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Abstract

We show that quantum query complexity satisfies a strong direct product theorem. This
means that computing k copies of a function with less than k times the quantum queries needed
to compute one copy of the function implies that the overall success probability will be expo-
nentially small in k. For a boolean function f we also show an XOR lemma—computing the
parity of k copies of f with less than k times the queries needed for one copy implies that the
advantage over random guessing will be exponentially small.

We do this by showing that the multiplicative adversary method, which inherently satisfies
a strong direct product theorem, is always at least as large as the additive adversary method,
which is known to characterize quantum query complexity.

1 Introduction

We show that quantum query complexity satisfies a strong direct product theorem. A strong
direct product theorem states that to compute k copies of a function with less than k times the
resources needed to compute one copy of the function implies that the success probability will be
exponentially small in k. For boolean functions, we further show an XOR lemma. XOR lemmas are
closely related to strong direct product theorems and state that computing the parity of k copies
of a boolean function with less than k times the resources needed to compute one copy implies
that the advantage over random guessing will be exponentially small. XOR lemmas can be shown
quite generally to imply strong direct product theorems and even threshold direct product theorems
[Ung09], which state that one cannot compute a µ fraction of the k copies with less than µk times
the resources with better than exponentially small (in µk) success probability. Thus in the boolean
case we are also able to obtain a threshold direct product theorem.

How the resources needed to compute k copies of a function scale with those needed for one
copy is a very natural question that has been asked of many computational models. While direct
product theorems are intuitively highly plausible, they do not hold in all models [Sha03], and there
are relatively few models where strong direct product theorems are known. Notable examples of
direct product-type results include Yao’s XOR lemma and Raz’s parallel repetition theorem [Raz98].
Closer to our setting, strong direct product theorems have been shown for one-way randomized
communication complexity [Jai10] and for randomized query complexity [Dru11].

In quantum query complexity strong direct product theorems were previously known for some
special classes of functions and bounds shown by particular methods. In the first such result, Klauck,
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Špalek and de Wolf [KŠdW07] used the polynomial method [BBC+98] to show a strong direct
product theorem for the quantum query complexity of the OR function. Via block sensitivity, this
gives a polynomially tight strong direct product theorem for all functions—namely, any algorithm
using less than a constant fraction times kQ(f)1/6 will have exponentially small success probability
for computing k copies of f .

Sherstov [She11] recently showed how certain lower bound techniques based on looking at the
distance of the function to a convex set inherently satisfy a strong direct product theorem. As
an application he was able to show that the polynomial method satisfies a strong direct product
theorem in general. Thus one obtains a strong direct product theorem for the quantum query
complexity of any function where the polynomial method shows a tight lower bound. Super-linear
gaps between the polynomial degree and quantum query complexity are known [Amb06], however,
so this does not give a tight strong direct product theorem for all functions.

Direct product results have also been shown by the other main lower bound technique in quan-
tum query complexity, the adversary method. The adversary method defines a potential function
based on the state of the algorithm after t queries, and bounds the change in this potential func-
tion from one query to the next. By developing a new kind of adversary method, Ambainis,
Špalek, and de Wolf [AŠdW06] showed a strong direct product theorem for all symmetric func-
tions. Špalek [Špa08] formalized this technique into a generic method, coining it the multiplicative
adversary method, and showed that this method inherently satisfies a strong direct product theo-
rem. The name multiplicative adversary contrasts with the additive adversary method, introduced
earlier by Ambainis [Amb02] and later extended by Høyer, Lee and Špalek [HLŠ07]. The additive
adversary method bounds the difference of the potential function from one step to the next, while
the multiplicative adversary method bounds the corresponding ratio.

There have recently been great strides in our understanding of the adversary methods. A series
of works [FGG08, CCJY09, ACR+10, RŠ08, Rei09, Rei10, LMRŠ10] has culminated in showing
that the additive adversary method characterizes the bounded-error quantum query complexity of
any function whatsoever. Ambainis et al. [AMRR11], answering an open question of Špalek [Špa08],
showed that the multiplicative adversary is at least as large as the additive. Thus the multiplicative
adversary bound also characterizes bounded-error quantum query complexity.

This seems like it would close the question of a strong direct product theorem for quantum
query complexity. The catch is the following. The multiplicative adversary method can be viewed
as a family of methods parameterized by the bound c on the ratio of the potential function from one
step to the next. The strong direct product theorem of [Špa08] holds for any value of c sufficiently
bounded away from 1. The result of [AMRR11], however, was shown in the limit c → 1, which
ends up degrading the resulting direct product theorem into a direct sum theorem. We show that
the multiplicative adversary is at least as large as the additive adversary for a value of c bounded
away from 1. A similar result was independently observed by Belovs [Bel11]. Together with the
strong direct product theorem for the multiplicative adversary by [Špa08] this suffices to give a
strong direct product theorem for quantum query complexity. Rather than use this “out of the
box” strong direct product theorem, however, we prove the strong direct product theorem from
scratch using a stronger output condition than those used previously [Špa08, AMRR11]. This
results in better parameters, and a better understanding of the multiplicative adversary method.

Theorem 1.1 (Strong direct product theorem). Let f : D → E where D ⊆ Dn for finite sets D,E.
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For an integer k > 0 define f (k)(x1, . . . , xk) = (f(x1), . . . , f(xk)). Then, for any (2/3) ≤ δ ≤ 1,

Q1−δk/2(f
(k)) ≥ k ln(3δ/2)

8000
·Q1/4(f) .

In the boolean case, we prove the following XOR lemma which also implies a threshold direct
product theorem (Theorem 5.5).

Lemma 1.2 (XOR Lemma). Let f : D → {0, 1} where D ⊆ Dn for finite set D. For an integer
k > 0 and any 0 ≤ δ ≤ 1,

Q(1−δk/2)/2(⊕ ◦ f (k)) ≥ kδ

8000
·Q1/4(f) .

1.1 Proof technique

While the statement of our main theorems concern functions, a key to our proofs, especially for
the XOR lemma, is to consider more general state generation problems, introduced in [AMRR11].
Instead of producing a classical value f(x) on input x, the goal in state generation is to produce a
specified target state |σx〉, again by making queries to the input x. We will refer to σ(x, y) = 〈σx|σy〉
as the target Gram matrix. Evaluating a function f can be viewed as a special case of state
generation where the target Gram matrix is F (x, y) = δf(x),f(y).

Our most general result (Theorem 4.1) shows that for a restricted class of target Gram matrices
σ, to generate σ⊗k with better than exponentially small success probability requires at least a
constant fraction of k times the complexity of σ. The strong direct product theorem is obtained
as a special case of this theorem by considering the Gram matrix F (x, y) = δf(x),f(y). To obtain
the XOR lemma, we apply this theorem with the state generation problem of computing f in the
phase, that is to generate σf (x, y) = (−1)f(x)+f(y). The advantage of considering this state is that
σ⊗k
f is the state generation problem corresponding to computing the parity of k copies of f in the

phase. We then show that the complexities of f and the state generation problem of computing f
in the phase are closely related.

Another key element of our proofs is a new characterization of the set of valid output Gram ma-
trices for an algorithm solving a state generation problem with success probability 1−ǫ (Claim 3.8).
We call a condition which defines a set containing this set of valid output matrices an output con-
dition. Usually a lower bound uses an output condition which is a relaxation of the true output
condition, and shows a lower bound against all Gram matrices satisfying this output condition, and
thereby all valid output matrices as well. Examples of output conditions previously used with the
adversary bound include being close to the target Gram matrix in distance measured by the l∞ or
γ2 norms. These conditions, however, do not work for small success probabilities, which is critical
to obtain the strong direct product theorem.

We give a new characterization of the true output condition in terms of fidelity. Since the fidelity
between two quantum states is bounded by the fidelity between the probability distributions arising
from any measurement on those states, a relaxation of this output condition may be obtained by
considering the measurement corresponding to an optimal witness for the adversary bound of the
problem. A lower bound on the multiplicative bound under this relaxed output condition can be
written as a linear program. By taking the dual of this linear program we are able to lower bound
the value on σ⊗k in terms of the bound for σ by using a completely classical claim about product
probability distributions (Corollary 3.13). This approach allows us to obtain a cleaner statement
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for the strong direct product theorem than what we would obtain from the output condition used
in [Špa08, AMRR11], and also clarifies the inner workings of the adversary method, which might
be of independent interest.

2 Preliminaries

Let ℜ(z) denote the real part of a complex number z. Let δa,b denote the Kronecker delta function.
We will refer throughout to a function f : D → E where D ⊆ Dn for finite sets D,E. We let
f (k) : Dk → Ek be the function computing k independent copies of f , namely f (k)(x1, . . . , xk) =
(f(x1), . . . , f(xk)). We let ⊕ ◦ f (k) denote the parity function composed with f (k). We also define
some auxiliary matrices associated with f . Let F (x, y) = δf(x),f(y), and ∆i(x, y) = δxi,yi for
x, y ∈ D and i ∈ [n]. For boolean functions, i.e., when |E| = 2, we also define the matrix
σf (x, y) = (−1)f(x)+f(y) for x, y ∈ D. Note that σf = 2F − J , where J is the all-1 matrix. We use
A ◦B for the entrywise product between two matrices A,B, also known as the Schur or Hadamard
product.

Let ρ, σ be two |D| × |D| positive semidefinite matrices such that Trρ = Trσ = 1 (i.e., quantum
states on a |D|-dim Hilbert space) and p, q be two probability distributions over D. We will use
the notion of fidelity, for both quantum states and classical probability distributions.

Definition 2.1 (Fidelity).

F(ρ, σ) = Tr
√√

ρσ
√
ρ F(p, q) =

∑

x∈D

√
pxqx

For 0 ≤ λ ≤ 1 and 0 < µ < 1, we denote by D(λ||µ) the binary relative entropy of λ and µ,
defined as follows.

Definition 2.2 (Binary relative entropy).

D(λ||µ) = λ ln
λ

µ
+ (1− λ) ln

1− λ

1− µ

where 0 ln 0 = 0.

Finally, for a |D| × |D| matrix A we will also use the factorization norm γ2(A).

Definition 2.3 (Factorization norm).

γ2(A) = min
m∈N

|ux〉,|vx〉∈Cm

{

max
x∈D

max
{

‖|ux〉‖2, ‖|vx〉‖2
}

: ∀x, y ∈ D, Ax,y = 〈ux|vy〉
}

= max
|u〉,|v〉

‖|u〉‖=‖|v〉‖=1

‖A ◦ |u〉〈v|‖tr

We will make use of the following basic claims.

Claim 2.4. For any matrices A,B where A ◦B is defined,

1. ‖A ◦B‖ ≤ γ2(A) · ‖B‖

2. {A � 0 and B � 0} ⇒ A ◦B � 0

4



2.1 Quantum query complexity and state generation

The quantum query complexity of f , denoted Qǫ(f) is the minimum number of input queries needed
to compute f with error at most ǫ. We refer to the survey [BdW02] for definitions and background
on this model.

Although our main interest will be in the query complexity of functions, it will be useful to also
talk about state generation problems, introduced in [AMRR11]. Instead of producing a classical
value f(x) on input x, the goal in state generation is to produce a specified target state |σx〉, again
by making queries to the input x. As unitary transformations independent of the input can be
made for free in the query model, a state generation problem is wholly determined by the Gram
matrix σ(x, y) = 〈σx|σy〉 of the target states {|σx〉}x∈D. We refer to σ as the target Gram matrix.

State generation problems come in two variations, coherent and non-coherent. An algorithm P
solves the coherent quantum state generation problem σ with error at most ǫ if, for every x ∈ D,
it generates a state |P(x)〉 ∈ H ⊗H′ such that ℜ(〈P(x)|(|σx〉 ⊗ |0̄〉)) ≥

√
1− ǫ, where H′ denotes

the workspace of the algorithm, and |0̄〉 is a default state for H′. The coherent quantum query
complexity of σ, denoted Qc

ǫ(σ) is the minimum number of queries needed to generate σ coherently
with error at most ǫ.

An algorithm P solves the non-coherent state generation problem σ with error at most ǫ if there
exists a set of states |φx〉 ∈ H′ such that ℜ(〈P(x)|(|σx〉 ⊗ |φx〉)) ≥

√
1− ǫ for all x ∈ D. We denote

by Qǫ(σ) the non-coherent query complexity of generating σ with error ǫ.
Evaluating a function f can be seen as a special case of non-coherent state generation where

the target Gram matrix is F (x, y) = δf(x),f(y). In other words, Qǫ(f) = Qǫ(F ) where F (x, y) =
δf(x),f(y), justifying our abuse of notation. For state generation problems corresponding to functions
the coherent and non-coherent complexities are closely related.

Claim 2.5. Let f be a function. Then

Qǫ(F ) ≤ Qc
ǫ(F ) ≤ 2Q1−

√
1−ǫ(F ) .

Proof. The lower bound holds for a general target Gram matrix σ, as the success condition in the
coherent case implies the non-coherent one.

For the upper bound, let Ax be an algorithm computing f(x) with success probability 1 − η.
Thus the algorithm applied on |0〉|0̄〉, where the first register is the output register and the second
register corresponds to some workspace initialized in a default state, prepares a state

Ax|0〉|0̄〉 =
∑

j

αj |j + f(x)〉|ψj〉,

where by assumption |α0| ≥
√
1− η, and the states |ψj〉 describe the final state of the workspace

register. Let us now copy the output register into an additional register initialized in the state
|0〉 using an addition gate G, and finally uncompute the original output register together with the
workspace by using the algorithm Ax in reverse.

We analyze the overlap of A−1
x GAx|0〉|0̄〉|0〉 with |0〉|0̄〉|f(x)〉. After applying G on Ax|0〉|0̄〉|0〉,

we have the state |v〉 =
∑

j αj |j + f(x)〉|ψj〉|j + f(x)〉. Now we look at the overlap of |0〉|0̄〉|f(x)〉
with A−1

x |v〉 or, equivalently, the overlap of Ax|0〉|0̄〉|f(x)〉 with |v〉. Since

Ax|0〉|0̄〉|f(x)〉 =
∑

j

αj |j + f(x)〉|ψj〉|f(x)〉,
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we have
〈0|〈0̄|〈f(x)|A−1

x |v〉 =
∑

j

|αj |2〈f(x)|j + f(x)〉 ≥ 1− η.

Therefore, this algorithm coherently computes f(x) with success probability 1 − ǫ ≥ (1 − η)2.
Inverting this relation, we obtain η ≥ 1−

√
1− ǫ.

We will also consider another type of state generation problem associated with a function, that
of computing the function in the phase. For a boolean function f : D → {0, 1} let σf (x, y) =
(−1)f(x)+f(y). While the non-coherent complexity of σf is trivial, the coherent complexity of σf is
closely related to that of F .

Claim 2.6.

Qc
(1−

√
1−ǫ)/2+ǫ/4

(F ) ≤ Qc
ǫ(σf ) ≤ 2Q(1−

√
1−ǫ)/2(F )

Proof. For the lower bound, we turn an algorithm for σf into an algorithm for F = (J + σf )/2 by
using the SWAP test. The error dependence then follows from the joint concavity of the fidelity:

F
(

J+ρ
2 ◦ uu∗, J+σf

2 ◦ uu∗
)

≥ 1

2
+

1

2
F (ρ ◦ uu∗, σf ◦ uu∗) .

for any u.
For the upper bound, let us consider an algorithm Ax computing f(x) (in a register) with

success probability 1 − η. Thus, the algorithm applied on |0〉|0̄〉, where the first register is the
output register and the second register corresponds to some workspace initialized in a default state,
prepares a state

Ax|0〉|0̄〉 =
∑

j=0,1

αj |j ⊕ f(x)〉|ψj〉,

where by assumption |α0| ≥
√
1− η, and the states |ψj〉 describe the final state of the workspace

register. Let Φ be a phase gate acting on the output register as |b〉 7→ (−1)f(x)|b〉. We can turn an
algorithm Ax computing in a register into an algorithm computing in the phase by first applying
Ax to compute the output, then applying the phase gate Φ, and finally applying A−1

x to uncompute
the output.

After applying Φ on Ax|0〉|0̄〉, we have the state ΦAx|0〉|0̄〉 =
∑

j=0,1(−1)j+f(x)αj |j ⊕ f(x)〉|ψj〉.
Now we look at the overlap of (−1)f(x)|0〉|0̄〉 with A−1

x ΦAx|0〉|0̄〉 or, equivalently, the overlap of
(−1)f(x)Ax|0〉|0̄〉 with ΦAx|0〉|0̄〉. We have

(−1)f(x)〈0|〈0̄|A−1
x ΦAx|0〉|0̄〉 =

∑

j

(−1)j |αj |2 ≥ 1− 2η.

Therefore we obtain a success probability 1 − ǫ ≥ (1 − 2η)2. Inverting this relation, we obtain
η ≥ (1−

√
1− ǫ)/2.
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3 Adversary methods

In this section we introduce both the additive and multiplicative adversary lower bound methods.
Even when one is only interested in the functional case, it is useful to view these methods as lower
bounds on quantum state generation as this allows the separation of the method into two distinct
parts. The first part is a lower bound on exact coherent quantum state generation. This is where
the two methods differ. The second part is the output condition, a minimization of the bound for
exact coherent quantum state generation over all valid output Gram matrices. The set of valid
output Gram matrices is determined by the target Gram matrix σ, the error parameter ǫ, and if
one is considering coherent or non-coherent state generation. This second step is common to both
the additive and multiplicative methods. Finally, we show that the multiplicative bound is at least
as large as the additive bound.

3.1 Additive method

We first review the derivation of the additive adversary method to compare it with the multiplicative
method in the next section. We will actually present a generalization of the additive adversary
method due to [LMR+11].

Consider an algorithm that exactly coherently computes σ by making T queries. Let |ψt
x〉 be

the state of this algorithm on input x after t queries, and ρt(x, y) = 〈ψt
x|ψt

y〉 be the corresponding

Gram matrix. Note that ρ0 = J the all ones matrix and, by assumption, ρT = σ.
Now let Γ be a matrix, v a vector, and consider the potential function Φ(t) = Tr((Γ ◦ ρt)vv∗).

The additive change in this potential function from the beginning to the end of the protocol is

Tr((Γ ◦ (J − σ))vv∗) =
T−1
∑

t=0

Tr((Γ ◦ (ρt − ρt+1))vv∗)

≤ T max
t

Tr((Γ ◦ (ρt − ρt+1))vv∗) .

A standard argument (see, for example, [HLŠ07]) then goes that if we impose the condition on Γ
that

I ± Γ ◦ (J −∆i) � 0 for all i ∈ [n],

then Tr((Γ ◦ (ρt − ρt+1))vv∗) ≤ 2, for all t and v.
As this argument holds for any Γ and v, we can maximize over them leading to the following

definition.

Definition 3.1 (Additive adversary method [LMR+11]).

Adv∗(σ) =maximize
Γ

‖Γ ◦ (J − σ)‖

subject to I ± Γ ◦ (J −∆i) � 0 for all i ∈ [n],

where the maximization is over |D| × |D| hermitian matrices Γ.

The preceding argument shows the following.

Theorem 3.2 ([LMR+11]). For any target Gram matrix σ,

Qc
0(σ) ≥

Adv∗(σ)
2
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[LMR+11] have also shown that this lower bound is tight for the bounded-error query complexity
of functions.

Theorem 3.3 ([LMR+11]). For any function f ,

Q1/4(f) ≤ 1000 ·Adv∗(F )
Up to the constant factor, this upper bound holds more generally for well-behaved state genera-

tion problems, where the query complexity Qǫ(σ) does not depend dramatically on the error ǫ (i.e.,
Qǫ(σ) = Θ(Qǫ′(σ)) for small ǫ, ǫ′).

Remark 3.4. The adversary bound Adv± from [HLŠ07] was originally defined in the functional
case, that is, for target Gram matrices F of the form F (x, y) = δf(x),f(y) for a function F . This
definition had an additional constraint that Γ ◦ F = 0. This constraint only affects the bound up to
a multiplicative factor of two [LMR+11].

Adv±(F ) ≤ Adv∗(F ) ≤ 2Adv±(F ) . (3.1)

The constraint Γ ◦ F = 0 allows one to show that Adv±(F )/2 is a lower bound even on the non-
coherent complexity of generating F . One can see that Adv∗(F )/4 is a lower bound on the non-
coherent complexity of generating F either by Eq. (3.1) or by Claim 2.5 showing that the coherent
and non-coherent state generation complexities of functions are related by a factor of two.

3.2 Multiplicative adversary method

The multiplicative bound is derived by considering the same potential function Φ(t), but looks
at the ratio of this function at the beginning and end of the protocol, rather than the difference.
Equivalently, one can consider the logarithmic potential function ln(Φ(t)) and again look at the
additive change over the course of the protocol. As the argument to the logarithm should be
positive, we already see that a new constraint on Γ is needed, namely Γ ≻ 0.

Definition 3.5 (Multiplicative adversary method).

Madv(σ) = maximize
c

1

ln(c)
maximize

Γ≻0,v
ln (Tr((Γ ◦ σ)vv∗))

subject to Tr(Γvv∗) = 1

c−1Γ � Γ ◦∆i � c Γ for all i ∈ [n],

where the maximization is over |D| × |D| positive definite matrices Γ and unit vectors v.

Theorem 3.6 ([Špa08, AMRR11]). For any state generation problem σ,

Qc
0(σ) ≥

Madv(σ)

2
.

Proof. Consider an algorithm that coherently generates σ by making T queries, and define a po-
tential function Φ(t) = Tr((Γ ◦ ρt)vv∗), where Γ ≻ 0. Then

Φ(T )

Φ(0)
=

Tr((Γ ◦ σ)vv∗)
Tr((Γ ◦ J)vv∗) =

T−1
∏

t=0

Tr((Γ ◦ ρt+1)vv∗)
Tr((Γ ◦ ρt)vv∗)

≤
(

max
t

Tr((Γ ◦ ρt+1)vv∗)
Tr((Γ ◦ ρt)vv∗)

)T

.
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Analogously to the additive bound, we now show that the constraint c−1Γ � Γ◦∆i � c Γ for all i ∈
[n] implies

max
t

Tr((Γ ◦ ρt+1)vv∗)
Tr((Γ ◦ ρt)vv∗) ≤ c .

This argument is very similar to proofs in [Špa08, AMRR11] so we only sketch the idea here. Recall
from [AMRR11] that we can assume that there are only two types of queries, called computing and
uncomputing queries (this restriction can only increase the query complexity by a factor at most
2, hence the factor 1/2 in the final lower bound). Let us first consider a computing query. Let
|ψt

x,i〉 = Pi|ψt
x〉, where Pi is a projector onto the query register containing index i, and ρti(x, y) =

〈ψt
x,i|ψt

y,i〉. We can decompose the state before the t-th query as ρt =
∑

i ρ
t
i, and the state after the

query as ρt+1 =
∑

i ρ
t
i ◦∆i. The condition Γ ◦∆i � c Γ then immediately implies that

Tr((Γ ◦ ρt+1)vv∗) ≤ c Tr((Γ ◦ ρt)vv∗).

For uncomputing queries, the roles of ρt and ρt+1 are interchanged, and we obtain the same con-
clusion from the constraint Γ � c Γ ◦∆i.

Remark 3.7. The constraints on Γ given here are expressed differently from [Špa08, AMRR11],

the latter using the constraint ‖Γ1/2(Γ ◦∆i)
−1/2‖2 ≤ c and ‖(Γ ◦∆i)

1/2Γ−1/2‖2 ≤ c. It is straight-
forward to show, however, that these conditions are equivalent to c−1Γ � Γ ◦∆i � c Γ.

When the value of c is fixed, the multiplicative bound becomes a semidefinite program. Indeed,
setting W = Γ ◦ vv∗, we have:

Madv(σ) = maximize
c

1

ln(c)
maximize

W≻0
ln (Tr(Wσ))

subject to Tr(WJ) = 1

c−1W �W ◦∆i � c W for all i ∈ [n].

Thus we can view the multiplicative adversary bound as a maximization over semidefinite programs.

3.3 Output condition

Thus far, we have seen lower bounds on the problem of exact coherent state generation. To obtain a
lower bound in the bounded-error setting—coherent or non-coherent—one can minimize the exact
coherent bound over the set of valid final Gram matrices of a successful algorithm.

We will restrict our discussion to the coherent output condition. As our main results are for
functions, by showing lower bounds on the coherent state generation problems F and σf associated
with a function f , we obtain lower bounds on the query complexity of f by Claim 2.5 and Claim 2.6.

Recall that a successful coherent ǫ-error algorithm P for the set of target vectors {σx} must
satisfy ℜ(〈P(x)|(|σx〉 ⊗ |0̄〉)) ≥

√
1− ǫ. We can equivalently rephrase this as ℜ(〈P(x)|V (|σx〉 ⊗

|0̄〉)) ≥
√
1− ǫ for some unitary V . This can be done as the unitary V can be appended to the

algorithm at no extra cost, and this formulation has the advantage that it only depends on the
Gram matrix σ of the vectors {σx} and the Gram matrix σ′(x, y) = 〈P(x)|P(y)〉, rather than the
vectors themselves.

The set of σ′ satisfying this condition can be hard to deal with, so previous works have typically
relaxed this condition and used an output condition that defines a larger, simpler set. For example,
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the original Ambainis output condition minimized over σ′ satisfying ℓ∞(σ − σ′) ≤ 2
√
ǫ for error

parameter ǫ. A stronger output condition based on the γ2 norm that γ2(σ − σ′) ≤ 2
√
ǫ was

introduced in [HLŠ07]. As γ2(v) ≥ ℓ∞(v), this output condition defines a smaller set. The γ2
output condition was later shown to be approximately tight in the sense that if γ2(σ−σ′) ≤ ǫ, then
there is a unitary V such that 〈σx|V |σ′x〉 ≥ 1− 2

√
ǫ for all x [LMR+11]. While approximately tight

in the bounded-error setting, this condition is not strong enough for proving strong direct product
theorems, where we need to obtain non-trivial bounds for exponentially small success probabilities.

Here we work with the full output condition and express it in an alternative form that is easier to
handle. As a side effect, our new characterization provides an alternative proof that the γ2 output
condition is tight in the bounded-error setting, and improves the parameters given in [LMR+11].

Claim 3.8. Let {|ax〉}, {|bx〉} be two sets of vectors, and ρ, σ their corresponding Gram matrices.

max
V

min
x

ℜ(〈ax|V |bx〉) = min
u:‖u‖=1

F(ρ ◦ uu∗, σ ◦ uu∗) , (3.2)

where the maximization is taken over all unitaries V .

Proof. By writing the left hand side as a semidefinite program and taking the dual one can show
that

max
V

min
x

ℜ(〈ax|V |bx〉) = min
u:‖u‖=1

max
V

ℜ(Tr(V
∑

x

|ux|2|ax〉〈bx|)) .

Letting D(u) be a diagonal matrix with entries given by u, we can rewrite the right hand side
of this last expression as

max
V

min
x

ℜ(〈ax|V |bx〉) = min
u:‖u‖=1

‖AD(u)(BD(u))∗‖tr ,

where A =
∑

x |ax〉〈x| and B =
∑

x |bx〉〈x|. Since ρ = A∗A, σ = B∗B and ρ ◦ uu∗ = D(u)∗ρD(u),
the claim follows using

‖XY ∗‖tr = ‖(X∗X)1/2(Y ∗Y )1/2‖tr
and the definition of the fidelity F(X∗X,Y ∗Y ) = ‖(X∗X)1/2(Y ∗Y )1/2‖tr.

The following quantities then give lower bounds for ǫ-error coherent quantum state generation:

Definition 3.9 (Additive and multiplicative bounds).

Advǫ(σ) = min
ρ

Adv∗(ρ)

Madvǫ(σ) = min
ρ

Madv(ρ),

where both minimizations are over Gram matrices ρ such that

min
u:‖u‖=1

F(ρ ◦ uu∗, σ ◦ uu∗) ≥
√
1− ǫ.

In light of Claim 3.8, we can slightly improve one of the bounds in [LMR+11, Lemma 4.8],
which compares the tight output condition based on the fidelity to the output condition based on
the factorization norm γ2.
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Claim 3.10. Let {|ax〉}, {|bx〉} be two sets of vectors, and ρ, σ their corresponding Gram matri-
ces. Say that

√
1− ǫ = maxV minxℜ(〈ax|V |bx〉), where the maximization is taken over all unitary

matrices V . Then

1−
√
1− ǫ ≤ 1

2
γ2(ρ− σ) ≤

√
ǫ,

Proof. This directly follows from Claim 3.8 and the relation between the trace distance and fidelity.

1−F(ρ ◦ uu∗, σ ◦ uu∗) ≤ 1

2
‖(ρ− σ) ◦ uu∗‖tr ≤

√

1−F(ρ ◦ uu∗, σ ◦ uu∗)2 .

Note that an adversary matrix Γ yields a good zero-error multiplicative adversary bound if
Tr(Γ(σ◦vv∗)) is large. To obtain a bound for ǫ-error algorithms, we need to show that Tr(Γ(ρ◦vv∗))
remains large for any Gram matrix ρ such that F(ρ ◦ uu∗, σ ◦ uu∗) ≥

√
1− ǫ for all unit vectors u.

The following lemma will be useful.

Lemma 3.11. Let p, q be two distributions for a discrete random variable A taking values in R+
0 .

If F(p, q) ≥
√
δ, then

Eq(A) ≥ δ
[

Ep(A
−1)

]−1
.

Proof. Let pi = Prp[A = ai] and qi = Prq[A = ai]. We need to lower bound the value of the
following optimization program:

minimize
qi≥0:

∑

i qi=1

∑

i

qiai subject to F(p, q) ≥
√
δ.

Introducing vectors |u〉 = ∑

i
√
pi|i〉 and |v〉 =

∑

i
√
qi|i〉, and letting D(A) be a diagonal matrix

with the support of A along the diagonal, this can be rewritten as

minimize
|v〉:‖v‖=1

〈v|D(A)|v〉 subject to |〈u|v〉|2 ≥ δ

= minimize
ρ�0:Trρ=1

Tr[D(A)ρ] subject to Tr[|u〉〈u|ρ] ≥ δ.

This is a semidefinite program, whose dual can be written as

maximize
λ≥0,µ

λδ + µ subject to D(A) � λ|u〉〈u|+ µI.

Setting µ = 0, this is at least

δ maximize
λ≥0

λ subject to D(A) � λ|u〉〈u|.

Let |w〉 = ∑

i

√

pi/ai|i〉. The constraint is equivalent to I � λ|w〉〈w|, which in turn is equivalent
to λ‖|w〉〈w|‖ = λ‖w‖2 ≤ 1. The lemma then follows from ‖w‖2 = ∑

i pia
−1
i .

To apply this lemma, we need an upper bound on Ep[A
−1]. In our applications, we usually do

not know explicitly the distribution p, but we do know its expectation and the extremal values in
its support. The next claim allows us to upper bound Ep[A

−1] in terms of these quantities.
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Claim 3.12. Let 0 < a0 ≤ ā ≤ a1, and A be a random variable taking values in S ⊆ [a0, a1]. If
Ep(A) = ā, then Ep(A

−1) ≤ a0+a1−ā
a0a1

.

Proof. Ep(A
−1) is at most the value of the following linear program:

maximize
pa≥0

∑

a∈S
paa

−1 subject to
∑

a∈S
paa = ā,

∑

a∈S
pa = 1.

The dual program can be written as

minimize
λ,µ

λ− āµ subject to µa2 − λa+ 1 ≤ 0 ∀a ∈ S.

Since a0 ≤ a ≤ a1, the constraint is satisfied for λ = a0+a1
a0a1

and µ = 1
a0a1

, which leads to Ep(A
−1) ≤

a0+a1−ā
a0a1

.

Putting the last two claims together, we get the following corollary which is key to our strong
direct product theorem.

Corollary 3.13. Let a1 ≥ a0 > 0 and p be a distribution for a random variable A taking values in
[a0, a1]. If Ep[A] = ā and q is a distribution over (R+

0 )
k such that F(p⊗k, q) ≥

√
δk, then

Eq(Π
k
l=1Al) ≥

(

δa0a1
a0 + a1 − ā

)k

.

3.4 Comparison of the adversary bounds

Let us first prove a variation of the result by [AMRR11] that the multiplicative adversary bound is
stronger than the additive bound. The main difference with [AMRR11] is that this claim relies on
the bound Adv∗(σ) which is potentially stronger for general quantum state generation problems.

Claim 3.14 ([AMRR11]). For any ǫ > 0 and any state generation problem σ, we have

Madv(σ) ≥ (1− ǫ)Adv∗(σ).

Proof. Let Γ be an optimal witness for Adv∗(σ) = b, and v be the principal eigenvector of Γ◦(J−σ).
Note that we may assume without loss of generality that v corresponds to a positive eigenvalue of
Γ ◦ (J − σ). Let Γ′ = Γ − Tr((Γ ◦ σ)vv∗)I, and notice that Γ′ is also a witness for Adv∗(σ) = b,
satisfying Tr(Γ′vv∗) = b and Tr((Γ′ ◦ σ)vv∗) = 0. Let d = ‖Γ′‖ and note that d ≥ b. Finally, define
Γm = (I + γ(dI − Γ′))/(1 + γ(d − b)). Therefore, we have Tr(Γmvv

∗) = 1 and Tr((Γm ◦ σ)vv∗) =
(1 + γd)/(1 + γ(d− b)).

We now show that the condition c−1Γm � Γm ◦∆i � cΓm is satisfied for c = 1 + γ. We show
(1 + γ(d− b))(Γm ◦ (c∆i − J)) � 0 which implies Γm ◦ (c∆i − J) � 0 as 1 + γ(d− b) > 0.

(1 + γ(d− b))(Γm ◦ (c∆i − J)) =
(

(1 + γd)I − γΓ′
)

◦
(

(∆i − J) + γ∆i

)

= γ(I + Γ′ ◦ (J −∆i)) + γ2(dI − Γ′) ◦∆i.

From the constraint of the additive metric we know that I + Γ′ ◦ (J −∆i) � 0 for all i ∈ [n]. Also
as dI − Γ′ � 0 , taking the Hadamard product with ∆i � 0 gives (dI − Γ′) ◦∆i � 0, by Property 2

12



in Claim 2.4. Therefore, we have Γm ◦ (c∆i−J) � 0. One can show Γm ◦ (cJ −∆i) � 0 in a similar
fashion. This implies that Γm is a witness for

Madv(σ) ≥
ln

(

1+γd
1+γ(d−b)

)

ln(1 + γ)
.

The right hand side tends to b = Adv∗(σ) in the limit γ → 1, therefore, by continuity, for any ǫ > 0
there exists γ such that Madv(σ) ≥ (1− ǫ)Adv∗(σ).

Adapting results from [Špa08, AMRR11], this implies a strong direct product theorem for
Madv(σ) as long as the bound is obtained for c = 1 +Ω(1/Adv∗(σ)). Unfortunately, showing that
we can take c bounded away from 1 requires bounding d = ‖Γ′‖, which we do not know how to do
for a general state generation problem σ. In general, we can only use this statement in the limit
c → 1, in which case the direct product theorem degrades into a direct sum theorem. This is why
[AMRR11] were not able to conclude a strong direct product theorem.

We observe that for interesting cases such as F or σf , we can bound the norm of the witness
Γ′ using the following claim.

Claim 3.15. Suppose that (J − σ) ◦ (J − σ) = λ(J − σ). Then there is a matrix Γ′ witnessing

λAdv∗(σ)
γ2(J−σ) such that ‖Γ′‖ ≤ Adv∗(σ)

γ2(J−σ) and Γ′ ◦ (J − σ) = λΓ′.

Proof. Let Γ be an optimal witness for Adv∗(σ). Define Γ′ = γ2(J − σ)−1(Γ ◦ (J − σ)). By
assumption, we then have Γ′ ◦ (J − σ) = λΓ′. This is a feasible witness as

‖Γ′ ◦ (J −∆i)‖ ≤ γ2(J − σ)

γ2(J − σ)
‖Γ ◦ (J −∆i)‖ ≤ 1

by Property 1 in Claim 2.4. Furthermore, ‖Γ′‖ = γ2(J −σ)−1Adv∗(σ) and Γ′ witnesses a bound of
λ‖Γ′‖ = λγ2(J − σ)−1Adv∗(σ).

For certain state generation problems including F and σf we are thus able to obtain a quanti-
tative version of Claim 3.14.

Claim 3.16. Suppose that (J − σ) ◦ (J − σ) = λ(J − σ), and let d = γ2(J − σ)−1Adv∗(σ). Then,
for any γ > 0, there is a multiplicative witness Γm and a vector v such that

Tr(Γmvv
∗) = 1

Tr(Γm(σ ◦ vv∗)) = 1 + λγd

I � Γm � (1 + 2γd)I,

c−1Γm � Γm ◦∆i � c Γm for all i,

where c = 1 + γ. Therefore Γm satisfies the constraints of Definition 3.5 and witnesses that

Madv(σ) ≥ ln(1 + λγd)

ln(1 + γ)
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Proof. From Claim 3.15, there exists a witness Γ witnessing Adv∗(σ) ≥ λd such that ‖Γ‖ = d. Let
v be the principal eigenvector of Γ, and Γm = I + γ(dI − Γ). Note that we may assume without
loss of generality that v corresponds to a positive eigenvalue of Γ. Therefore, we have Γm � I and
Tr(Γmvv

∗) = 1. As Γ ◦ (J − σ) = λΓ, it follows that v is also a principal eigenvector of Γ ◦ (J − σ),
and the objective value achieved by Γ is Tr(Γ((J −σ) ◦ vv∗)) = λd. Thus Tr(Γ(σ ◦ vv∗)) = (1−λ)d
and Tr(Γm(σ ◦ vv∗)) = 1 + λγd. The third condition follows from −dI � Γ � dI.

The fact that the condition c−1Γm � Γm ◦∆i � cΓm is satisfied for c = 1 + γ follows by the
same argument as in the proof of Claim 3.14.

Taking γ = 1/(dλ) gives the following corollary.

Corollary 3.17. Suppose that (J − σ) ◦ (J − σ) = λ(J − σ). Then,

Madv(σ) ≥ λ
Adv∗(σ)

2
.

Note that in this statement Madv(σ) is proved with c = 1 + 1/(λ ·Adv∗(σ)), which is what we
need for the strong direct product theorem.

Now we have shown that the multiplicative bound is a constant fraction of the additive bound
in the exact case. Thus the same will be true with respect to any output condition.

4 Strong direct product theorem

We first prove the following theorem, which will lead to both the strong direct product theorem
and the XOR lemma in the boolean case.

Theorem 4.1. Let σ be a Gram matrix for a state generation problem satisfying (J−σ)◦(J−σ) =
λ(J − σ) for some λ > 0, and let d = γ2(J − σ)−1Adv∗(σ). Then for any γ > 0

Qc
1−δk(σ

⊗k) ≥
k ln

(

δ 1+2γd
1+γd(2−λ)

)

2 ln(1 + γ)
.

Proof. Let v,Γm satisfy the conditions in Claim 3.16. As a witness for σ⊗k we take Γ⊗k
m . Let us

first see that this matrix satisfies the multiplicative constraint with the same value c = 1 + γ.
We label the constraint matrices ∆p,q for σ⊗k by p ∈ [k] and q ∈ [n]. These are |D|k-by-|D|k

matrices where ∆p,q((x
1, . . . , xk), (y1, . . . , yk)) = δxp

q ,y
p
q
. In other words, ∆p,q = J⊗p−1⊗∆q⊗J⊗k−p.

Thus Γ⊗k ◦∆p,q = Γ⊗p−1
m ⊗ Γm ◦∆q ⊗ Γ⊗k−p

m . Since c−1Γm � Γm ◦∆q � c Γm for all p ∈ [n], and
obviously c−1Γm � Γm � c Γm for c > 1, we immediately have

c−1Γ⊗k
m � Γ⊗k

m ◦∆p,q � c Γ⊗k
m

for any p ∈ [k], q ∈ [n].
To lower bound the objective value we lower bound

Madv1−δk(σ
⊗k) ≥ min

ρ
Tr(Γ⊗k

m (ρ ◦ (vv∗)⊗k)),

where the minimum is over psd matrices ρ such that ρ ◦ I = I and

min
u

F(ρ ◦ uu∗, σ⊗k ◦ uu∗) ≥ δk/2.
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In particular, this will hold for u = v⊗k and we can apply Corollary 3.13 with p being the distribution
arising from measuring Γm on σ ◦ vv∗, and q the distribution arising from measuring Γ⊗k

m on
ρ◦(vv∗)⊗k. Since F(ρ◦(vv∗)⊗k, (σ◦vv∗)⊗k) ≥ δk/2, we also have F(p⊗k, q) ≥ δk/2. The parameters
in Corollary 3.13 are a0 = 1, a1 = 1 + 2γd, and ā = 1 + λγd thus

Tr(Γ⊗k
m (ρ ◦ (vv∗)⊗k)) ≥ δk

(

1 + 2γd

1 + γd(2− λ)

)k

.

and in turn

Madv1−δk(σ
⊗k) ≥

k ln(δ 1+2γd
1+γd(2−λ) )

ln(1 + γ)
.

We then obtain the following strong direct product theorem for the quantum query complexity
of any function (boolean or not).

Theorem 4.2. For any function f , any (2/3) ≤ δ ≤ 1 and any integer k > 0, we have

Q1−δk/2(f
(k)) ≥ k ln(3δ/2)

8
Adv∗(F ).

Proof. Notice that (J −F ) ◦ (J −F ) = J −F and γ2(J −F ) ≤ 2. Thus applying Theorem 4.1 with
λ = 1 and γ = 1/d, we obtain

Qc
1−δk(F

⊗k) ≥ k ln(3δ/2)

4
Adv∗(F ).

This lower bound is for computing f (k) coherently, and we obtain the lower bound for f (k) using
Claim 2.5.

5 Boolean functions

5.1 XOR Lemma

We now focus on boolean functions. Before proving the XOR lemma, we prove a strong direct
product theorem for the problem of computing a function in the phase.

Let σf = 2F − J be the Gram matrix corresponding to computing a boolean function f in the
phase.

Claim 5.1. Let d = Adv∗(F ). For any δ, γ,

Qc
1−δk(σ

⊗k
f ) ≥ k ln(δ(1 + 2γd))

2 ln(1 + γ)
.

Proof. Notice that J − σf = 2(J − F ), therefore (J − σf ) ◦ (J − σf ) = 2(J − σf ), γ2(J − σf ) = 2
and Adv∗(σf ) = 2Adv∗(F ). The claim then follows from Theorem 4.1 with λ = 2.

Setting γ = 1/(δd), we immediately obtain the strong direct product theorem for σf .
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Corollary 5.2. For any δ,

Qc
1−δk(σ

⊗k
f ) ≥ kδ

4
Adv∗(F ) .

Let ⊕◦f (k) be the function computing the parity of k independent copies of f . Since computing
⊕ ◦ f (k) in the phase is the same as generating the state σ⊗k

f , we obtain the XOR lemma from the
strong direct product theorem for σf and Claim 2.6.

Corollary 5.3 (XOR Lemma). For any boolean function f , any 0 ≤ δ ≤ 1 and any integer k > 0,

Q(1−δk/2)/2(⊕ ◦ f (k)) ≥ kδ

8
Adv∗(F ) .

5.2 Threshold and strong direct product theorems

Finally, we prove a threshold direct product theorem. This will follow from Claim 5.1 together with
the following threshold lemma [Ung09, Lemma 2].

Lemma 5.4 ([Ung09]). Let Y1, . . . , Yk ∈ {−1,+1} be random variables, −1 ≤ β ≤ 1 and C > 0 be
such that

E

[

∏

i∈S
Yi

]

≤ Cβ|S|

for all S ⊆ [k]. Let λ be such that β ≤ λ ≤ 1. Then

Pr

[

k
∑

i=1

Yi ≥ λk

]

≤ Ce−kD(1/2+λ/2||1/2+β/2).

Theorem 5.5. For any function f , any 0 ≤ δ < 1, any µ such that 1+
√
δ

2 ≤ µ ≤ 1 and any integers

k,K > 0, let Pi(x1, . . . , xk) ∈ {−1, 1} be the i-th output of a T -query algorithm for f (k), where

T ≤ kδ

K(1− δ)
Adv∗(F ),

and let X = {i ∈ [k] : Pi(x1, . . . , xk) = f(xi)}. Then,

Pr [|X| ≥ µk] ≤ e
k
K
−kD

(

µ|| 1+
√
δ

2

)

.

Proof. Let d = Adv∗(F ) and, for any i ∈ [k] and any set S ⊆ [k], let us consider the random
variables Yi = Pi(x1, . . . , xk) ·f(xi) ∈ {−1, 1} and the expectations βS = E(

∏

i∈S Yi). By definition,
we have

Q(1−βS)/2(⊕ ◦ f (|S|)) ≤ T.

Moreover, we also have from Claims 2.6 and 5.1:

Q(1−βS)/2(⊕ ◦ f (|S|)) ≥ 1

2
Qc

1−β2
S
(σ

⊗|S|
f ) ≥ ln(β2S(1 + 2γd)|S|)

4 ln(1 + γ)
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for any γ > 0, which together with the previous inequality leads to

βS ≤ (1 + γ)2T (1 + 2γd)−|S|/2.

For γ = (1− δ)/(2δd), this implies βS ≤ ek/Kδ|S|/2. Using Lemma 5.4 with β =
√
δ, C = ek/K and

λ = 2µ − 1, we then obtain

Pr

[

k
∑

i=1

Yi ≥ λk

]

≤ e
k
K
−kD

(

1+λ
2

|| 1+
√
δ

2

)

.

The theorem then follows from |X| = (k +
∑k

i=1 Yi)/2.

In the special case µ = 1, we obtain the following strong direct product theorem for boolean
functions.

Corollary 5.6. For any function f , any 0 ≤ δ < 1 and any integers k,K > 0,

Q1−(e1/K(1+
√
δ)/2)k (f

(k)) ≥ kδ

K(1− δ)
Adv∗(F ) .
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algorithms. 2010. arXiv:1011.3020.

[Raz98] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
1998.

18

http://dx.doi.org/10.1145/1132516.1132604
http://arxiv.org/abs/quant-ph/9802049
http://dx.doi.org/10.1109/SFCS.1998.743485
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://arxiv.org/abs/quant-ph/0702160
http://dx.doi.org/10.4086/toc.2009.v005a005
http://arxiv.org/abs/1005.0644
http://arxiv.org/abs/quant-ph/0702144
http://dx.doi.org/10.4086/toc.2008.v004a008
http://arxiv.org/abs/quant-ph/0611054
http://dx.doi.org/10.1145/1250790.1250867
http://arxiv.org/abs/1010.0522
http://arxiv.org/abs/quant-ph/0402123
http://dx.doi.org/10.1137/05063235X
http://arxiv.org/abs/1011.3020


[Rei09] Ben W. Reichardt. Span programs and quantum query complexity: The general adver-
sary bound is nearly tight for every Boolean function. In Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Science, pages 544–551, Atlanta, Geor-
gia, 2009. IEEE Computer Society. arXiv:0904.2759, doi:10.1109/FOCS.2009.55.

[Rei10] Ben W. Reichardt. Reflections for quantum query algorithms. 2010. arXiv:1005.1601.
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