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Limitations of Lower-Bound Methods for the Wire
Complexity of Boolean Operators

Andrew Drucker∗

Abstract: We study the circuit complexity of Boolean operators, i.e., collections of Boolean
functions defined over a common input. Our focus is the well-studied model in which arbi-
trary Boolean functions are allowed as gates, and in which a circuit’s complexity is measured
by its depth and number of wires. We show sharp limitations of several existing lower-bound
methods for this model.

First, we study an information-theoretic lower-bound method due to Cherukhin, that
yields bounds of form Ωd(n · λd−1(n)) on the number of wires needed to compute cyclic
convolutions in depth d ≥ 2. This was the first improvement over the lower bounds provided
by the well-known superconcentrator technique (for d = 2, 3 and for even d ≥ 4). Cherukhin’s
method was formalized by Jukna as a general lower-bound criterion for Boolean operators,
the “Strong Multiscale Entropy” (SME) property. It seemed plausible that this property
could imply significantly better lower bounds by an improved analysis. However, we show
that this is not the case, by exhibiting an explicit operator with the SME property that is
computable in depth d with O(n · λd−1(n)) wires, for d = 2, 3 and for even d ≥ 6.

Next, we show limitations of two simpler lower-bound criteria given by Jukna: the “en-
tropy method” for general operators, and the “pairwise-distance method” for linear oper-
ators. We show that neither method gives super-linear lower bounds for depth 3. In the
process, we obtain the first known polynomial separation between the depth-2 and depth-3
wire complexities for an explicit operator. We also continue the study (initiated by Jukna)
of the complexity of “representing” a linear operator by bounded-depth circuits, a weaker
notion than computing the operator.

∗MIT CSAIL. Email: adrucker@mit.edu. This work was supported by a DARPA YFA grant of Scott
Aaronson. Part of this work was done while visiting the Computer Science Division at UC Berkeley.
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1 Introduction

1.1 Circuits with arbitrary gates

This paper continues the study of the circuit complexity of Boolean operators, that is, func-
tions F : {0, 1}n → {0, 1}m. For ease of discussion, we will focus on the common setting
m = n. Typically we regard F = (f1, . . . , fn) as a collection of n Boolean functions. By com-
paring the circuit complexity of F to the individual complexities of the fi’s, we are asking:
how much easier is it to compute the fi’s together than to compute them separately?

A great deal of work, e.g., in [Val76, Val77, DDPW83, CFL83, CFL85, Pud94, PR94,
RS03, Che08a, Juk10a, Juk10b, JS10], has studied the circuit model in which unbounded
fanin is allowed, and in which circuit gates can apply arbitrary Boolean functions to their
inputs. In this model, we study the number of wires required in such a circuit to compute
F , a quantity we denote as s(F ).

While allowing gates to compute arbitrary Boolean functions is physically unrealistic,
there are a number of motivations to study this model. First, it arguably provides a natural
measure of the “information complexity” of Boolean operators. Second, lower bounds in
this strong circuit model are highly desirable, since they also apply to a variety of more
realistic models. Third, several natural circuit lower-bound criteria apply even to circuits
with arbitrary gates, and it seems worthwhile to understand how far techniques of this kind
can carry us. Finally, for at least one important class of Boolean operators—the F2-linear
operators, naturally computable by F2-linear circuits—it remains unclear whether allowing
arbitrary gates in our circuits even confers additional power.

Any individual Boolean function can by trivially computed with n wires in the arbitrary-
gates model, so n2 wires always suffice to compute an operator F . In general, this is not far
from optimal: random (non-linear) operators require Ω(n2) wires to compute [JS10]. Thus
random collections of Boolean functions are, in a sense, “computationally orthogonal” to
one another. It would be extremely interesting to identify an explicit function collection
with this property; however, proving a super-linear lower bound s(F ) = ω(n) for an explicit
operator F is a long-standing open problem.

This has led researchers to consider circuits with arbitrary gates but restricted depth.
Even depth-2 circuits in this model are powerful, and their study was strongly motivated
by work of Valiant [Val77] (see [Vio09]), who showed that any operator with depth-2 wire
complexity ω(n2/ ln lnn) also cannot be computed by linear-size, logarithmic-depth Boolean
circuits (of fanin 2). However, the known lower bounds for depth 2 are too weak to apply
Valiant’s results. For depth-2 circuits, the best bounds for explicit operators are of form
Ω(n3/2) [Che08a, Juk10a]. For depths 3 and 4, the best bounds are Ω(n lnn) and Ω(n ln lnn)
respectively [Che08a]; for higher constant depths the known bounds (described in Section 1.2)
are barely super-linear [DDPW83, Pud94, Che08a].

One might suspect that the difficulty of proving strong lower bounds stems from the
unrealistic strength of the circuit model being studied. A seemingly much more modest
aim is to prove lower bounds in the linear circuit model over F2. In this model, we require
the circuit gates to compute F2-linear functions; we again allow unbounded fanin. Given
some linear operator L : Fn2 → Fn2 , we let s⊕(L) denote the number of wires needed to

3



compute L with a linear circuit. Lupanov [Lup56] (and later Bublitz [Bub86]) showed that
s⊕(L) = O(n2/ lnn), and that this bound is tight if L is chosen randomly.

Unfortunately, the known lower bounds for explicit linear operators in the linear circuit
model are just as discouragingly weak as for operators in the arbitrary-gates model. More-
over, since the lower bounds quoted earlier were shown for non-linear operators, the situation
is actually slightly worse in the linear case: for example, for depth-2 circuits, the best known

lower bound for an explicit linear operator is Ω
(
n
(

lnn
ln lnn

)2
)

, proved very recently [GHK+11].

Thus, it is a major unmet challenge to develop lower-bound techniques that effectively
exploit the specific behavior of linear circuits.1 In fact, it is an open question whether s⊕(L)
can be noticeably larger than s(L), that is, whether non-linear gates can ever help us compute
linear operators more efficiently. However, we also cannot rule out the possibility that all
linear operators L are computable by depth-2, non-linear circuits of size O(n · polylog(n));
see [JS10]. (We will at least prove, in Section 6, that s(L) = Ω(n lnn) for random L.)

Since there are relatively few lower-bound methods for circuits with arbitrary gates, it is
important to understand the power and limitations of existing methods. In this paper we
focus on three such methods.

1.2 The Strong Multiscale Entropy Method

The first method we study was developed by Cherukhin [Che08a], and used to obtain the
best known explicit lower bounds on bounded-depth wire complexity. The bounds apply to
the cyclic convolution operator over Fn2 , and are of form Ωd (n · λd−1(n)) for depth d > 1.2

Here, λd(n) is an unbounded function in n, which grows ever-more-slowly as d increases; its
growth is extremely slow even for modest values of d. We have3

λ1(n) = Θ(
√
n) , λ2(n) = Θ(lnn) , λ3(n) = Θ(ln lnn) ,

and for higher d, λd(n) = λ∗d−2(n). The precise definition is in Section 3.2.
The longstanding previous best lower bounds for explicit operators (including cyclic con-

volution) were of form Ω
(
n ln2 n
ln lnn

)
for depth 2 [RTS00] and Ωd (λd(n)) for d ≥ 3 [DDPW83,

Pud94, AP94], and were based on the superconcentrator technique [Val76, Val77]. For
depths 2, 3 and for even depths d ≥ 4, Cherukhin’s work gives asymptotic improvements
on these older bounds; for odd depths d ≥ 5, his bounds match the best previous ones
from [Pud94]. Cherukhin’s lower-bound method does not apply to linear operators. (For
d ≥ 3, the best known lower bounds for computing an explicit linear operator are of form

Ωd (n · λd(n)) [Pud94, p. 215], [GHK+11]. These bounds, along with the Ω
(
n
(

lnn
ln lnn

)2
)

bound for depth 2 from [GHK+11], are valid against circuits with arbitrary gates.)

1A lower-bound criterion specific to linear circuits, based on matrix rigidity, has been given by
Valiant [Val77]. In principle this method is capable of showing strong lower bounds. However, except
for some limited success in depth 2 [Pud94], no one has proved sufficiently-strong rigidity lower bounds on
explicit F2-matrices to imply circuit lower bounds in this way. See [Lok09] for a survey of this line of work.

2Cherukhin proved his result for depths 2 and 3 earlier in [Che08b]. The paper [Che08a] contains a unified
proof for all constant depths.

3The λd(·) functions are defined differently in [Pud94, GHK+11]. We follow [RS03, Che08a, Juk12]
instead, and we have converted the bounds quoted from other papers to match our convention.
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Cherukhin’s method, developed specifically for the convolution operator, was later for-
mulated by Jukna [Juk12, Chap. 13] as a general property of operators that yields a lower
bound of form Ωd(n·λd−1(n)). This operator property is called the Strong Multiscale Entropy
(SME) property. Very roughly speaking, the SME property states that there is a large “in-
formation flow” between many subsets of the input and output coordinates of an operator.
The precise definition has two noteworthy aspects. First, the SME property requires for this
information flow to be large when measured with respect to many different partitions of the
input and output coordinates, at many different “scales” (i.e., varying the size of the input
and output blocks). Second, the measure of information flow between an input and output
block is defined with respect to a well-chosen set of restrictions of the original operator. The
SME property will be defined in Section 3.2.

The earlier superconcentrator technique works by showing (also using “information flow”-
type arguments) that for certain operators F , any circuit to compute F must have a strong
connectivity property: it must be a so-called superconcentrator graph. This allows one to
apply known lower bounds on the number of edges in bounded-depth superconcentrators
(on n input and output vertices). The power of this method is inherently limited, since
for d ≥ 3, the smallest depth-d superconcentrators have Θd(n · λd(n)) edges [DDPW83,
Pud94, AP94]. Also, there exist superconcentrators with O(n) wires [Val76, Val77]; such
graphs cannot have constant depth, but may have depth that grows extremely slowly in
n [DDPW83]. In contrast with the superconcentrator technique, the SME property has
an inherently information-theoretic definition, and the associated lower bounds are proved
by a combination of graph-theoretic techniques from earlier work [Pud94, RS03] with novel
information-theoretic techniques. For constant-depth circuits, no limitations on the method
were known prior to our work, and it seemed plausible that the SME property might imply
significantly stronger lower bounds by an improved analysis.4

1.3 Two simpler lower-bound methods

We also study two other lower bound methods, both due to Jukna. These methods are
simpler than the SME method, and have only been shown to imply lower bounds for depth
2. However, we feel they are still of interest due to their elegance, and due to the fact that
the important depth-2 case is still not well-understood.

The first of these methods is the so-called “entropy method” of Jukna [Juk10a]. Like the
SME method, this method is a complexity measure of Boolean operators whose definition is
information-theoretic: the method identifies information that passes between certain subsets
of inputs and outputs, and argues that there must be many wires to carry this information.
(In fact, the property of operators used by Jukna’s entropy method can be viewed as a
relaxation of the SME property, as will be apparent from the definitions.) Using this method,
Jukna proved bounds of form Ω(n3/2) for the number of wires required in depth-2 circuits for

4For larger depths, some limitations of the SME criterion follow from previous work. In particular, the
cyclic convolution operator over F2, which satisfies the SME property, can be computed in depth polylog(n)
using O(n log n log log n) wires. To see this, we first note that cyclic convolution of length n in F2 easily
reduces to multiplying two polynomials in F2[x], each of degree at most 2n− 1. For the latter task, we can
use an algorithm of Schönhage [Sch77] (see [Pos11]).
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multiplication of two
√
n-by-

√
n matrices over F2. Like the SME method, Jukna’s entropy

method does not yield super-linear lower bounds for computing linear operators.
The next lower-bound method we study, also due to Jukna [Juk10b] (building on work

of Alon, Karchmer, and Wigderson [AKW90]), does apply to linear operators, and indeed
is specific to these operators. Jukna showed that if the columns of a matrix A ∈ Fn×n2 have
pairwise Hamming distance Ω(n), then any depth-2 circuit (with arbitrary gates) computing
the linear transformation x → Ax must have Ω

(
n lnn
ln lnn

)
wires [Juk10b]. This lower-bound

criterion applies to a wide range of transformations, including random ones. We will refer
to this technique as the “method of pairwise distances.”

Jukna’s result is actually stronger: the Ω
(
n lnn
ln lnn

)
lower bound applies to any depth-

2 circuit that merely computes Ax correctly when x is a standard basis vector ei, for i =
1, . . . , n. Such a circuit is said to “represent” the transformation Ax (relative to the standard
basis); this is a weaker notion than computing the transformation if we allow non-linear
gates. It seems worthwhile to understand how much of the difficulty of computing a linear
transformation is “already present” in the simpler task of representing it relative to some
basis. In this paper, we will be broadly interested in the complexity of representing linear
transformations relative to various bases; we regard the method of pairwise distances as one
particular lower-bound technique within this framework.

1.4 Our contributions

1.4.1 Limitations of entropy-based methods

As our most significant (and most technically involved) result, we show that Cherukhin’s
lower-bound method, formalized by Jukna as the SME property, is inherently limited as a
lower-bound criterion for the wire complexity: there is an explicit operator with the SME
property that is computable with O(n · λd−1(n)) wires, when d = 2, 3, or when d ≥ 6
is even. For other d > 1, this gives an upper bound of O(n · λd−2(n)) wires. Thus, the
Cherukhin-Jukna analysis of the SME lower-bound criterion is essentially tight.

The operator we exhibit, called the “Dyadic Interval Replication” (DIR) operator, is
fairly natural, and can be roughly described as follows. Let n := 2k. The input is a string
x ∈ {0, 1}n, viewed as a labeling of the leafs of Tk, the complete binary tree of depth k, along
with a specified subtree T ′ of Tk. The desired output is the labeling z ∈ {0, 1}n in which
the leaf labels of T ′ in x have been “copied” to all other subtrees of the same height. This
operator is designed to create significant information flow between all parts of the input and
output; the subtree T ′ will be encoded in the input in a way that is chosen to help ensure
the SME property.

Our efficient bounded-depth circuits for the DIR operator are built by an induction on
the depth d.5 The basic idea is that, when the subtree T ′ to be copied is small, we can
“shrink” the input x, discarding most of the labelings outside of T ′. We then either perform
the replication task in a direct fashion, or, if the input has been shrunk substantially enough,
we inductively apply our circuits for lower depths. By carefully optimizing the set of sizes

5Technically, our induction gives circuits to compute a simplified variant, which we then apply to compute
the original operator.
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to which we attempt to shrink the input, we obtain the upper bounds quoted above. This
approach also shows that the DIR operator has linear -sized circuits of depth d = α(n) + 2,
where α(n) := min{d : λd(n) ≤ 1} is an extremely slowly-growing function. The idea of
attacking a problem at different “scales,” and applying induction, has appeared earlier in
efficient constructions of bounded-depth superconcentrators [DDPW83] and bounded-depth
circuits to compute good error-correcting codes [GHK+11], although the details are different
in each case.

We share with earlier authors the belief that, for the cyclic convolution operator, it should
be possible to prove significantly better lower bounds for bounded depth—say, bounds of
form Ω(n1+εd) for any constant d > 0. Our work’s message is simply that such lower bounds
will have to exploit more of the specific structure of this operator. It seems likely that this
will require powerful new ideas. We do hope, however, that our DIR example may be a
useful reference point for future work in this area.

Next, we turn to study the limits of Jukna’s entropy method. In Section 5, we give a
simple example of an operator from 2n input bits to n output bits, which is computable
by depth-3 circuits with O(n) wires but requires Ω(n3/2) wires to compute in depth 2. The
operator is a simplified variant of matrix multiplication over F2, in which one of the two
matrices is required to contain exactly one 1-entry. The lower bound follows by the same
analysis used in [Juk10a] to prove the same lower bound for ordinary matrix multiplication
over F2. Our example shows that the entropy method as formalized in [Juk10a] does not
provide a nontrivial lower-bound criterion for depth-3 circuits.

As super-linear lower bounds are already known for the depth-3 wire complexity of certain
operators, our negative result on Jukna’s entropy method should be interpreted as a note
of caution, rather than as a strong barrier to progress in circuit complexity. However,
the operator we define to prove our result is also the first known example of a polynomial
separation between depth-2 and depth-3 wire complexities—a finding of independent interest.
(A polylogarithmic complexity separation between depths 2 and 3 is shown in [GHK+11], for
the task of computing the encoding function of certain non-explicit linear codes.)

1.4.2 Results on linear transformations

In the rest of the paper, we study the complexity of representing linear transformations over
Fn2 . While Lupanov [Lup56] showed that random linear transformations require Ω(n2/ lnn)
wires to compute by linear circuits, Jukna [Juk10b] showed that, if we allow non-linear
gates, O(n lnn) wires suffice to represent any linear transformation. (He showed this for the
standard basis, but his method extends easily to all other bases.) In Section 6, we show that
relative to any fixed basis B, most linear transformations require Ω(n lnn) wires to represent
relative to B. Our result shows that Jukna’s upper bound is in general optimal. For our
proof, we use a simple trick (similar to a technique in [JS10]) to reduce arbitrary circuits to
a special, restricted class; we then apply a standard counting argument.

Recall that Jukna’s method of pairwise distances [Juk10b] implies a lower bound of
Ω
(
n lnn
ln lnn

)
on the number of wires needed to represent a large class of linear transformations

by depth-2 circuits. Jukna asked whether the “annoying” (ln lnn)−1 factor in his result
could be removed, to match the upper bound he proved for arbitrary matrices. In Section 7,
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we show that in fact it cannot: there is a matrix family {An ∈ Fn×n2 } whose columns have
pairwise distance Ω(n), for which we can compute the transformation x → Anx using a
depth-2, F2-linear circuit with O

(
n lnn
ln lnn

)
wires. Our construction involves an application of

combinatorial designs defined by polynomials over finite fields.
ln Section 8, we show that, for depth-3 circuits, the pairwise-distance method fails com-

pletely: there is a matrix family {An ∈ Fn×n2 }, whose columns have pairwise distance Ω(n),
and for which we can compute x → Anx using a depth-3 linear circuit with O (n) wires.
Recently, Gál et al. [GHK+11] proved a related result: there is a linear error-correcting code
L : {0, 1}Ω(n) → {0, 1}n with minimum distance Ω(n), whose encoding function is com-
putable by depth-3 linear circuits with O(n ln lnn) wires. They also show this is optimal for
any such code, even if arbitrary gates are allowed. In fact, they determine fairly precisely the
minimal wire complexity of computing a good error-correcting code for all depths d ≥ 2: for

depth 2, the answer is Θ
(
n
(

lnn
ln lnn

)2
)

, and for depth d ≥ 3, the answer is Θd(n · λd(n)). As

a corollary, this implies that the pairwise-distance method cannot give bounds better than
Ω(n ln lnn) for depth 3; our result sharpens this by removing the (ln lnn) factor. Compar-
ing our work with [GHK+11] also shows that, while the generator matrices of good linear
codes do have columns with high pairwise distance, the property of being a good code is an
inherently stronger lower-bound criterion than the pairwise-distance method.

Finally, in Section 9, we show another potential pitfall of circuit-size lower bounds based
on hardness of representing linear transformations. We show that for invertible linear trans-
formations L, there is always a basis B and a depth-3 circuit C of size O(n) such that C
represents L relative to B. (Non-linear gates are provably necessary in this construction.)
Thus in attempts to prove new circuit lower bounds for depths greater than 2, we must at
least take care in choosing which basis we use to analyze our linear transformation.

2 Preliminaries

Throughout the paper we use e1, . . . , en to denote the standard basis vectors in Fn2 . We freely
identify {0, 1} with F2 when it is convenient. We use ||y|| to denote the Hamming weight of
y ∈ {0, 1}n.

Given a gate g in a circuit C, the depth of g is defined as the maximal number of edges
(i.e., wires) in any directed path from an input gate to g, where each step in the path follows
a wire in C in its direction of information-flow. The depth of C is defined as the maximum
depth of any of its gates. When we construct circuits, we will refer to the depth-d gates as
being at “Level d.” Generally these circuits will not be layered; that is, wires may pass from
Level d to any Level d′ > d.

2.1 Wire complexity of operators

A (total) operator (or mapping) is any function F : {0, 1}n → {0, 1}m. A case of special
interest is when F = L is an F2-linear operator; we will also refer to linear operators as
linear transformations.
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A partial operator is a function F : D → {0, 1}m, where D ⊆ {0, 1}n. For D′ ⊆ D, let
F |D′ : D′ → {0, 1}m be the restriction of F to D.

For a total or partial operator F , define s(F ) as the minimum number of wires in any
circuit (using arbitrary Boolean functions at gates) which computes F . For d ≥ 0, define
sd(F ) as the minimum number of wires in any circuit which computes F and has depth at
most d. For linear operators we also study the quantity s⊕(L), defined as the minimum
number of wires in any F2-linear circuit that computes L. Similarly, define s⊕d (L) as the
minimum number of wires in a F2-linear circuit of depth at most d that computes L.

2.2 Representing linear operators relative to different bases

Fix a basis B for Fn2 . Say that a linear operator L : Fn2 → Fm2 is represented relative to B by
the circuit C (with n input and m output gates) if C(x) = L(x) for all x ∈ B. (Definitions
in [Juk10b, JS10] applied to the standard basis; we consider more general bases.) Note that
if C is a linear circuit that represents L relative to some basis B, then in fact C computes
L.

Let Rd(L;B) be defined as the minimum number of wires in any circuit of depth at most
d that represents L relative to B. We let R(L;B) := mind>0Rd(L;B).

2.3 A hashing lemma

The following lemma allows us to “compress” the information in an input string in a wire-
efficient way, provided the input is promised to come from a restricted subset. Item 1 of the
lemma, which is an especially simple special case, will be used in several sections, while the
slightly more technical item 2 will only be used in Section 9.

Lemma 1.

1. There is a F2-linear operator Hsta : Fn2 → F2d
√
ne

2 , computable by a depth-1 circuit with
2n wires, and such that for any two distinct standard basis vectors ei, ej ∈ Fn2 , the
image vectors Hsta(ei), Hsta(ej) are distinct and each of Hamming weight 2. (We call
Hsta a “hash mapping” for {e1, . . . , en}.)

2. Let D ⊂ {0, 1}n be of size n. There is an F2-linear operator H : Fn2 → Fd
√
ne

2 , com-
putable by a depth-1 linear circuit with O(n) wires, that satisfies H(u) 6= H(v) for any
two distinct u, v ∈ D.

Proof. (1.) For n ≥ 1, the number of size-2 subsets of [2d
√
ne] is

(
2d
√
ne

2

)
≥ n. To each

i ∈ [n], we arbitrarily assign a distinct Si ⊆ [2d
√
ne] of size 2. Let the input variable xi be

wired to the two gates ht, ht′ where Si = {t, t′}, and let each ht compute the sum mod 2 of
its inputs. Then letting Hsta(x) := (h1(x), . . . , h2d

√
ne(x)), we have

Hsta(ei) = 1Si
,

where 1Si
∈ F2d

√
ne

2 is the characteristic function of Si. Our circuit is depth-1, contains 2n
wires, and computes a mapping with the desired property.
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(2.) We will give a construction that works for sufficiently large n; this is enough to prove
the statement. Let h1, . . . , hd√ne denote the outputs of H. We define H by building the
circuit CH that computes it. Our construction is probabilistic: each input gate is connected
to 14 output gates chosen uniformly and independently at random, and each ht computes
the sum (over F2) of its inputs. (If multiple wires connect the input xi and output ht, each
wire contributes to the sum. The constant 14 is simply chosen large enough to make the
analysis work.) The total number of wires is 14n = O(n), as required.

We claim that, with probability 1− o(1) over the randomness in our construction, H is
injective on D. To see this, first fix attention to any pair u, v ∈ D with u 6= v. For clarity,
reorder the input coordinates so that un 6= vn. Condition on any wiring of the outgoing
wires from input gates x1, . . . , xn−1, and consider xn to have not yet received its assignment
of outgoing wires. This incomplete circuit defines a linear transformation H̃ : {0, 1}n →
{0, 1}d

√
ne from the inputs to the outputs.

Let t = (t(1), . . . , t(14)) ∈ [d
√
ne]14 be the 14 uniformly chosen indices of gates to which

xn is to be connected. Assume without loss of generality that un = 0, vn = 1. Then
H(u) = H̃(u), while

H(v) = H̃(v)⊕ et(1) ⊕ . . .⊕ et(14)

(here et denotes the t-th standard basis vector in Fd
√
ne

2 ). Let w := H̃(u)⊕ H̃(v); it follows
that

H(u) = H(v) ⇐⇒ et(1) ⊕ . . .⊕ et(14) = w . (1)

We will show that, regardless of the value w, the probability pw := Pr[et(1)⊕ . . .⊕ et(14) = w]

satisfies pw = o(n−2). First, pw = 0 if ||w|| > 14. There are
(d√ne

k

)
strings of Hamming

weight k, and each occurs as et(1) ⊕ . . . ⊕ et(14) with equal probability, so pw = O(n−3) if
||w|| ∈ [6, 14].

Now say ||w|| = k ≤ 5. Given an outcome of t satisfying et(1) ⊕ . . . ⊕ et(14) = w,
the cancellations which occur imply that we can find ` := (14 − k)/2 pairs of indices
{i1, j1, . . . , i`, j`} ⊆ [14], with no two indices appearing twice, such that

t(ir) = t(jr), r = 1, 2, . . . , ` . (2)

Each event [t(i) = t(j)] occurs with probability d
√
ne−1 if i 6= j. The variables t(1), . . . , t(14)

are independent, so the probability that Eq. (2) holds is O(n−`/2) = O(n−9/4), using k ≤ 5.
In each case we find pw = o(n−2), so by Eq. (1), we conclude Pr[H(u) = H(v)] = o(n−2).

By a union bound over all pairs u, v ∈ D, the probability that H fails to be injective is(
n
2

)
· o(n2) = o(1). So our construction of H has the desired property on some setting to the

randomness.

3 Entropy and circuit lower bounds

3.1 Entropy of operators

Given an operator F = (f1, . . . , fm) : {0, 1}n → {0, 1}m, define the entropy

Ent(F ) := log2 (|range(F )|)
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as the logarithm of the number of distinct outputs of F . We have two easy facts, both
from [Juk10a]:

Fact 2. Suppose we fix some assignment to a subset I ⊆ [n] of the inputs to F , and let
F ′ : {0, 1}n−|I| → {0, 1}m be the resulting operator. Then Ent(F ′) ≤ Ent(F ).

Fact 3. Suppose that there is a subset S ⊆ [n], such that from the value F (x) one can always
infer the values of all input bits xi with i ∈ S. Then, Ent(F ) ≥ |S|.

Say we are given an x ∈ {0, 1}n, a nonempty set I ⊆ [n], and an i ∈ I. Let x[I; i] denote
the vector obtained from x by setting the ith bit to 1, setting the (i′)th bit to 0 for each
i′ ∈ I \ {i}, and leaving all other bits unchanged.

Letting F (x) be as above, and fixing some output coordinate j ∈ [m], define the function

fI,i,j(x) := fj(x[I; i]) .

Now for J ⊆ [m], define a mapping FI,J : {0, 1}n−|I| → {0, 1}|I|·|J | by

FI,J := (fI,i,j)i∈I,j∈J .

Note, FI,J has as its domain the bits {x` : ` /∈ I}. (We will still write FI,J = FI,J(x),
however.) We can now state Jukna’s entropy-based lower-bound criterion:

Theorem 4. [Juk10a] Let F : {0, 1}n → {0, 1}m. Let I1, . . . , Ip be a partition of [n], and
let J1, . . . , Jp be a partition of [m] with the same number of parts. Then,

s2(F ) ≥
p∑
t=1

Ent(FIt,Jt) .

3.2 Strong Multiscale Entropy

Next we define the Strong Multiscale Entropy property, which is a generalization due to
Jukna [Juk12, Chap. 13] of a lower-bound method of Cherukhin [Che08a].

For a pair of integers N,m ≥ n0, we consider pairs (I,J ) where I is a collection of
subsets of [N ] and J is a collection of subsets of [m]. For an integer p ≤ n0, we say that
(I,J ) form an n0-partition at scale p if:

1. I consists of p disjoint sets It ⊆ [N ], with |It| = bn0/pc;

2. J consists of bn0/pc disjoint sets Jt′ ⊆ [m], with |Jt′| = p.

Say that a family {FN : {0, 1}N → {0, 1}m}N>0 has the Strong Multiscale Entropy (SME)
property, if there exists a parameter n0 = n0(N) = Ω(N) along with constants C, γ > 0 such
that, for every N and every p ∈ [C

√
n0, n0], there exists a pair (I,J ) that form an n0-

partition at scale p, satisfying

Ent(FIt,Jt′ ) ≥ γ · n0 , ∀It ∈ I, Jt′ ∈ J . (3)

11



We also define the enhanced SME property similarly to the above, except that we ask for a
pair (I,J ) satisfying Eq. (3) for all p ∈ [C, n0].

To state the lower bounds for operators with the SME property, we need some definitions.
We let g(i) denote the i-fold composition of a function g : Z → Z. Suppose g satisfies
1 ≤ g(n) < n for all n > 1; we then define g∗ : {1, 2, 3, . . .} → {0, 1, 2, . . .} by

g∗(n) := min{i : g(i)(n) ≤ 1} .

Following conventions in [RS03, Che08a], define a family of slowly-growing functions λd(n)
as follows: let

λ1(n) := b
√
nc, λ2(n) := dlog2 ne ,

and for d > 2, let
λd(n) := λ∗d−2(n) .

(Note that λ3(n) = Θ(ln lnn).)
Applying the technique of Cherukhin [Che08a], Jukna proved:

Theorem 5. [Juk12, Chap. 13] Suppose the operator family {FN : {0, 1}N → {0, 1}m} has
the Strong Multiscale Entropy property. Then for any constant d ≥ 2, any depth-d circuit to
compute FN has Ωd(N · λd−1(N)) wires.

4 Limitations of the SME lower-bound criterion

In this section we introduce an explicit Boolean operator called the “Dyadic Interval Repli-
cation” (DIR) operator, and use it to show that the Strong Multiscale Entropy property does
not imply wire complexity lower bounds substantially better than those given by Theorem 5.
We prove:

Theorem 6. There is an operator family {DIRN : {0, 1}N → {0, 1}Ω(N)}, with the enhanced
Strong Multiscale Entropy property, for which we have:

s2 (DIRN) = Θ(N3/2) = Θ (N · λ1(n)) ;

s3 (DIRN) = Θ (N lnN) = Θ (N · λ2(n)) ;

s5 (DIRN) = O (N ln lnN) = O(N · λ3(n)) ;

For even d = d(N) ≥ 6,

sd (DIRN) = O (N · λd−2(N)) = O (N · λd−1(N)) ,

and so for constant, even values d ≥ 6,

sd (DIRN) = Θd (N · λd−1(N)) .

For odd values d = d(N) ≥ 7, we have

sd (DIRN) ≤ sd−1 (DIRN) = O(N · λd−2(N)) .

12



The lower bounds come from Theorem 5. In the statements above, we are using the fact
that λd(N) = Θ (λd+1(N)) for even values d = d(N) ≥ 4.

The hidden constants in the O (·) notation above are independent of d. Thus, DIRN

is computable by a circuit with O(N) wires, of depth α(N) + 2, where α(N) := min{d :
λd(N) ≤ 1} is an extremely slowly-growing function. On the other hand, the lower bounds
from Theorem 5 hide a multiplicative constant that goes to 0 as d → ∞. So there may be
room for some further tightening of the upper or lower bounds for all values of d.

In Theorem 6, we show that DIRN satisfies not only the SME property, but also the
enhanced SME property. We do so to clarify that even this stronger property does not yield
significantly better lower bounds than those given by Theorem 5. We emphasize that our
upper bounds for the specific operator DIRN are also upper limits on the lower bounds that
follow in general from the SME property.

4.1 The DIR operator

Now we define DIRN and show it has the SME property. In our work in this section, it will
be convenient to index vectors in {0, 1}n as x = (x0, . . . , xn−1), and regard the indices as
lying in Zn. For a ∈ Zn, define

shift(x; a) := (x−a, x1−a, . . . , x(n−1)−a) ,

with index arithmetic over Zn. We also use set addition: for A,B ⊆ Zn, define A + B :=
{a+ b : a ∈ A, b ∈ B} (with addition over Zn). For i ∈ Zn, we write A+ i := A+ {i}.

We consider input lengths N = 2 · 2k + dlog2 ke, for k ≥ 1. We let n := 2k, and we regard
inputs of length N to have the form

(x, y, r) ∈ {0, 1}n+n+dlog2 ke .

We will consider r as an integer in [0, k−1].6 Define the Dyadic Interval Replication operator
DIRN(x, y, r) : {0, 1}N → {0, 1}n by the following rule:

1. If ||y|| 6= 1, output z := 0n.

2. Otherwise, let i = i(y) ∈ Zn be the unique index for which yi = 1. Output the string
z given by

zj := shift(x; i · 2r)(jmod 2r) . (4)

Let us explain this definition in words. The input vector x divides naturally into n/2r = 2k−r

substrings of length 2r. The operator DIRN chooses one of these substrings, and outputs
2k−r consecutive copies of this substring.

We can extend the definition to input lengths N ≥ 6 not of the above form, by considering
the input to be padded with irrelevant bits.

6If k is not a power of 2, some values in [0, k − 1] will have more than one encoding; this technicality
doesn’t affect our arguments.
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4.2 Establishing the SME property for DIR

Lemma 7. The family {DIRN} has the enhanced SME property.

Proof of Lemma 7. The number of irrelevant bits in the input to DIRN is not more than twice
the number of relevant bits, so for the purposes of our asymptotic analysis, we may assume
that N is of form N = 2 · 2k + dlog2 ke with k ≥ 1. Let n := 2k, and let n0 := n = Ω(N).

Let p ∈ [4, n] be given. Define collections I,J as follows. For t ∈ [p], let

It := {0, 1, . . . , bn/pc}+ (t− 1)bn/pc

be the tth consecutive interval of length bn/pc in Zn. For t′ ∈ [bn/pc], let

Jt′ := {0, 1, . . . , p}+ (t′ − 1)p

be the (t′)th interval of length p in Zn. Note that (I,J ) form an n0-partition at scale p for
the input and output lengths of DIRN .

Say we are given any t ∈ [p] and t′ ∈ [bn/pc]; we will show that Ent(DIRIt,Jt′
) = Ω(n) =

Ω(N). First, suppose that p ∈ [2`, 2`+1), where ` > 0. Then, Jt′ contains an interval Ĵ of
form

Ĵ = {0, . . . , 2`−1 − 1}+ s · 2`−1 ,

for some s ∈ [0, 2k−`+1). We now fix assignments (y∗, r∗) to part of the input to DIRIt,Jt′
:

y∗ := 0n, r∗ := `− 1 .

Define DIR∗It,Jt′ (x) := DIRIt,Jt′
(x, y∗, r∗). Using Fact 2 applied to DIRIt,Jt′

, we have Ent(DIRIt,Jt′
) ≥

Ent(DIR∗It,Jt′ ). So it will be enough to lower-bound Ent(DIR∗It,Jt′ ).
Fix any i ∈ It. Our assignment y∗ := 0n satisfies

||y∗[It; i]|| = 1 .

Thus for any x, case 2 holds in the definition of DIR(x, y∗[It; i], r
∗). Consider any j ∈ Ĵ ;

substituting values into Eq. (4), we find

(DIRN(x, y∗[It; i], r
∗))j =

(
shift(x; i · 2`−1)

)
(jmod 2`−1)

= x(jmod 2`−1)−i2`−1 .

Thus, from the output of DIR∗It,Jt(x) we can determine xa, for each a ∈ Ĵ(mod 2`−1)− 2`−1 · It.
Here, Ĵ(mod 2`−1) := {j′ ∈ [0, 2`−1 − 1] : j′ = j mod 2`−1 for some j ∈ Ĵ}. We observe that

actually Ĵ(mod 2`−1) = [0, 2`−1− 1], since Ĵ is a consecutive interval of length 2`−1. Fact 3 now
implies that

Ent(DIR∗It,Jt′ ) ≥
∣∣[0, 2`−1 − 1]− 2`−1 · It

∣∣ .
Recall that It is an interval of length bn/pc. It follows that, with arithmetic taken over the
integers Z, the set [0, 2`−1 − 1]− 2`−1 · It is an interval in Z of size 2`−1bn/pc. We conclude
that, over Zn, ∣∣[0, 2`−1 − 1]− 2`−1 · It

∣∣ = min{n, 2`−1bn/pc}
≥ min{n, (p/4) · bn/pc} = Ω(n) .

This proves Lemma 7.
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4.3 Efficient bounded-depth circuits for DIR

In this subsection, we prove the upper bounds needed to establish Theorem 6.
First we prove the upper bound for depth 2, namely s2 (DIRN) = O

(
N3/2

)
. Our circuit

construction will split into two cases, handled separately as follows: first, if 2r <
√
n, the

needed substring of x can be copied into
√
n gates on Level 1 of the circuit, and then copied

from this middle level by the output gates. On the other hand, if 2r ≥
√
n, then each output

bit can depend on at most
√
n possible bits of x.

Lemma 8. s2(DIRN) = O
(
N3/2

)
= O(N · λ1(N)).

Proof. As before, we may assume N = 2 · 2k + dlog2 ke, with n := 2k. For convenience, we
will assume further that k is even, so that

√
n = 2k/2 is an integer.

Recall that, when ||y|| = 1, the output of DIRN(x, y, r) will consist of 2k−r consecutive
copies of a substring of x of length 2r. We will design two depth-2 circuits C↓, C↑, each with
O
(
N3/2

)
wires. C↓ will compute DIRN under the promise that 2r <

√
n; C↑ will compute

DIRN provided 2r ≥
√
n. It is then easy to combine these two circuits to get a single circuit

computing DIRN under no assumption. (We apply each of C↓, C↑ to the input, merging their
corresponding output gates. Each output gate is also wired to the inputs of r, to determine
whether it should output the value of C↓ or of C↑; this takes O(n · log2 k) additional wires.)

For C↓, the basic idea is that when 2r <
√
n, fewer than

√
n bits of x actually “matter”

for the output; we can extract these bits on Level 1 and distribute them to the appropriate
outputs on Level 2. More precisely, we will have

√
n+ 1 gates (s, g1, . . . , g√n) on Level 1 of

our circuit C↓, each wired to all of (x, y, r). We set s = 1 iff ||y|| = 1. The gates g1, . . . , g√n
will simply copy the interval of size 2r <

√
n in x that must be replicated in the output of

DIRN , as determined by x, r, and i = i(y). (This interval of bits from x will be padded with√
n− 2r zeros when copied to Level 1.)

Next, each output bit zt (t ∈ Zn) is wired to all Level 1 gates and to r. We won’t give
an explicit rule, but it is clear that with these inputs, each zt can determine its correct
output to compute DIRN (assuming here that 2r <

√
n). The number of wires in C↓ is

O
(
n3/2 + n(

√
n+ log2 k)

)
= O

(
N3/2

)
, as required.

Now we build C↑. The basic idea here is that, assuming 2r ≥
√
n = 2k/2, each output bit

zt depends only on y, r, and on input bits xt′ for which t− t′ is a multiple of
√
n. Thus, after

“compactifying” the relevant information in y into
√
n bits on Level 1, each output bit can

be computed from the Level 1 gates, from r, and from
√
n bits of x, using O

(
n3/2

)
wires in

total. Details follow.
Let H(y) = Hsta(y) = (h1, . . . , h2d

√
ne) : Fn2 → F2d

√
ne

2 be the operator from item 1 of
Lemma 1 that is injective on {e1, . . . , en}. We implement H on Level 1 of our circuit with
O(n) wires, following the construction in Lemma 1. As in C↓, on Level 1 we also include a
single gate s, wired to r, that outputs 1 iff ||y|| = 1. Thus the total number of wires between
inputs and Level 1 is O(n), and there are

√
n+ 1 gates at Level 1.

Next, each output bit zt (t ∈ Zn) is wired to all Level 1 gates, to all of r, and to the
input bits (xt, xt+√n, xt+2

√
n, . . . , xt+(

√
n−1)

√
n). Thus our circuit is of depth 2, and the total

number of wires to the outputs is n · ((
√
n+ 1) + dlog2 ke+

√
n) = O(n3/2).

Rather than specifying the output rule for zt precisely, we argue that this gate has all
the information it needs to output (DIRN(x, y, r))t correctly (assuming 2r ≥

√
n). First, if

15



||y|| 6= 1, then zt can learn this and output 0 by looking at s. Otherwise, zt knows that
||y|| = 1. In this case, zt must output the bit shift(x; i · 2r)(tmod 2r) = x(tmod 2r)−i2r (here the
outer index arithmetic is over Zn). This desired bit lies among (xt, xt+2r , . . . , xt+(2k−r−1)2r),
and these are contained in the inputs to zt since 2r is a multiple of

√
n. Finally, the value

i = i(y) can be determined from H(y), because H(y) determines y when ||y|| = 1. Thus zt
can output the correct value.

Next, we will develop tools for building more-efficient circuits of higher depths. For
depth 3, we will show s3(DIRN) = O(N lnN). The plan for depth 3 is fairly simple: First,
from an input (x, y, r) satisfying ||y|| = 1, we can extract the index i = i(y) and the value
p := (i · 2r modn) in depth 1, with n log2 n wires. Then we show that there is a circuit
to compute the appropriate output given (x, i, r, p) using O(N) wires in depth 2, under the
promise that r equals some fixed value a ∈ [0, k−1]. As there are only log2 n possible values
of r, we can combine these circuits (merging their output gates) into a single circuit of total
depth 3 and with O(N lnN) wires overall.

To build our circuits for depths 3 and higher, it is useful to introduce some auxiliary
operators, which are “easier” versions of DIRN . The first such operator further restricts the
“admissible” values of r to some interval [a, b] ⊆ [0, k − 1]. Define DIR

[a,b]
N : {0, 1}2n+dlog2 ke

by

DIR
[a,b]
N (x, y, r) :=

{
DIRN(x, y, r) if r ∈ [a, b],

0n otherwise.

The second simplified operator makes the values i and p := (i · 2r modn) available in

binary. Define DIR
bin,[a,b]
N : {0, 1}n+k+dlog2 ke+k by

DIR
bin,[a,b]
N (x, i, r, p) :=

{
DIR

[a,b]
N (x, ei, r) if p = i · 2r modn,

0n otherwise.

We are abusing notation slightly, since the input size to DIR
bin,[a,b]
N is actually smaller than

N = 2n+ dlog2 ke.
The following lemma, which handles a fixed value r = a, will be useful.

Lemma 9. For any a ∈ [0, k − 1], there is a depth-2 circuit Ca, using O(n) wires, that

computes DIR
bin,[a,a]
N .

Proof. Let a be fixed. We include a single gate s on Level 1 that outputs 1 iff all of the
following hold:

1. ||y|| = 1;

2. p = i · 2r modn;

3. r = a.

Also on Level 1 of the circuit Ca, we define gates x′t, for t ∈ {0, 1, . . . , 2a−1}. Each such gate
is wired to the (k−a) most significant bits of p, and to the inputs (xt, xt+2a , . . . , xt+(2k−a−1)2a).

16



Let p̃ := p− (pmod 2a) be the value obtained by assuming that the unseen bits of p are zero.
We then set x′t := xt−p̃. Note that the needed bit of x falls within the inputs to x′t. The
number of incoming wires to this group of gates is 2a ·

(
2k−a + (k − a)

)
= O(2k) = O(n).

Finally, given an output gate zj of Ca with j ∈ Zn, we set

zj := x′(jmod 2a) ∧ s ,

so that the output gates have 2n incoming wires in total, and the entire circuit Ca is depth-2
and contains O(n) wires.

We claim that Ca has the desired behavior. To see this, fix any j ∈ Zn. First, if s = 0
then zj = 0 as needed. Next assume that s = 1, so that DIR

bin,[a,a]
N (x, i, r, p) = DIRN(x, ei, a).

We compute

zj = x′(jmod 2a) ∧ 1

= x(jmod 2a)−p̃

= x(jmod 2a)−i2a

(since s = 1 implies p̃ = p = i · 2a modn)

= (shift(x; i · 2a))(jmod 2a) ,

as needed. This proves the correctness of Ca.

Lemma 10. For any 0 ≤ b < k, s2

(
DIR

bin,[0,b]
N

)
= O (N lnN). Also, s3 (DIRN) =

O (N lnN) = O(N · λ2(N)).

Proof. Again assume that N = 2 · 2k + dlog2 ke, with n := 2k.

First we show s2

(
DIR

bin,[0,k−1]
N

)
= O (N lnN). Let (x, i, r, p) be the inputs. We apply

the circuits C0, C1, . . . , Cb from Lemma 9 to (x, i, r, p). Each such circuit Ca has n outputs,
call them z0,a, . . . , zn−1,a. For t ∈ Zn, we “collapse” zt,0, . . . , zt,b into the single output gate
zt (which takes all the inputs of zt,0, . . . , zt,b as its inputs). This gate is also wired to the
input r, and it outputs zt := zt,r.

Let C denote the circuit we have constructed. That C computes DIR
bin,[0,b]
N is immediate.

C is of depth 2 since each Ca is of depth 2, and C has O(N)·(b+1)+n·dlog2 ke = O(N lnN)
wires, since each Ca has O(N) wires and b < k = log2 n.

Next we show s3 (DIRN) = O (N lnN). In our circuit C ′ for DIRN , we will assume that
the input satisfies ||y|| = 1. As usual, it is easy to modify this circuit to handle the case
where ||y|| 6= 1.

On Level 1 of our circuit, we compute i = i(y) and p := i · 2r modn. This takes O(n lnn)
wires since i, p are k bits each. Next, we set b := k− 1 and apply our previously constructed
circuit C for DIR

bin,[0,k−1]
N to (x, i, r, p). By definition, the resulting output is DIRN(x, y, r).

Our construction of C ′ is of depth 1 + 2 = 3 and contains O(N lnN) wires.

To work with depths larger than 3, we will give a technique that allows us to “shrink”
the size of an instance of the Dyadic Interval Replication problem, discarding most of the
irrelevant bits of x, when the value r is not too large. The next lemma collects two variants
of this process.
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Lemma 11. Let N = 2 ·2k+dlog2 ke. Let 0 ≤ a ≤ b ≤ k−1 be given, and let d = d(N) ≥ 1.
Let N ′ := 2 · 2b−a+1 + dlog2(b− a+ 1)e.

1. There is a depth-(d+ 2) circuit C that computes DIR
bin,[a,b]
N ; the number of wires in C

is
2a+1 · sd

(
DIR

bin,[0,b−a]
N ′

)
+O (N) .

2. There is a depth-(d+ 3) circuit C ′ that computes DIR
[a,b]
N , and has

2a+1 · sd
(

DIR
bin,[0,b−a]
N ′

)
+O (N(k − b))

wires.

In each case the O(·) is independent of a, b, d.

Proof. (1.) We split into two cases according to whether the input p satisfies p = 0 mod 2b+1,
designing a different depth-(d+2) circuit for each case. It is easy to combine the two circuits
using O(N) additional wires. We assume in the following construction that p 6= 0 mod 2b+1,
and then sketch the other, quite similar case; this will double the number of wires, giving
the quoted bound.

On Level 1 of our circuit C (for the case p 6= 0 mod 2b+1), we include gates x′ =
(x′0, . . . , x

′
2b+1−1

), where x′t is wired to (xt, xt+2b+1 , . . . , xt+(2k−b−1−1)2b+1), and also to the
k − b− 1 most significant bits of p, that is, to pb+1, . . . , pk−1. We set

x′t := xt−p̃−2b+1 , where p̃ :=
∑k−1

`=b+1 p`2
` = p− (pmod 2b+1) .

xt−p̃−2b+1 lies among the inputs to x′t as needed. Computing x′ uses 2b+1 · (2k−b−1 + (k −
b − 1)) = O(N) wires. Also on Level 1 of C, we include a gate s, wired to (i, r, p). We set
s := 1 iff the following conditions hold: (1) p = i · 2r modn; (2) r ∈ [a, b]. Computing
s requires o(N) wires. Define the quantities i′ := imod 2b−a+1, r′ := min{r − a, b − a},
p′ := i′ · r′mod 2b−a+1, and note that (i′, r′, p′) can all be determined from (i, r, p). On Level
1 of C we also include gates computing (i′, r′, p′); this takes O(ln2N) = o(N) wires. For
u ∈ [0, 2a − 1], define x′(u) = (x′(u)0, . . . , x

′(u)2b−a+1−1) by letting

x′(u)` := x′`·2a+u .

Here we are just introducing new notation that “divides up” x′ into the subsequences
x′(0), . . . , x′(2a − 1).

Next, on Levels 2 through (d + 1) of C, for each u ∈ [0, 2a − 1] we place a copy of

an optimal (wire-minimizing) depth-d circuit computing DIR
bin,[0,b−a]
N ′ , to which we provide

the values (x′(u), i′, r′, p′) as inputs. Let z′(u) = (z′(u)0, z
′(u)1, . . . , z

′(u)2b−a+1−1) denote the
output gates of this circuit.

Finally, for t ∈ Zn, we may uniquely write t = ` · 2a + u, for some ` ∈ [0, 2k−a − 1] and
u ∈ [0, 2a − 1]. Then the output gate zt is defined by

zt := z′(u)`mod 2b−a+1 ∧ s .
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The total number of wires in our circuit C is O(N) + 2a · sd
(

DIR
bin,[0,b−a]
N ′

)
, and the depth

of C is (d + 2). Next we prove correctness. First, if s = 0 then C outputs 0n as needed, so
assume s = 1 (which implies r′ = r − a). Fix t ∈ Zn=2k , and write t = ` · 2a + u with `, u as
above. We have

zt = z′(u)`mod 2b−a+1 ∧ s
= shift(x′(u); i′ · 2r′)(`mod 2r′ )

(using that 2r
′

divides 2b−a+1)

= x′
([(`mod 2r′ )−i′2r′ ] mod 2b−a+1)·2a+u

= x′
([(`mod 2r′ )−i2r′ ] mod 2b−a+1)·2a+u

= x′((`·2a mod 2r)−i2r) mod 2b+1+u

(using (cmodm) · w = cwmod(mw))

= x′2b+1+(`·2a mod 2r)−(i2r mod 2b+1)+u

(since p, a multiple of 2r, is 6= 0 mod 2b+1, and s = 1)

= x[2b+1+((`·2a+u) mod 2r)−(i2r mod 2b+1)]−p̃−2b+1

= x(tmod 2r)−(p̃+(pmod 2b+1))

= x(tmod 2r)−p ,

as needed. Finally, the case p = 0 mod 2b+1 is handled identically except that we let x′t :=
xt−p̃. The analysis is very similar. Combining these two circuits adds a factor of 2 to our
bound on the wires, which gives the result stated in item 1 above.

(2.) As earlier, we may assume the input to our circuit satisfies ||y|| = 1, since the other
case is easily handled using O(N) additional wires in the circuit. On Level 1 of C ′, we place
gates pk−g, . . . , pk−1, each wired to all the bits of y and to r; these gates output the g most
significant bits of p := (i · 2r modn), where i = i(y) is the unique index for which yi = 1.
This takes g · (n+ dlog2 ke) = O(gN) wires. Also on Level 1, we include gates h1, . . . , h2d

√
ne

computing the operator H(y) = Hsta(y) : {0, 1}n → {0, 1}2d
√
ne from Lemma 1, item 1, that

is injective on {e1, . . . , en} and computable in depth 1 with 2n wires.
On Level 2 of C ′, we include gates which compute the quantities (i′, r′, p′) as defined in

part 1 of Lemma 11, relative to i = i(y), r, and p := i · 2r modn. These quantities can be
computed with O(lnn) gates, each wired to r and to h1, . . . , h2d

√
ne (since the value of H(y)

determines i(y)). This group of gates requires O(
√
n lnn) = o(N) input wires overall.

Also on Level 2 of C ′, we include gates x′0, . . . , x
′
2k−g−1

, defined just as in part 1 of the
Lemma, in terms of x and p. Note that we can compute these values with O(N) wires just
as in part 1, since we have computed the g most significant bits of p on Level 1.

Levels 3 through d+3 of C ′ are identical to Levels 2 through d+2 of our circuit from part
1 (i.e., the full circuit, combining the two cases we considered). Correctness is proved exactly

as before, and the number of gates is 2a+1sd

(
DIR

bin,[0,b−a]
N ′

)
+O(gN), as required.

Lemma 12. s5(DIRN) = O(N ln lnN) = O(N · λ3(N)).
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Proof. As usual we may assume ||y|| = 1, solving the other case with O(N) additional
wires. The idea for our construction is that we will handle the case when 2r ≤ n/ log2 n
by “shrinking” the input with Lemma 11, then applying our depth-2 construction from
Lemma 10. We can handle the case 2r > n/ log2 n by a more straightforward approach since
there are only ≈ log2 log2 n possible values of r in this range.

For any choice of b < k, it follows from the definition of DIRN that we can write

(DIRN)j =
(

DIR
[0,b]
N

)
j
∨
∨

b<a<k

(
DIR

[a,a]
N

)
j
, ∀j ∈ Zn . (5)

Set b as the largest value for which 2b ≤ n/ log2 n. By part 2 of Lemma 11 with a := 0,

DIR
[0,b]
N can be computed in depth 5 = 2 + 3 with 2 · s2

(
DIR

bin,[0,b]
N ′

)
+ O(N(k − b)) wires,

where N ′ = 2 · 2b+1 + dlog2(b + 1)e. By Lemma 10, s2

(
DIR

bin,[0,b]
N ′

)
= O(N ′ lnN ′) =

O(2b+1(b + 1)) = O((n/ log2 n) · log2 n) = O(n). Also, k − b ≤ log2 log2 n +O(1). Thus the

total cost to compute DIR
[0,b]
N in depth 5 is O(N ln lnN).

To compute each of DIR
[b+1,b+1]
N , . . . ,DIR

[k−1,k−1]
N , we first compute H(y), where H =

Hsta is the mapping defined within part 1 of Lemma 1; H is injective on {e1, . . . , en} and
computable in 2n wires. On Level 2, we use (H(y), r) to compute i = i(y) and p :=
i · 2r modn; this takes O(

√
n lnn) = o(n) wires. Then we use the depth-2 circuits Ca

from Lemma 9 to compute DIR
bin,[a,a]
N (x, i, r, p) for a = {b + 1, . . . , k − 1}, which give the

outputs of DIR
[b+1,b+1]
N , . . . ,DIR

[k−1,k−1]
N we need. Each Ca has O(n) wires, so the total cost

of computing DIR
[b+1,b+1]
N , . . . ,DIR

[k−1,k−1]
N is O(n(k − b)) = O(n ln lnn).

At Level 5 of our circuit, we combine the outputs of all of our subcircuits: we “merge” the

gates giving the values
(

DIR
[0,b]
N

)
j
,
(

DIR
[b+1,b+1]
N

)
j
, . . . ,

(
DIR

[k−1,k−1]
N

)
j

into a single output

gate zj computing the OR of these values. By Eq. (5), this circuit computes DIRN ; it is of
depth 5 and contains O(N ln lnN) wires. This proves the Lemma.

The next lemma, our key algorithmic tool for depths d > 5, gives an inductive con-
struction of ever-more-efficient circuits for DIR

bin,[0,k−1]
N at the cost of increasing the circuit

depth.

Lemma 13. For even values d = d(N) ≥ 2, we have sd

(
DIR

bin,[0,k−1]
N

)
= O (N · λd(N)).

The O(·) is independent of d.

Proof. Let C > 0 be chosen larger than the implicit constants in the O(·)-notation used in
all of our previous results, when the bounds are, for convenience, re-expressed in terms of the
parameter n = Θ(N); recall that in each case the bound was independent of d and the other

parameters. We claim, and prove by induction on even d ≥ 2, that sd

(
DIR

bin,[0,k−1]
N

)
<

40Cn · λd(n). We may assume in what follows that k > 20, setting C large enough that the
claim is trivially true for k ≤ 20.

For d = 2, Lemma 10 gives s2

(
DIR

bin,[0,k−1]
N

)
< Cn · λ2(n), as needed. Now let d ≥ 4 be

even, and consider the statement proved for d′ = d − 2. First, if λd−2(n) = 1, the result is
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trivial; so assume from now on that λd−2(n) ≥ 2. Define a nondecreasing integer sequence
a1, a2, . . . , aT , where

at := blog2(n/λ
(t)
d−2(n))− 20c

(recalling that g(t) denotes the t-fold composition of g). We let T := min{t : λ
(t)
d−2(n) = 1};

thus T = λ∗d−2(n) = λd(n) by the definitions. It is immediate that λd−2(m) ≥ 1 whenever

m > 1, so in fact λ
(T )
d−2(n) = 1 and all the at’s are well-defined, with aT = k−20. Also, T > 1

by our assumption λd−2(n) ≥ 2.
Let t∗ := min{t ∈ [T ] : at > 0}. As aT = k − 20, we can express the interval [0, k − 1] as

[0, k − 1] = [0, at∗ ] ∪ [at∗ , at∗+1] ∪ . . . ∪ [aT−1, aT ] ∪ [k − 19, k − 1] ,

and for j ∈ Zn we can write

(
DIR

bin,[0,k−1]
N

)
j

=
(

DIR
bin,[0,at∗ ]
N

)
j
∨
(

DIR
bin,[k−19,k−1]
N

)
j
∨

T∨
t=t∗+1

(
DIR

bin,[at−1,at]
N

)
j
. (6)

By the same technique used in Lemma 12, one can “merge” the outputs of depth-d circuits

for the operators DIR
bin,[0,at∗ ]
N , DIR

bin,[at∗+1,at∗+2]
N , . . . ,DIR

bin,[aT−1,aT ]
N , and DIR

bin,[k−19,k−1]
N to

get a depth-d circuit for DIR
bin,[0,k−1]
N .

Let ñ := 2at∗+1, Ñ := 2 · 2at∗+1 + dlog2(at∗ + 1)e. Applying Lemma 11, part 1 (with
a := 0, b := at∗), we find that

sd

(
DIR

bin,[0,at∗ ]
N

)
≤ 2 · sd−2

(
DIR

bin,[0,at∗ ]

Ñ

)
+ Cn .

If t∗ = 1, then 2at∗+1 ≤ 2−19 · (n/λd−2(n)), and, using the inductive hypothesis,

sd−2

(
DIR

bin,[0,at∗ ]

Ñ

)
≤ .005C · (n/λd−2(n)) · λd−2(n) ,

so that sd(DIR
bin,[0,at∗ ]
N ) < 1.01Cn. If t∗ > 1, then at∗−1 ≤ 0, so 2−at∗−1 ≥ 1 and

ñ = 2at∗+1 ≤ 2 · 2at∗−at∗−1 ≤ [4 · λ(t∗−1)
d−2 (n)/λ

(t∗)
d−2(n)] ,

and

sd−2

(
DIR

bin,[0,at∗ ]

Ñ

)
≤ 40C · [4 · λ(t∗−1)

d−2 (n)/λ
(t∗)
d−2(n)] · 4λd−2(λ

(t∗−1)
d−2 (n))

≤ 640Cλ
(t∗−1)
d−2 (n)

< Cn

(here using n = 2k > 220 and t∗ > 1), so that sd(DIR
bin,[0,at∗ ]
N ) ≤ 2Cn in this case.

Now consider t ∈ [t∗ + 1, T ]. By Lemma 11, part 1, we have

sd(DIR
bin,[at−1,at]
N ) ≤ 2at−1+1 · sd−2(DIR

bin,[0,at−at−1]
Nt

) + Cn ,
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where
Nt := 2 · 2at−at−1+1 + blog2(at − at−1 + 1)c .

Now 2at−at−1+1 ≤ [4·λ(t−1)
d−2 (n)/λ

(t)
d−2(n)], so, using the inductive hypothesis, sd−2(DIR

bin,[0,at−at−1]
Nt

)
is at most

40C · [4 · λ(t−1)
d−2 (n)/λ

(t)
d−2(n)] · (4λd−2(λ

(t−1)
d−2 (n)) = 640Cλ

(t−1)
d−2 (n) .

Thus, sd(DIR
bin,[at−1,at]
N ) is at most

2at−1+1C · (640λ
(t−1)
d−2 (n)) + Cn < 1.01Cn ,

using the definition of at−1.

Finally, DIR
bin,[k−19,k−1]
N can be computed with 19Cn wires, using 19 applications of

Lemma 9. Combining our cases and applying them to Eq. (6), we find that sd(DIR
bin,[0,k−1]
N )

is less than 19Cn + 2Cn + T · (1.01Cn) < 40Cn · λd(n), since T = λd(n). This extends the
induction to d, completing the proof.

Lemma 14. For even d ≥ 6, we have sd (DIRN) = O (N · λd−2(N)); the O(·) is independent
of d.

Proof. As usual, we may assume the input satisfies ||y|| = 1 (handling the case ||y|| 6= 1
separately with O(N) additional wires).

On Levels 1 and 2 of our circuit C for DIRN(x, y, r), we compute i = i(y) and p :=
i · 2r modn with O(N) wires, by applying the mapping H = Hsta from Lemma 1, part
1 to y and then applying a brute-force circuit to (H(y), r). Then we apply an optimal

depth-(d− 2) circuit for DIR
bin,[0,k−1]
N to the tuple (x, i, r, p). This yields the desired output.

The number of wires in our circuit is sd−2(DIR
bin,[0,k−1]
N ) +O(N), and by Lemma 13 this is

O(N · λd−2(N)).

By collecting the upper bounds for DIRN in Lemmas 8, 10, 12 and 14, along with the
lower bounds we get from Theorem 5 and Lemma 7, we have proved Theorem 6.

5 Limits of Jukna’s entropy method, and a separation

of depths 2 and 3

In this section, we show:

Theorem 15. There is a family of operators MM ′ : {0, 1}2n → {0, 1}n for which s2(MM ′) =
Ω(n3/2) while s3(MM ′) = O(n).

The notation MM ′ indicates that our operator is a modified (simplified) form of matrix
multiplication. The lower bound on MM ′ for depth 2 will be proved using Jukna’s entropy
method, Theorem 4. This example shows that the entropy method cannot be used to prove
super-linear wire lower bounds in depth 3.
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Proof of Theorem 15. For any integer n > 0, we can find a perfect square n′ = m2 in the
range [n, 2n]. Thus to prove our asymptotic statement, we may assume that n = m2 is itself
a perfect square.

We regard the input to MM ′ as two matrices X, Y ∈ Fm×m2 . The output is a third matrix
Z ∈ Fm×m2 . Define

MM ′(X, Y ) :=

{
X · Y if X contains exactly one 1-entry,

0 otherwise.

Claim 16. s2(MM ′) ≥ m3 = n3/2.

Proof. The argument is basically identical to the one used in [Juk10a] to show that multi-
plying two m-by-m matrices in depth 2 requires m3 wires. Letting p := m + 1, we set up
and apply Theorem 4. For t ∈ [p − 1], let It be the t-th row of input matrix X, and let Jt
be the t-th row of output matrix Z. (Thus Ip = Y, Jp = ∅, and the p-th part will contribute
nothing to the lower bound from Theorem 4.)

Fix any t ∈ [m], and values k, ` ∈ [m]2. Let X(t,k) be the matrix whose (t, k)-entry is 1
and whose other entries are 0. Note that for any Y ,(

MM ′ (X(t,k), Y
))
t,`

=
(
X(t,k) · Y

)
t,`

= Yk,` .

Thus any desired bit of the matrix Y can be recovered from a value in the t-th row of
MM ′(X, Y ) (i.e., in the output block Jt), for some setting to X which has a single 1-entry
in the t-th column. Thus Y can be determined from values of MM ′

It,Jt
(0m×m, Y ). It follows

from Facts 2 and 3 that Ent(MM ′
It,Jt

) ≥ m2, so by Theorem 4, s2(MM ′) ≥ m ·m2 = m3.

Now we show that s3(MM ′) = O(n) by giving a depth-3 circuit C for MM ′ with O(n)
wires.

First, on Level 1 we define 2d
√
ne = 2m “hash gates” h1, . . . , h2m, which compute the lin-

ear transformation Hsta(X) = (h1(X), . . . , h2m(X)) : Fn2 → F2m given by item 1 of Lemma 1,
applied to the input matrix X. Define 1(i,j) ∈ F2m

2 as the vector obtained by applying Hsta

to the input matrix X(i,j) which contains a single 1-entry in its (i, j)th position. By Lemma 1
the vectors 1(i,j) are pairwise distinct and each of Hamming weight 2.

On Level 1 we also include a “security gate” s. This gate is connected to all the variables
in X, and outputs 1 if X has exactly one 1-entry, or 0 otherwise.

Next, on Level 2 we will have a set of “row gates” r1, . . . , rm, and “column gates”
c1, . . . , cm. The row gate rk takes h1, . . . , h2m and s as inputs. We define

rk :=

{
1 if s = 1 and (h1, . . . , h2m) = 1(k,j) for some j ∈ [m],

0 otherwise.

The column gate c` takes h1, . . . , h2m, and the `-th column of Y as inputs. We define

c` :=

{
Yj,` if (h1, . . . , h2m) = 1(k,j) for some k ∈ [m],

0 otherwise.

23



Finally, for k, ` ∈ [m], on Level 3 we let Zk,` be the AND of rk and c`.
We argue that C computes MM ′. First suppose that X does not have exactly one 1-

entry. Then s = 0, so all row gates are 0 and Z = 0m×m as required. Next, suppose X has
a single 1-entry in the (i, j) position. Then we have (h1, . . . , h2m) = 1(i,j), and s = 1. It
follows that for k ∈ [m], we have rk = [k = i]. Also, (c1, . . . , cm) = (Yj,1, . . . , Yj,m). Thus for
` ∈ [m], we have Zk,` = [k = i] ∧ Yj,`. This is precisely the (k, `)-entry of MM ′(X, Y ). Thus
C computes MM ′.

Finally, we count the wires in C. The subcircuit computing Hsta(X) has O(n) gates, by
Lemma 1. The security gate has m2 = n inputs. Each row and column gate has at most
2m inputs, for a total of ≤ (2m)2 wires as input to a row or column gate. Each output Zk,`
has 2 inputs, so the total number of wires is O(n) as desired. This completes the proof of
Theorem 15.

6 Representing random linear operators

In the rest of the paper, we study the wire complexity of computing and representing linear
transformations. (Recall the notion of representing a linear operator L relative to a basis B,
and the quantities R(L;B) and Rd(L;B), from Section 2.2.)

Jukna [Juk10b] showed:

Theorem 17. [Juk10b] Every linear operator L : Fn2 → Fn2 can be represented by a depth-2
circuit of O(n lnn) wires relative to the standard basis.

An easy modification of his proof shows that for any linear operator L : Fn2 → Fn2 and any
basis B for Fn2 , R2(L;B) = O(n lnn). We show that Jukna’s upper bound is optimal up to
constant factors, by proving the following lower bound on the wire complexity of representing
random linear operators:

Theorem 18. Fix any basis B for Fn2 . Suppose a random linear operator L = LA : Fn2 → Fn2
is defined by uniformly selecting its defining matrix A ∈ Fn×n2 . With probability 1− o(1), we
have

R(L;B) >
n log2 n

5
.

Theorem 18 is implied by the following more general result about random partial opera-
tors (not necessarily linear):

Theorem 19. Let D ⊆ {0, 1}n be of size r = r(n) > 1, and assume r/ log2 r ≥ log2 n. Then
a (1− on(1)) fraction of all partial operators F : D → {0, 1}n satisfy

s(F ) >
n log2 r

5
.

The constant 1/5 is not optimal, and we do not attempt to optimize it here.

Proof of Theorem 18. L is distributed as a uniformly random partial operator from B to
{0, 1}n when we consider its restriction to inputs from a linearly independent set B. Thus
the result follows immediately from Theorem 19.
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Proof of Theorem 19. We first define an augmented circuit model. Fix a canonical ordering
D = {x1, . . . , xr} of the possible input strings. In a free-ID circuit, the input x = xi ∈ D
is given along with inputs z1, . . . , zdlog2 re which give the binary encoding of i ∈ [r]. That is,
the circuit is provided with this unique identifier of x “for free,” and these bits can be used
as inputs to any gate. As before, we can use any function at the circuit gates.

Let sfree−ID(F ) denote the minimal number of wires in any free-ID circuit which computes
F . It is clear that sfree−ID(F ) ≤ s(F ), so to prove the Theorem it is enough to prove that
sfree−ID(F ) > n log2 r/5 holds for a (1− o(1)) fraction of all F : D → {0, 1}n.

Suppose F : D → {0, 1}n satisfies sfree−ID(F ) ≤ n log2 r/5, and let C be an optimal
(wire-minimizing) circuit with at most L := bn log2 r/5c wires computing F . Besides the
input and free-ID gates, all gates with fanin zero are constant (0 or 1), so we may assume C
contains at most two such gates. Each wire is input to just one gate, so we can assume the
total number of gates of C (inclusive of inputs and free-ID gates) is at most L+n+dlog2 re+2.
We can then reintroduce useless (fanin-zero) gates as necessary to get exactly this many gates.

Next we make a simple, key observation: optimality of C implies that all gates of C have
fanin at most dlog2 re. To see this, suppose that some gate g of C has fanin greater than
dlog2 re. The value of g on any input x = xi is determined by i, and hence by the ID variables
z1, . . . , zdlog2 re. Thus we can rewire g to have the inputs z1, . . . , zdlog2 re and output the same
result. This modified circuit still computes F but has fewer wires than C, contradicting the
minimality of C.

Now we upper-bound the number (call it NL) of free-ID circuits with at most L wires,
exactly m := L + n + dlog2 re + 2 gates (including the n input gates and dlog2 re free-ID
gates), and maximum fanin dlog2 re. By our reasoning above, this will bound the number of
operators F : D → {0, 1}n for which sfree−ID(F ) ≤ n log2 r/5. Our calculations will follow
similar ones in [JS10] with minor modifications.

There are at most (log2 r + 2)m sequences of fanins (d1, . . . , dm) we may choose for our
gates, where 0 ≤ di ≤ dlog re and

∑
i∈[m] di ≤ L. For each such sequence and for i ∈ [m],

we can choose the inputs to the i-th gate in at most
(
m
di

)
≤ mdi ways, and there are at most

22di Boolean functions to assign to this gate. Thus,

NL ≤ (log2 r + 2)m
∏
i∈[m]

mdi
∏
j∈[m]

22dj

= (log2 r + 2)mm
∑

i∈[m] di2
∑

j∈[m] 2dj

≤ (log2 r + 2)mmL2
∑

j∈[m] 2dj .

Taking logs,

log2(NL) ≤ m (log2 r + 2) + L log2m+
∑
j∈[m]

2dj

≤ 2L log2 L+
∑
j∈[m]

2dj + o(L log2 L) ,

by our settings of m,L.
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In a circuit of L wires, counting tells us that fewer than n/4 gates have fanin larger than
4L/n. Since no gate has fanin larger than dlog2 re, we have∑

j∈[m]

2dj ≤ m24L/n + (n/4)2dlog2 re

≤ m24 log2 r/5 + nr/2

= nr/2 + Lr4/5 + o(Lr4/5) .

Thus,
log2(NL) ≤ 2L log2 L+

(
nr/2 + Lr4/5

)
+ o

(
L log2 L+ Lr4/5

)
. (7)

We have Lr4/5 ≤ nr4/5 log2 r/5 = o(nr). Also,

L log2 L ≤ (1/5)n log2 r log2(n log2 r/5)

< (1/5)n
[
(log2 r)(log2 n) + log2

2 r
]

≤ (1/5)n
[
r + log2

2 r
]
,

using our initial assumption r/ log2 r ≥ log2 n. Plugging into Eq. (7), we find log2(NL) <
nr/2 + 2 · nr/5 + o(nr), so for sufficiently large n, log2(NL) < .95nr and NL < 2.95nr.

Finally we compare this to the number of partial operators F : D → {0, 1}n. For each of
the r inputs inD, there are 2n possible outputs, so we have (2n)r = 2nr many partial operators
in total. Thus less than a 2−.05nr = o(1) fraction of these satisfy sfree−ID(F ) ≤ n log2 r/5.

7 Tightness of Jukna’s pairwise-distance lower bound

for depth 2

Given A ∈ Fn×m2 , let Dist(A) ∈ {0, 1 . . . , n} denote the minimal Hamming distance between
any two columns of A. Building on [AKW90], Jukna gave a lower-bound criterion for repre-
senting linear operators (proved for the case n = m, although a similar result can be given
for other cases as well):

Theorem 20. [Juk10b] For A ∈ Fn×n2 , every depth-2 circuit representing the linear trans-
formation x→ Ax relative to the standard basis must have at least Ω

(
Dist(A) · lnn

ln lnn

)
wires.

For random matrices and for some explicit examples, we have Dist(A) = Ω(n). In this
case, Theorem 20 gives a lower bound of Ω

(
n lnn
ln lnn

)
, which nearly matches the upper bound

from Theorem 17. It was left open in [Juk10b] whether the (ln lnn)−1 factor in the bound
from Theorem 20 could be removed, leading to matching upper and lower bounds for a large
class of matrices. In this section we show that this cannot be done: there are, in fact, linear
transformations with Dist(A) = Ω(n), for which the lower bound from Theorem 20 is tight.

Theorem 21. There exists a family of matrices {An ∈ Fn×n2 }n>0 for which Dist(An) = Ω(n),
and for which the linear transformation x → Anx over Fn2 can be computed by a depth-2
circuit with O

(
n lnn
ln lnn

)
wires.
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Note that the linear transformations we define can be computed, not just represented,
using O

(
n lnn
ln lnn

)
wires. Now, Theorem 18 states that random matrices A require Ω(n lnn)

wires even to represent by a circuit of any depth. Thus, the difficulty of representing random
matrices is not “fully captured” by the property that their columns have pairwise distance
Ω(n).

Our main tool to prove Theorem 21 is a combinatorial design, or set family, defined by
low-degree polynomials. Set families of this kind have seen several applications in complexity
theory, e.g., in [NW94]. The form we use is given in the following Claim. For a set X, P(X)
denotes the collection of all subsets of X.

Claim 22. For any integer D > 1, there is an prime q = O(D) and a set family S ⊂ P(F2
q),

which contains at least DD sets and satisfies:

(i) |Si| = q for all Si ∈ S, and for each a ∈ Fq we have |Si ∩ (a× Fq)| = 1;

(ii) |Si ∩ Sj| ≤ q/2 for all i 6= j.

Proof. Let q be a prime number in the range [2D, 4D], as guaranteed to exist by Bertrand’s
postulate. For each nonzero polynomial P (x) ∈ Fq[x] of degree at most D, define SP ∈ P(F2

q)
as the “graph of P ,”

SP := {(a, b) ∈ F2
q : P (a) = b} .

Let S contain the sets SP for each such polynomial. These polynomials are in 1-to-1 corre-
spondence with FD+1

q \ {0}, by the mapping which sends a nonzero polynomial to its vector
of coefficients. Thus the number of such polynomials is qD+1 − 1 ≥ DD and |S| ≥ DD.

It is clear that condition (i) holds, since each SP is a graph. For condition (ii), note that
(a, b) ∈ SP ∩ SQ exactly when P (a) = Q(a) = b, and distinct polynomials of degree at most
D agree on at most D ≤ q/2 values.

A sunflower of size k is a collection of distinct sets A1, . . . , Ak (called petals), such that
the pairwise intersections Ai ∩ Aj, for i 6= j, are all equal to some fixed set C (called the
core). The lower bound technique of Theorem 20 works by finding a large sunflower in the
incidence pattern of wires in a circuit, and using this sunflower to identify an information
bottleneck. The set family S in Lemma 22 is a prototypical example of a set family which
does not contain sunflowers of too-large size: all sunflowers in S have size at most q. Thus
it is natural to try to use such a set family to show the tightness of Theorem 20. These were
the considerations that led us to the proof of Theorem 21 given below.

Proof of Theorem 21. We are going to define the matrix An ∈ Fn×n2 , and its associated trans-
formation LAn , by defining a depth-2 linear circuit Cn that computes LAn . Our construction
will work for sufficiently large n.

For y ≥ 1, define β(y) ∈ R+ as the unique positive solution to xx = y. Direct computation

shows that for large n we have lnn
ln lnn

< β(n) ≤ (1+o(1)) lnn
ln lnn

.
Let S ⊂ P(F2

q) be the set family given by Lemma 22, with the setting D := dβ(n)e. We
have |S| ≥ DD ≥ n (by definition of β(n)), so we can assign a distinct set Si ∈ S to each
input coordinate i ∈ [n].
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Now we describe the middle level (Level 1) of our depth-2 circuit Cn. Let q = O(D) be
the prime number used in defining S. Level 1 of Cn consists of q2 gates g(a,b) identified with
the elements of F2

q. For i ∈ [n], the i-th input gate is connected to the middle gate g(a,b) for
each (a, b) ∈ Si. Each g(a,b) is the sum mod 2 of its inputs:

g(a,b) :=
⊕

i:(a,b)∈Si

xi .

For the output level, we divide the n output bits into q contiguous blocks B1, . . . , Bq,
each of size |Ba| = bn/qc; the remaining output bits will be identically zero. We re-index
the output gates in Ba as

Ba = (za,1, . . . , za,bn/qc) .

We fix a collection V = {v0, . . . , vq−1} ⊆ Fbn/qc2 , such that any pair of vectors from V
disagree on at least a 1/3 fraction of coordinates. This can clearly be achieved for large n,
since bn/qc = ω(q). We think of va as an “error-correcting encoding” of a. We determine
the output bits as

za,` :=
⊕

0≤b<q

vb` · ga,b =
⊕

0≤b<q: vb`=1

ga,b ,

where vb` is the `-th bit of vb. This completes the description of Cn.
Note that each input gate and output gate in Cn is connected to at most q = O(β(n))

middle gates, so the total number of wires is O(n · β(n)) = O
(
n lnn
ln lnn

)
, as desired. Also, Cn

is F2-linear as promised, so it defines a matrix An ∈ Fn×n2 by the relation Cn(x) ≡ Anx. We
now argue that Dist(An) = Ω(n). It is equivalent to show that for each pair i, j ∈ [n] of
distinct indices, Cn(ei) and Cn(ej) disagree on Ω(n) positions.

Fix any i ∈ [n]. For any a ∈ Fq, condition (i) of Lemma 22 tells us that the intersection
Si ∩ (a × Fq) consists of a single element of Fq; call this element bi(a). We verify that on

input vector ei we have ga,c(ei) = 1 iff c = bi(a). Thus, for 0 ≤ ` < q we have za,` = v
bi(a)
` , so

that the restriction of Cn(ei) to the output block Ba equals vbi(a).
If j ∈ [n] \ {i}, then condition (ii) of Lemma 22 tells us that for at least q/2 choices of

a we have bi(a) 6= bj(a). For such a, the restrictions Cn(ei)|Ba = vbi(a), Cn(ej)|Ba = vbj(a)

disagree on at least 1/3 of their positions. So the total number of disagreements between
Cn(ei), Cn(ej) is at least

q

2
· bn/qc

3
= Ω(n) .

This shows Dist(An) = Ω(n), completing the proof.

By an easy refinement of our argument, for any δ > 0 we can modify the matrices An
in Theorem 21 to satisfy Dist(An) ≥ (1/2 − δ)n for sufficiently large n, while the resulting
transformation x → Anx is still computable in depth 2 with Oδ

(
n lnn
ln lnn

)
wires. A remaining

question is whether we can have Dist(An) ≥ n/2−o(n), with s2(An) = O
(
n lnn
ln lnn

)
. To achieve

this we would need to change our approach, due to limits on the achievable parameters of
combinatorial designs (see [RRV02, Prop. 14]).

It is also natural to wonder whether better lower bounds would be implied by a very
strict column-distance condition on An ∈ Fn×n2 , namely Dist(An) = n/2. This may be so;
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however, in [AKW90] it was shown that the Sylvester matrices, which satisfy this condition,
can be computed using O (n · λk(n)) wires in depth d = O(k).

8 The pairwise-distance method fails for depth 3

In this section we show that Jukna’s complexity measure Dist(A) (defined in Section 7) does
not yield super-linear lower bounds for circuits of depths 3 and higher:

Theorem 23. There exists a family of matrices {An ∈ Fn×n2 }n>0 for which Dist(An) ≥
n/2 − o(n), and such that the linear transformation x → Anx over Fn2 can be computed by
an F2-linear depth-3 circuit with O (n) wires.

The work of Gál et al. [GHK+11] already implied the existence of a family {An ∈ Fn×Ω(n)
2 }

with Dist(An) = Ω(n), whose associated linear transformations are computable by depth-3
linear circuits with O(n ln lnn) wires.

Proof of Theorem 23. We may assume, by padding if necessary, that the input length n is a
perfect square, n = m2. We will define An by defining the circuit Cn that computes it. Let
H = Hsta : Fn2 → F2m

2 be the mapping given by item 1 of Lemma 1, with associated circuit
CH . Let m′ := 2m. We let the outputs h1, . . . , hm′ of H occupy Level 1 of Cn, and connect
them to the inputs according to CH . Thus for ei ∈ E, the gates of Cn’s first level compute
H(ei), and the number of wires used for the first level is O(n).

Level 2 will also consist of m′ gates, call them F = (f1, . . . , fm′). Each fi will be connected
to a uniformly random subset of {h1, . . . , hm′}, and will compute the sum over F2 of its inputs.
This requires at most O(m2) = O(n) wires.

Finally, Level 3 consists of m′ blocks of outputs, with each i-th block Bi of size m/2. For
i ∈ [m′], each gate in Bi simply outputs fi. Thus Level 3 requires O(n) wires, and the circuit
uses O(n) wires in total. Also, Cn is an F2-linear circuit as promised, since CH is linear.

We now show that Cn computes a transformation with the desired properties, with prob-
ability 1 − o(1) over our random choices. The m′ gates on Level 2, considered as a linear
transformation over the m′ Level 1 gates, compute a uniformly random linear transformation
from Fm′2 to itself; call this transformation F̃ .

Fix any pair i, j ∈ [n] with i 6= j. Now, as distinct nonzero vectors in Fm′2 , the pair

(H(ei), H(ej)) map to uniform, independent images under F̃ . Letting ∆(·, ·) denote Ham-
ming distance, Chernoff-Hoeffding bounds imply that for α > 0,

Pr
[
∆
(
F̃ (H(ei)), F̃ (H(ej))

)
< m′/2− α

√
m′ lnm′

]
= exp

(
−Ω(α2 lnm′)

)
= o(n−2) ,

if α is a sufficiently large constant. By a union bound, with probability 1 − o(1) we have

that ∆
(
F̃ (H(ei)), F̃ (H(ej)

)
≥ m′/2 − O

(√
m′ lnm′

)
= m − o(m) for all i, j ∈ [n], i 6= j.

Note that by our definition of the output gates of Cn,

∆(Cn(ei), Cn(ej)) = (m/2) ·∆
(
F̃ (H(ei)), F̃ (H(ej)

)
,

so with high probability, ∆(Cn(ei), Cn(ej)) ≥ n/2− o(n) for all i, j ∈ [n], i 6= j. This proves
Theorem 23.
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9 Easy bases for representing linear operators

For a linear transformation L, recall the quantities Rd(L;B) and R(L;B) from Section 2.
Since computing a transformation is a stronger requirement than representing the transfor-
mation, we have

sd(L) ≥ max
B:B a basis for Fn

2

Rd(L;B) .

It is natural to wonder: how close are the left-hand and right-hand sides above? Note
that for a random L : Fn2 → Fn2 , we have s⊕(L) = Ω(n2/ lnn), by a standard counting
argument. Following Jukna and Schnitger [JS10], we suspect that also s(L) = Ω(n2/ lnn)

for random L, but this is not known. It was shown by [GHK+11] that s2(L) = Ω
(
n
(

lnn
ln lnn

)2
)

if L : Fn2 → FO(n)
2 is the encoding function for a good linear error-correcting code (and we

have explicit examples of these). On the other hand, for any basis B, Jukna’s upper bound
technique from Theorem 17 shows that R2(L;B) = O(n lnn) for L : Fn2 → Fn2 .

So lower bounds for representing a random transformation L : Fn2 → Fn2 are probably
not even close to optimal bounds for computing L; are provably lower by nearly a (lnn)
factor in some cases; and never give bounds of form ω(n lnn). However, as mentioned in
Section 1.2, the largest lower bounds on s3(L) for an explicit linear transformation L are of
form Ω (n · λ3(n)) = Ω (n ln lnn) [GHK+11], and for higher depths the bounds are weaker
still. Thus we feel that the quantities Rd(L;B) are still worth taking seriously as complexity
measures. Thinking optimistically, we may ask:

Question 24. Given L : Fn2 → Fn2 , suppose that sd(L) = Ω(n lnn). Does it follow that
Rd(L;B) = Ω(n lnn) for some basis B?

This motivates another, more general question: how do we find a good basis B for L,
one for which Rd(L;B) is nearly maximized? We don’t have an answer to this question. It
should also be noted that the lower bound techniques of [Juk10b] which yield Theorem 20
are specific to the standard basis, so proving lower bounds for representing explicit linear
transformations relative to other bases may well be harder.

However, in the present section we will show that, if we consider depth-3 circuits, there are
at least some choices for B that definitely fail to yield interesting lower bounds. Namely, we
will show that, if L : Fn2 → Fn2 is invertible, then there exists a basis B such that R3(L;B) =
O(n). A uniformly-selected matrix A ∈ Fn×n2 is invertible with Ω(1) probability [CRR90], so
this phenomenon applies to many linear transformations. Compare this with Theorem 18,
which tells us that for any fixed basis B, R(L;B) = Ω (n lnn) for random operators L.

Theorem 25. Let D ⊂ {0, 1}n be of size n, and let G : D → {0, 1}n be any partial operator
mapping D into the basis vectors {e1, . . . , en}. Then G is computable by a depth-3 circuit C
with O(n) wires.

If L : Fn2 → Fn2 is an invertible linear transformation and we setB := {L−1(e1), . . . , L−1(en)},
then B is a basis, and it follows from Theorem 25 that R3(L;B) = O(n). The circuits used
to prove Theorem 25 involve non-linear gates. This is necessary in general: any linear circuit
representing the linear transformation L relative to any basis also computes L, and most lin-
ear transformations require Θ (n2/ lnn) wires to compute by a linear circuit [Lup56, Bub86].
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Proof of Theorem 25. Assume, by padding if needed, that n is a perfect square, n = m2. Let
H be the hash mapping and CH the associated depth-1 circuit given by item 2 of Lemma 1,
where in applying Lemma 1 we let D be the domain of G. We let Level 1 consist of m gates,
and use a copy of CH to connect Levels 0 and 1. Thus, on input u ∈ D, Level 1 computes
H(u).

Level 2 of C consists of 2m gates, call them W = (w1, . . . , w2m). Each wt is wired
to every gate on Level 1. To define the behavior of these gates, first choose distinct sets
S1, . . . , Sn ⊂ [2m], each of size 2. We have

(
2m
2

)
≥ n, so we can do this (we used this idea

earlier in the proof of Lemma 1, item 1). Let vi ∈ {0, 1}2m denote the characteristic vector
of Si.

Recall that G(u) is a standard basis vector for any u ∈ D. Let i(u) be defined by the
equation

G(u) = ei(u). (8)

Define the mapping W : H(D)→ {0, 1}2m by the rule

W (H(u)) := vi(u). (9)

This can be done consistently, since H is injective on D. We leave W undefined on other
inputs. Recall that each Level 2 gate wt is wired to see every Level 1 gate, and we have no
restrictions on the functions used at gates, so we can indeed implement our choice of W .

Each output (Level 3) gate zi (for i ∈ [n]) is connected to the two gates gt, gt′ whose
indices satisfy vit = vit′ = 1. We let zi be the AND of gt and gt′ .

Consider any input u ∈ D to our circuit. By Eq. (9), the Level 2 gates collectively take
on the value vI(u). Thus for j ∈ [n], we have zi = 1 iff j = i(u). So, by Eq. (8) defining i(u),
our circuit computes G.

Finally we count the wires. There are O(n) wires between Levels 0 and 1, since CH has
O(n) wires. The number of wires between Levels 1 and 2 is m · (2m) = O(n). Each output
gate has two incoming wires, so there are O(n) wires in total.
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