on all coordinates) pass the test with probability at most
δ. KKMO indeed needs to construct a Dictator Test
for functions of distributions, i.e., for f : ZLq → ∆q ,
where whenever the test refers an entry f(x) for an
element in Zq , it randomly samples an element from
the distribution f(x).

The Dictator Test used by KKMO is indeed a noise-
stability test. Intuitively, dictator functions have high
noise stability, while functions far from dictators have
low noise stability. Note that this intuition is true only
for balanced functions, as constant functions are far
from dictators but very noise stable. Therefore, KKMO
used the “folding” trick (which was introduced in
[Hås01]) to ensure that f outputs 1, 2, . . . , q with the
same probability.

B. Max-Γ-3Lin

Let us move on to Max-Γ-3Lin and our proof
of Theorem I.2. Håstad essentially showed that to
prove NP-hardness of (1 − ε, 1/q + κ)-approximating
Max-Γ-3Lin(Zq) for constant q, it suffices to con-
struct a “Matching-Dictator Test” on two functions for
f : ZKq → Zq , g : ZLq → Zq and π : L→ K. The test is
defined by a distribution over x ∈ ZKq ,y ∈ ZLq , z ∈ ZLq
with the check f(x)+g(y)−g(z) = c mod q. Håstad’s
Test has the following completeness and soundness
promises:

• If f(x) = xi and g(y) = yj such that π(i) = j,
then f and g passes with probability 1− ε.

• If f and g passes the test with probability 1/q+κ,
then there is a randomized procedure that “de-
codes” f into a coordinate i ∈ L and g into a
coordinate j ∈ K such that π(i) = j with constant
probability depending only on q, ε, κ and inde-
pendent of L,K, π. Also note that the decoding

processes for f and g should be independent from
each other.

Håstad constructed the following test: choose x ∈
ZKq and y ∈ ZLq uniformly and independently, define
z ∈ ZLq to be z = y⊕q (x◦π), where (x◦π)i := xπ(i),
let z′ be (1−ε)-correlated to z, and test f(x)⊕qg(y) =
g(z′). Such a test does not work when f ≡ 0; thus
Håstad introduced and used his method of folding
(which was also used [KKMO07]) to ensure that f
outputs 1, 2, . . . , q with equal probability.

IV. OVERVIEW OF OUR PROOFS

As mentioned, we obtain Theorems I.1 and I.2 by
modifying the KKMO [KKMO07] and Håstad [Hås01]
proofs. In this section we describe the idea of the
modifications.

A. Active folding

The usual folding trick [Hås01] enforces that f is
balanced by replacing references to f(x1, . . . , xL) with
references to f(x1⊕q xj∗ , x2⊕q xj∗ , . . . , xL⊕q xj∗)⊕q
(−xj∗) for some arbitrary j∗ ∈ [L]. (I.e., the reduction
only uses qL−1 variables to represent f as opposed to
qL. Note that this makes the test’s constraints of the
form f(x)⊕q b = f(x′)⊕q b′, but this is still of Γ-2Lin
type. We call this trick static folding.

Let us explain the alternative to “static folding” which
we call active folding. Active folding is nothing more
than building the folding directly into the test. We feel
that this is slightly more natural than static folding,
and as we will see it proves to be more flexible. In
the KKMO context of Max-Γ-2Lin(Zq), active folding
means that the test additionally chooses c, c′ ∼ Zq
uniformly and independently, and then it checks the
Γ-2Lin constraint

f(x⊕q(c, . . . c))⊕q(−c) = f(x′⊕q(c′, . . . c′))⊕q(−c′)

rather than f(x) = f(x′). To analyze the KKMO test
with active folding, first note that completeness does not
change. As for the soundness analysis, given a function
f : ZLq → ∆q we introduce f̃ : ZLq → ∆q defined by

f̃(x)a = E
c∼Zq

[f(x⊕q (c, . . . , c))a⊕qc]. (1)

Then the probability f satisfies the test with active
folding is precisely the probability that f̃ satisfies
the f̃(x) = f̃(x′) test (in the sense of randomized
functions), namely Stab1−ε[f̃ ]. We can now proceed
with the KKMO analysis; the key is that we still have
E[f̃a] = 1/q for all a ∈ Zq . To see this, take Q = q in
the following lemma:

Lemma IV.1. Let f : ZLQ → ∆q and suppose f̃ : ZLQ →
∆q is defined as in (1). Then E[f̃a] = 1/q for all a ∈
Zq .



Proof: We have

E[f̃a] = E
x∼ZKQ ,c∼Zq

[
f(x⊕Q (c, . . . , c))a⊕qc

]
.

Write x̃ = x ⊕Q (c, . . . , c) ∈ ZKQ . The distribution of
x̃ | (c = c) is uniform on ZKQ for every c. In other
words, x̃ and c are independent. Thus

E[f̃a] = Eex
[
E
c

[
f(x̃)a⊕qc

]]
= Eex

[
(1/q)

∑
b∈Zq

[f(x̃)b]

]
= Eex [1/q] = 1/q.

B. Modifying the KKMO proof

We now describe how to obtain Theorem I.1. Let us
first ask: Why does the KKMO reduction (with active
folding) not prove Theorem I.1 already? The soundness
statement of Theorem I.1 would hold since it is over
Zq . The problem is in the completeness statement: a
dictator f : ZLq → Z, f(x) = xi does not satisfy the
the KKMO test with probability close to 1. The reason
is that folding may introduce wrap-around in Zq . More
specifically (and ignoring the ε noise), the KKMO test
with active folding will check

(xi + c mod q)− c = (xi + c′ mod q)− c′ (2)

over the integers, and this is only satisfied if both
xi + c and xi + c′ wrap around, or neither does:
probability 1/2. (The situation with static folding is
similar.)

Sketch of a first fix: There is a simple way to some-
what fix the completeness: choose c and c′ from a range
smaller than {0, 1, . . . , q− 1}. E.g., if we choose c and
c′ independently and uniformly in {0, 1, . . . , bq/tc},
then we get wrap-around in xi + c with probability at
most 1/t. Hence the dictator f(x) = xi will satisfy the
test (2) over Z with probability at least 1− 2/t, which
we can make close to 1 by taking t large. Now how does
this restricted folding affect the soundness analysis? If
we redefine the folded function f̃ appropriately, it is not
hard to show that we will have E[f̃a] ≤ (t/q) for all a.
We could then proceed with the KKMO analysis applied
to f̃ and obtain soundness qΛ1−ε(t/q). Choosing, say,
t = log q would achieve a good completeness versus
soundness tradeoff; roughly 1−ε′ versus Õ(1/q)ε/(2−ε).

A better fix: A slight twist on this idea actu-
ally gives the optimal completeness versus soundness
tradeoff. Instead of restricting the range of the folding,
we simply enlarge the domain of f . Specifically, let
γ > 0 be any small constant and define Q = dq/γe. To
prove Theorem I.1 we run the KKMO reduction with
functions f whose domain is ZLQ. We still active folding
with c ∈ Zq . In other words, the test chooses x,x′ to

be (1− ε)-correlated strings in ZLQ, chooses c, c′ ∈ Zq
uniformly and independently, and outputs the constraint
f(x ⊕Q (c, . . . , c)) − c = f(x′ ⊕Q (c′, . . . , c′)) − c′.
Note that this is a q-Bounded-Γ-2Lin constraint. As
the ‘wrap-around” probability is q/Q ≤ γ, we have
completeness over Z of at least 1 − ε − γ. As for the
soundness over Zq , we now need to consider functions
f : ZLQ → ∆q . If we introduce the folded function
f̃ : ZLQ → ∆q as in (1), the probability f passes the
test over Zq is again Stab1−ε[f̃ ], and we still have
E[f̃a] = 1/q by Lemma IV.1. Hence the soundness anal-
ysis for Theorem I.1 becomes essentially identical to
the soundness analysis for KKMO with active folding.
The only tiny difference is that we need to apply the
Majority Is Stablest Theorem with domain ZLQ rather
than ZLq . But Q is still a constant since γ and q are;
hence we obtain the claimed 1 − ε − γ completeness
over Z and qΛ1−ε(1/q) soundness over Zq .

C. Modifying the Håstad proof

The modification to Håstad’s test needed to obtain
Theorem I.2 is similar. If one carries out Håstad’s
proof using the Efron–Stein decomposition rather than
harmonic analysis over Zq , one sees that the soundness
relies entirely on E[fa] = 1/q for all a ∈ Zq . Thus
we only need to apply folding to f . Let us examine the
Håstad Γ-3Lin test on f : ZKq → Zq , g : ZLq → Zq ,
and π : L → K. We will use active folding on f ,
and for simplicity of this discussion ignore the ε-noise.
The test chooses x ∼ ZKq and y ∼ ZLq uniformly and
independently, defines z ∈ ZLq by z = y ⊕q (x ◦ π)
(again, (x ◦ π)i := xπ(i)), chooses c ∼ Zq uniformly,
and finally checks the Γ-3Lin constraint

f(x⊕q (c, . . . , c))− c + g(y) = g(z).

Again, if we simply use this reduction in an attempt
to prove Theorem I.2, the soundness is fine but the
completeness over Z is a problem due to wrap-around.
Indeed, there are two possibilities for wrap-around here:
in xi + c and in yj + xπ(j). We mitigate this with the
same idea used for Max-Γ-2Lin. Given constants ε and
q we define constants Q = dq/εe and Q = dQ/εe.
We enlarge f ’s domain to ZKQ and g’s domain to ZLQ.
We continue to fold f using c ∼ Zq . Now the two
possibilities for wrap-around occur with probability at
most ε each and hence the completeness over Z is
1 − O(ε). Defining f̃ : ZKQ → ∆q as in (1), we again
have E[f̃a] = 1/q for each a ∈ Zq and can carry
out the (Efron–Stein-style) Håstad soundness analysis,
obtaining soundness 1/q + κ over Zq .



Figure 1. Test T with parameters ε, γ, q for functions on ZK
Q :

• Choose x,x′ ∼ ZKQ to be a pair of (1− ε)-correlated random strings.
• Choose c, c′ ∼ [q] independently and uniformly.
• Define x̃ = x⊕Q (c, c, . . . , c), and define x̃′ = x′ ⊕Q (c′, c′, . . . , c′).
• Test the constraint f(x̃)− c = f(x̃′)− c′.

V. DICTATOR TEST DETAILS

A. Dictator Test for Max-Γ-2Lin

Given constants ε, γ, κ > 0 and q,K ∈ Z+, let Q =
dq/γe. We define the Dictator Test T for functions f
with domain ZKQ as in Figure 1. Let ValTZ (f) be the
probability that f passes the test, and let ValTZq (f) be
the probability that f passes the test over Zq .

Theorem V.1. There exists τ, η > 0 such that T is a
q-Bounded-Γ-2Lin test with following properties:

• (Completeness.) Each of the K dictators f : ZKQ →
Z has ValTZ (f) ≥ 1− ε− γ.

• (Soundness.) Let f : ZKQ → ∆q and define f̃ :
ZKQ → ∆q as in (1). Suppose that Inf (1−η)

i [f̃ ] ≤ τ
for all i ∈ [K]. Then ValTZq (f) ≤ qΛ1−ε(1/q) +κ,
where κ = κ(τ,Q, η) > 0 can be made arbitrarily
small by taking τ, η > 0 sufficiently small.

Theorem V.1 together with the following lemma
proves Theorem I.1.

Lemma V.2. Theorem V.1 implies Theorem I.1 .

Lemma V.2 is implicit from [KKMO07], and is
proved in Appendix B1.

Proof of Theorem V.1: For the Completeness case,
we need to analyze for a fixed i ∈ [K] the probability
that

(xi ⊕Q c)− c = (x′i ⊕Q c′)− c′ (3)

holds over Z. We have xi = x′i except with probability
at most ε, and xi ≤ Q − q except with probability
at most q/Q ≤ γ. When both of these events occur,
equation (3) holds. This proves the completeness.

As for the Soundness case, by Lemma IV.1 we have
µa = E[f̃a] = 1/q for each a ∈ Zq . By assumption
we have Inf (1−η)

i [f̃a] ≤ Inf (1−η)
i [f̃ ] ≤ τ . Thus from

Theorem II.8 we obtain Stab1−ε[f̃a] ≤ Λ1−ε(1/q) +
e(τ,Q, η) for each a. Summing this over a ∈ Zq yields

Stab1−ε[f̃ ] ≤ qΛ1−ε(1/q) + q · e(τ,Q, η).

The proof is completed by taking κ = q · e(τ,Q, η),
since Stab1−ε[f̃ ] = ValTZq (f) by unrolling definitions.

B. Matching Dictator Test for Max-Γ-3Lin

Given constants ε, κ > 0 and q, L,K ∈ Z, let
Q = dq/εe and Q = dQ/εe. In Figure 2, we define
the Matching Dictator Test U for function f with
domain ZKQ , function g with domain ZLQ, and projection
π : L→ K. Let ValUZ (f, g) be the probability that f, g
pass the test, and let ValUZq (f, g) be the probability that
f, g pass the test over Zq .

Theorem V.3. U is a q-Bounded-Γ-3Lin test satisfying:

• (Completeness.) If f : ZKQ → Z and g : ZLQ → Z
are matching dictators — i.e., f(x) = xπ(j) and
g(y) = yj for some j ∈ [L] — then ValUZ (f, g) ≥
1− 5ε.

• (Soundness.) Let f : ZKQ → Zq , g : ZLQ → Zq
and define f̃ : ZKQ → ∆q as in (1). Suppose that
ValUZq (f, g) ≥ 1/q+ κ, then there is a randomized
“decoding procedure” D which decodes g to a
coordinate D(g) ∈ [L] and f to a coordinate
D(f) ∈ [K] such that π(D(g)) = D(f) with
at least a constant probability ζ = ζ(q, ε, κ)
independent of π, L,K.

Theorem V.3 together with the following lemma
proves Theorem I.2.

Lemma V.4. Theorem V.3 implies Theorem I.2 .

Lemma V.4 is proved in Appendix B2.
Proof of Theorem V.3: Define f̃ : ZKQ → ∆q as

in (1). For the completeness case, we need to analyze
for a fixed j ∈ [L] the probability that

x′π(j) − c + y′j = z′j (4)

holds over Z. Except with probability at most 3ε we
have all of

x′π(j) = x̃π(j) = xπ(j) ⊕Q c,

y′j = yj , z′j = zj = xπ(j) ⊕Q yj .

Except with probability at most q/Q ≤ ε we have
xπ(j) ≤ Q − q, in which case xπ(j) ⊕Q c equals
xπ(j) + c. Except with probability at most Q/Q ≤ ε
we have yj ≤ Q − Q, in which case xπ(j) ⊕Q yj =
xπ(j)+yj . Thus when all five events occur, equation (4)
indeed holds over Z.



Figure 2. Test U with parameters ε, q for f on ZK
Q , g on ZL

Q, π : L→ K:

• Choose x ∼ ZKQ , y ∼ ZLQ uniformly and independently.
• Define z ∈ ZLQ by z = y ⊕Q (x ◦ π).
• Choose c ∼ Zq uniformly and define x̃ ∈ ZKQ by x̃ = x⊕Q (c, c, . . . , c).
• Let x′ ∈ ZKQ be (1 − ε)-correlated to x̃, let y′ ∈ ZLQ be (1 − ε)-correlated to y, and let

z′ ∈ ZLQ be (1− ε)-correlated to z.
• Test the constraint f(x′)− c + g(y′) = g(z′).

As for the soundness case, write f ′ = T1−εf̃ and
g′ = T1−εg, where we think of g as g : ZLQ → ∆q . By
unrolling definitions we have

ValUZq (f, g) =
∑
a,b∈Zq

E
x,y,z

[f ′a(x)g′b(y)g′a⊕qb(z)].

Write µa = E[f ′a(x)]. Thus µa = E[f̃a] = 1/q, by
Lemma IV.1. We conclude that

ValUZq (f, g) =
∑
a,b∈Zq

E[(f ′a(x)− µa)g′b(y)g′a⊕qb(z)]

+(1/q)
∑
a,b∈Zq

E[g′b(y)g′a⊕qb(z)].

The second term above is

(1/q)
∑
a,b∈Zq

E[g′b(y)g′a⊕qb(z)]

= (1/q) E
[
(
∑
c
g′c(y)) · (

∑
c
g′c(z))

]
= (1/q) E[1 · 1] = 1/q,

since g′ is ∆q-valued. Thus to complete the proof it
remains to show that if∑

a,b∈Zq

E[(f ′a(x)− µa)g′b(y)g′a⊕qb(z)] (5)

is at least κ > 0 then we can suitably decode f̃ and g.
Let us now apply the Efron–Stein decomposition to f ′

and g′ with respect to the uniform distributions on their
domains. Given S ⊆ [K], T ⊆ [L], for simplicity we
write

F S
a = f ′

S
a (x), GT

b = g′
T
b (y), HT

a+b = g′
T
a⊕qb(z).

Thus

(5)

=
∑
a,b∈Zq

E
[( ∑
∅6=S⊆[K]

F S
a

)( ∑
T⊆[L]

GT
b

)( ∑
U⊆[L]

HU
b

)]
=
∑
a,b∈Zq

∑
∅6=S⊆[K]
T,U⊆[L]

E[F S
aGT

b HU
a+b].

Let us simplify the above. We have E[F S
aGT

b HU
a+b] =

E[F S
a ·E[GT

b HU
a+b | x]]. Note that even if we condition

on x, the marginals on y and z are uniform on ZLQ. It
follows from the properties of the Efron–Stein decom-
position that E[GT

b HU
a+b | x] is always 0 if T 6= U .

Thus

(5) =
∑
a,b∈Zq

∑
∅6=S⊆[K]
U⊆[L]

E[F S
aGU

b HU
a+b].

Similarly, conditioned on the U -coordinates of y and
z, the coordinates of x outside π(U) are independent
and uniform on ZQ. Hence E[F S

aGU
b HU

a+b] = 0 if
S 6⊆ π(U). We conclude that

(5) =
∑
a,b∈Zq

∑
U 6=∅

∅6=S⊆π(U)

E[F S
aGU

b HU
a+b]

=
∑
a,b∈Zq

∑
U 6=∅

E[F≤π(U)
a GU

b HU
a+b],

where we defined F≤π(U)
a =

∑
∅6=S⊆π(U) F S

a . Shifting
the sum over a and b to the inside we obtain

(5) =
∑
U 6=∅

E
[ ∑
a,b∈Zq

F≤π(U)
a GU

b HU
a+b

]
≤
∑
U 6=∅

E

[√∑
a,b

(F≤π(U)
a )2(GU

b )2
√∑
a,b

(HU
a+b)2

]
,

having used Cauchy-Schwarz. We can think of, e.g.,
(GU

0 , . . . ,G
U
q−1) as a vector in Rq; writing ‖GU‖

for the Euclidean length of this vector (and simi-
larly for F and H), the right side above is precisely√
q
∑
U 6=∅E

[
‖F≤π(U)‖ · ‖GU‖ · ‖HU‖

]
. Thus

(5) ≤√q
∑
U 6=∅

E
[
‖F≤π(U)‖ · ‖GU‖ · ‖HU‖

]
≤√q

∑
U 6=∅

√
E[‖F≤π(U)‖2‖GU‖2]

√
E[‖HU‖2],

using Cauchy-Schwarz again. Now F≤π(U) depends
only on x and GU depends only on y; hence they
are independent. Further, since y and z have the same
distribution (though they are not independent), the same



is true of GU and HU . Hence

(5) ≤ √q
∑
U 6=∅

√
E[‖F≤π(U)‖2] E[‖GU‖2]

≤√q
√∑
U 6=∅

E[‖F≤π(U)‖2] E[‖GU‖2]
√∑
U 6=∅

E[‖GU‖2],

using Cauchy-Schwarz again. By (generalized) Parseval,∑
U 6=∅E[‖GU‖2] ≤

∑
T E[‖GU‖2] = E[‖G‖2] ≤ 1,

since G takes values in ∆q . Thus we finally conclude

(5) ≤ √q
√∑
U 6=∅

E[‖F≤π(U)‖2] E[‖GU‖2]

=
√
q
∑
U 6=∅

E[‖(T1−εf̃)≤π(U)(x)‖2] E[‖(T1−εg)U (y)‖2].

If ValUZq (f, g) ≥ 1/q + κ, then we have κ ≤ (5) and
therefore∑
U 6=∅

E[‖(T1−εf̃)≤π(U)(x)‖2] E[‖(T1−εg)U (y)‖2]

≥ κ2/q. (6)

We now define the decoding procedure. It works
in a similar way as in Håstad’s work [Hås01], as
follows. We sample a random set S ⊆ [K] according to
distribution E[‖f̃S(x)‖2], and let D(f) ∈ S uniformly
(or an arbitrary element of [K] if S = ∅). We also
sample a random set T ⊆ [L] according to distribution
E[‖gS(y)‖2], and choose D(g) ∈ T uniformly (or an
arbitrary element of [L] if T = ∅). We have

Pr[π(D(g)) = D(f)]

≥
∑

T,∅6=S⊆π(T )

E[‖f̃S(x)‖2] E[‖gT (y)‖2]
1
|S|

≥2ε
∑

T,∅6=S⊆π(T )

E[‖f̃S(x)‖2] E[‖gT (y)‖2](1− ε)2|S|,

where in the last step we use the
fact 1/|S| ≥ 2ε(1 − ε)2|S|. Note that
E[‖f̃S(x)‖2](1 − ε)2|S| = E[‖T1−εf̃

S(x)‖2] and
E[‖gT (y)‖2] ≥ E[‖(T1−εg)T (y)‖2], we have

Pr[π(D(g)) = D(f)]

≥2ε
∑

T,∅6=S⊆π(T )

E[‖(T1−εf̃)S(x)‖2] E[‖(T1−εg)T (y)‖2]

=2ε
∑
T

E[‖(T1−εf̃)≤π(T )(x)‖2] E[‖(T1−εg)T (y)‖2]

≥2εκ2/q,

where the second last step is by definition and orthogo-
nality of (T1−εf̃)S1 and (T1−εf̃)S2 (S1 6= S2), and the
last step is by (6).
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APPENDIX

A. Reductions between Max-kLin(R) problems

Lemma A.1. Given a q-Bounded-Max-Γ-kLin instance
and positive integer m ≥ q:
• When k = 2, OptZ(I),OptR(I),OptZm(I) ≤ 4 ·

OptZq (I).
• When k = 3, OptZ(I),OptR(I),OptZm(I) ≤ 8 ·

OptZm(I).

Proof: It is obvious that the OptZ is a lower bound
for OptZq . It suffice then to show how to convert a
δ-good assignment over Zm and R to a Ω(δ)-good
assignment over Z.

First we show the conversion from an assignment
over R to Z. For case of k = 3, as is noted in [GR06],
suppose one has an δ-good real assignment to a system
of equations of the form xi1 − xi2 + xi3 = b, b ∈ Z.
If one randomly rounds each variable up or down
to an integer, every formerly satisfied equation has
probability at least 1/8 of remaining satisfied.1 Hence
there must exist a δ/8-good integer assignment. For the
case of k = 2, The reduction from Max-Γ-2Lin(Z) to
Max-Γ-2Lin(R) is even easier and incurs no loss: given
a δ-good real assignment, simply dropping the fractional
parts yields a δ-good integer assignment.

Next we show the conversion from assignment over
Zm to Zq . First let us consider the case of k = 3.
Suppose one has an δ-good assignment A : xi → Zm
to a system of equations of the form

xi1 − xi2 + xi3 = b mod m.

Then we know that if A(xi1) − A(xi2) + A(xi3) = b
mod m. Notice that |b| ≤ q ≤ m, we must have that
A(xi1)−A(xi2) +A(xi3) ∈ {b, b−m, b+m, b+ 2m}
when the assignment is evaluated over Z. If we define
assignment A1(xi) = A(xi)−m,A2(xi) = A(xi) +m
and A3(xi) = A(xi)+2m form every xi. Then it is easy

1In the usual case when the hard instances also have “bipartite”
structure, it is not hard to make the loss only a factor of 2 rather than
8.

to verify that the best assignment among A,A1, A2, A3

will give a δ/4-good assignment. Essentially, every
equations over Zm satisfiable by A must also be sat-
isfiable by one of A,A1, A2, A3 over Z.

As for the case k = 2, we know that for a δ-good
assignment A over Zm, we know that if A(xi1) −
A(xi2) = b mod m, then A(xi1)−A(xi2) = b−m, b+
m when evaluated over Z. Therefore, we can randomly
set A′(xi) to be A(xi)−m/2 or A(xi) +m/2 . Then
we know that A′ is at least a δ/4-good assignment over
Z.

It is not too hard to see that to see above proof
technique also works for m < q; in particular, a δ-good
assignment for q-Bounded-Max-Γ-kLinon Zm implies a
Ω( δ

(2q/m)k
)-good assignment on Zq .

B. From Dictator Tests to hardness of approximation

1) Proof of Lemma V.2: We start by defining Unique
Games and the Unique Games Conjecture.

Definition A.2 (Unique Games). A Unique Game
L(G(U, V,E),Σ, {πe|e ∈ E}) is a constraint satis-
faction problem defined as follows. G(U, V,E) is a
bipartite graph whose vertices represent variables and
edges represent constraints. The goal is to assign to each
vertex a label from the set Σ. The constraint on an edge
e = (u, v) ∈ E, where u ∈ U, v ∈ V , is described by
a bijection πe : Σ → Σ. A labeling σ : U ∪ V → Σ
satisfies the constraint on edge e = (u, v) if and only if
πe(σ(v)) = σ(u). Let Opt(U) denote the maximum
fraction of constraints that can be satisfied by any
labeling:

Opt(U) := max
L:U∪V→Σ

1
|E|
· |{e ∈ E|L satisfies e}|.

Conjecture A.3 (Unique Games Conjecture [Kho02]).
For every γ, δ > 0, there exists a constant M =
M(γ, δ), such that given a Unique Game instance
L(G(U, V,E),Σ, {πe|e ∈ E}) with |Σ| = M , it is NP-
hard to distinguish between these two cases :

• YES Case: Opt(L) ≥ 1− γ.
• NO Case: Opt(L) ≤ δ.

By standard reductions, we can assume the bipartite
graph G(U, V,E) is left-regular in the conjecture.

Now we are ready to prove Lemma V.2.
Proof of Lemma V.2: Given a Unique Game

instance L(G(U, V,E),Σ, {πe|e ∈ E}), and a Dictator
Test T (ε, γ, κ, q,K = |Σ|) described in the lemma
statement, we build a q-Bounded-Max-Γ-2Lin instance
I as follows. The variable set consists of all the entries
of gv : [Q]Σ → Z,∀v ∈ V , which are supposed Q-ary
Long Codes of the labels for v ∈ V , where Q = q/γ is
defined in the Dictator Test. The equations are placed



by the following random process, where the probability
of a equation being placed corresponds to its weight.
• Pick a random vertex u and two of its random

neighbors of v, v′ ∈ V , let π = π(u,v) and π′ =
π(u,v′).

• Run the Dictator Test T an imaginary function f
defined on [Q]Σ, suppose T chooses to test f(x)−
f(y) = b.

• Place the equation (gv ◦ π)(x)− (gv′ ◦ π′)(y) = b,
where (g ◦ π)(x) := g(π(x)).

Completeness. Suppose Opt(L) ≥ 1 − γ, and σ is
a labeling function satisfying 1 − γ fraction of the
constraints. Let gv be the Long Code for σ(v), i.e. let
gv(x) = xσ(v) for each v. According to the random
process shown above, we pick a random equation in I.
With probability at least 1− 2γ, both of the constraints
on (u, v) and (u, v′) are satisfied by σ. In this case, both
gv ◦ π and gv′ ◦ π′ are the Long Code for σ(u), and
gv ◦ π(x)− gv′ ◦ π′(y) = b is satisfied with probability
1−ε−γ by the property of T . In all, at least 1−ε−3γ
fraction (of weight) of the equations are satisfied.

Soundness. Suppose there is a set of functions gv :
[Q]Σ → Zq satisfying more than qΛ1−ε(1/q) + κ
fraction (of weight) of the equations over Zq . Then
there are at least κ/2 fraction of vertices u ∈ U such
that conditioned on u is picked in the first step of the
random process shown above, the equation is satisfied
over Zq with probability more than qΛ1−ε(1/q) + κ/2.
We call such u’s “good”. For each u, we define fu :
[Q]Σ → ∆q to be fu = avgv:(u,v)∈E{gv ◦ π(u,v)}.
Since the equations generated after picking u are indeed
a Dictator Test T running on fu, for good u’s, we
have ValTZq (fu) > qΛ1−ε(1/q) + κ/2 . Therefore, for
each good u, there exists i = iu ∈ Σ, such that
Inf (1−η)

i [f̃u] > τ . Note that

f̃u = avg
v:(u,v)∈E

{ ˜gv ◦ π(u,v)}.

By Fact II.6, we have

τ < Inf (1−η)
i [f̃u] = Inf (1−η)

i

[
avg

v:(u,v)∈E
{ ˜gv ◦ π(u,v)}

]
≤ avg
v:(u,v)∈E

{
Inf (1−η)

i [ ˜gv ◦ π(u,v)]
}
.

Therefore, for at τ/2 fraction of neighbors v of u, there
exists j = π(u,v)(i), such that Inf (1−η)

j (g̃v) > τ/2.
Let σ(u) = iu if u is good. For each v ∈ V , let

Cand(v) = {i : Inf (1−η)
i (g̃v) > τ/2}. By Fact II.5, we

have |Cand(v)| < 1/(τη). If Cand(v) 6= ∅, let σ(v)
be a random element in Cand(v). Now for a good u,
there are τ/2 fraction of neighbors v of u such that
j = π(u,v)(σ(u)) ∈ Cand(v), therefore the edge (u, v)
is satisfied with probability 1/|Cand(v)| > τη. It fol-
lows that σ satisfies more than (κ/2)(τ/2)τη = κητ2/2

fraction of the constraints in expectation. Therefore
there is a labeling satisfying more than δ′ = κητ2/2
fraction of the constraints.

2) Proof of Lemma V.4: We start by defining Label
Cover Games and introducing its hardness.

Definition A.4 (Label Cover Games). A Label Cover
Game C(G(U, V,E), [K], [L], {πe|e ∈ E}) is a
constraint satisfaction problem defined as follows.
G(U, V,E) is a bipartite graph whose vertices represent
variables and edges represent the constraints. The goal
is to assign to each vertex in U a label from the set
[K] and to each vertex in V a label from the set [L].
The constraint on an edge e = (u, v) ∈ E is described
by a “projection” πe : [L] → [K]. The projection
is onto. A labeling σ : U → [K], σ : V → [L]
satisfies the constraint on edge e = (u, v) if and only
if πe(σ(v)) = σ(u). Let Opt(C) denote the maximum
fraction of constraints that can be satisfied by any
labeling :

Opt(C) := max
σ:U→[K]
σ:V→[L]

1
|E|
· |{e ∈ E|L satisfies e}|.

Theorem A.5 (PCP Theorem + Raz’s Parallel Rep-
etition Theorem [AS98], [ALM+98], [Raz98]). There
exists an absolute constant c such that for every δ > 0,
C(G(U, V,E), [K], [L], {πe|e ∈ E}), K = (1/δ)C , it is
NP-hard to distinguish between:

• YES Case: Opt(C) = 1.
• NO Case: Opt(C) = δ.

Now we are ready to prove Lemma V.4.

Proof of Lemma V.4: Given a Label Cover Game
instance C(G(U, V,E), [K], [L], {πe|e ∈ E}), and a
Matching Dictator Test U(ε, κ, q, L,K) described in the
lemma statement, we build a q-Bounded-Max-Γ-3Lin
instance I as follows. The variable set consists of all
the entries of fu : [Q]L → Z and gv : [Q]K → Z for
all u ∈ U, v ∈ V . The equations are the gathering of
the Matching Dictator Tests U for fu, gv with projection
π(u,v) for all (u, v) ∈ E. The weights of the equations
are normalised by a factor 1/|E|.

Completeness. Suppose Opt(C) = 1, and σ is a
labeling function satisfying all the constraints. For all
u ∈ U, v ∈ V , let fu and gv be the Long Codes for
σ(u), σ(v) respectively, i.e. let fu(x) = xσ(u), gv(y) =
yσ(v). For each edge (u, v) ∈ E, the Matching Dictator
Test U passes with probability at least 1− ε. Therefore,
at least 1 − ε fraction (of weight) of the equations are



satisfied.

Soundness. Suppose there is a set of functions fu :
[Q]K → Zq, gv : [Q]L → Zq satisfying more than
1/q + κ fraction (of weight) of the equations over Zq .
By averaging argument, for at least κ/2 fraction of
the edges, the corresponding Matching Dictator Test
passes with probability more than 1/q + κ/2. Call

these edges “good edges”. For all u ∈ U, v ∈ V ,
let σ(u) = D(fu), σ(v) = D(gv). For good edges
e ∈ E, the probability that e is satisfied by σ is at least
ζ = ζ(q, ε, κ). It follows that σ satisfies more than ζκ/2
fraction of the constraints in expectation. Therefore
there is a labeling satisfying more than δ′ = ζκ/2
fraction of the constraints.


