
ar
X

iv
:1

30
6.

06
30

v1
 [

cs
.C

C
]

 4
 J

un
 2

01
3

Composition limits and separating examples for some Boolean

function complexity measures

Justin Gilmer∗

Department of Mathematics
Rutgers University

Piscataway, NJ, USA.
jmgilmer@math.rutgers.edu

Michael Saks†

Department of Mathematics
Rutgers University

Piscataway, NJ, USA.
saks@math.rutgers.edu

Srikanth Srinivasan‡

Department of Mathematics
IIT Bombay

Mumbai, India.
srikanth@math.iitb.ac.in

October 31, 2018

Abstract

Block sensitivity (bs(f)), certificate complexity (C(f)) and fractional certificate complexity
(C∗(f)) are three fundamental combinatorial measures of complexity of a boolean function f .
It has long been known that bs(f) ≤ C∗(f) ≤ C(f) = O(bs(f)2). We provide an infinite
family of examples for which C(f) grows quadratically in C∗(f) (and also bs(f)) giving optimal
separations between these measures. Previously the biggest separation known was C(f) =
C∗(f)log4.5

5. We also give a family of examples for which C∗(f) = Ω(bs(f)3/2).
These examples are obtained by composing boolean functions in various ways. Here the

composition f ◦ g of f with g is obtained by substituting for each variable of f a copy of
g on disjoint sets of variables. To construct and analyse these examples we systematically
investigate the behaviour under function composition of these measures and also the sensitivity
measure s(f). The measures s(f), C(f) and C∗(f) behave nicely under composition: they are
submultiplicative (where measure m is submultiplicative if m(f ◦ g) ≤ m(f)m(g)) with equality
holding under some fairly general conditions. The measure bs(f) is qualitatively different: it
is not submultiplicative. This qualitative difference was not noticed in the previous literature
and we correct some errors that appeared in previous papers. We define the composition limit
of a measure m at function f , mlim(f) to be the limit as k grows of m(f (k))1/k, where f (k) is
the iterated composition of f with itself k-times. For any function f we show that bslim(f) =
(C∗)lim(f) and characterize slim(f), (C∗)lim(f), and C lim(f) in terms of the largest eigenvalue
of a certain set of 2× 2 matrices associated with f .

∗Supported by NSF grant CCF 083727
†Supported by NSF grants CCF-083727 and CCF-1218711
‡Work partially done as a Postdoctoral researcher at DIMACS, Rutgers University.

1

http://arxiv.org/abs/1306.0630v1

1 Introduction

1.1 Measures, critical exponents and iterated limits

There is a large class of complexity measures for boolean functions that seek to quantify, for each
function f , the amount of knowledge about individual variables needed to evaluate f . These include
decision tree complexity and its randomized and quantum variants, (Fourier) degree, certificate
complexity, sensitivity, and block sensitivity. The value of such a measure is at most the number of
variables. There is a long line of research aimed at bounding one such measure in terms of another.
For measures a and b let us write a ≤r b if there are constants C1, C2 such that for every total
boolean function f , a(f) ≤ C1b(f)

r + C2. For example, the decision tree complexity of f , D(f),
is at least its degree deg(f) and thus deg ≤1 D. It is also known [Mid04] that D ≤3 deg. We say
that a is polynomially bounded by b if a ≤r b for some r > 0 and that a and b are polynomially
equivalent if each is polynomially bounded by the other. The measures mentioned above, with the
notable exception of sensitivity, are known to be polynomially equivalent.

For a function f , the decision tree complexity, degree, certificate complexity, block sensitivity
and sensitivity of f are denoted, respectively, D(f), deg(f), C(f), bs(f) and s(f). We also define
the fractional certificate complexity C∗(f) (which is within constant factors of the randomized
certificate complexity defined in [Aar08]; see Appendix A). These measures are defined in Section
2; definitions of others may be found in the survey [BdW02].

If measure a is polynomially bounded by b we define the critical exponent for b relative to a,
crit(a, b), to be the infimum r such that a ≤r b, which (essentially) gives the tightest possible
upper bound of a as a power of b. In [HKP11], there is a table giving the best known upper and
lower bounds for the critical exponents for all pairs from degree, deterministic query complexity,
certificate complexity and block sensitivity. For example it is known that crit(D,C) = 2, while for
crit(D, deg) the best bounds known are log3(6) ≤ crit(D, deg) ≤ 3. Typically, lower bounds on
crit(a, b) (implicitly) use the following fact:

Proposition 1. Let (fk : k ≥ 1) be a sequence of boolean functions for which b(fk) tends to infinity.
If log a(fk)/ log b(fk) tends to a limit s then crit(a, b) ≥ s. More generally,

crit(a, b) ≥ lim inf
log a(fk)

log b(fk)
.

The proof of this proposition is routine. Useful lower bounds on crit(a, b) are obtained by
carefully selecting the sequence (fk). One approach to choosing the sequence is to select some f1
and define fk to be the kth iterated composition of f1, which is defined as follows. If f and g are
boolean functions, respectively, on n and m variables then f ◦ g is defined on nm variables split
into n blocks of m variables and is obtained by evaluating g on each block, and then evaluating f
on the sequence of n outputs. The kth iterated composition of f is defined inductively by f (1) = f
and f (k) = f ◦f (k−1) for k ≥ 2. We say that a complexity measure a is multiplicative with respect to
function f if a(f (k)) = a(f)k for all k ≥ 1. We say that a is multiplicative if for any two functions
f and g we have a(f ◦ g) = a(f)a(g); this condition implies immediately that a is multiplicative
with respect to every function f . As a direct consequence of Proposition 1 we have:

Proposition 2. If a and b are complexity measures that are each multiplicative with respect to the
function f then crit(a, b) ≥ log a(f)/ log b(f).

2

For example, the lower bound crit(D, deg) ≥ log3 6 is obtained by applying Proposition 2 to a
specific six variable boolean function f having deg(f) = 3 and D(f) = 6 using the easy fact that
the measures deg and D are multiplicative.

For non-multiplicative measures a, b one may be able to identify specific functions f such that
a and b are each multiplicative on f which is enough to use Proposition 2. While s, C,C∗ are not
multiplicative, each is multiplicative on functions f that satisfy m0(f) = m1(f) (see Section 2.4 for
definitions). However, this fails for block sensitivity, and this failure is responsible for some errors
in the literature. In [Aar08] it was proposed that a six variable function f given by Paterson (see
[BSW86]) could be used to obtain a lower bound on the critical exponent of block sensitivity relative
to certificate complexity. The function f has block sensitivity 4 and certificate complexity 5 and in
fact satisfies bsx(f) = 4 and Cx(f) = 5 for all inputs x. This was used to deduce that both block
sensitivity and certificate complexity are multiplicative on f , and therefore crit(C, bs) ≤ log4 5.
It turns out, however, that block sensitivity is not multiplicative with respect to f . In this case,
bs(f (m))1/m tends to 4.5 rather than 4 and so the resulting lower bound on crit(C∗, bs) is log4.5(5)
rather than log4 5.

Proposition 2 can be extended to the case that a and b are not necessarily multiplicative on f .
Given any measure a we can define a new measure alim, called the composition limit of a, where
alim(f) = lim inf a(f (k))1/k. If a is multiplicative on f then alim(f) = a(f). Applying Proposition
1 yields the following extension of Proposition 2:

Proposition 3. Suppose a and b are complexity measures and f is a boolean function for which
blim(f) > 1. Then crit(a, b) ≥ log alim(f)/ log blim(f).

To apply this proposition, we need to analyse alim(f) and blim(f).

1.2 The contributions of this paper

In this paper we analyse the behaviour of certificate complexity, fractional certificate complexity,
sensitivity and block sensitivity under composition. This enables us to give characterizations of the
composition limits slim, C lim, (C∗)lim and bslim. We also obtain new lower bounds on crit(C, bs),
crit(C,C∗) and crit(C∗, bs); in the first two cases the new lower bounds are tight.

The paper is organized as follows.

• In Section 2 we give various definitions and technical preliminaries. We introduce a new
notion of an assemblage, which provides a common abstraction for the objects underlying the
measures s(f), C(f), bs(f), and C∗(f).

• In Section 3, we characterize the composition limit of s(f), C(f) and C∗(f). For m ∈
{s(f), C(f), C∗(f)}, we always have min{m0(f),m1(f)} ≤ mlim(f) ≤ m(f). We express the
composition limit as the minimum over a certain family of 2 by 2 matrices (determined by
the function f and the complexity measure) of the largest eigenvalue of the matrix.

• In Section 4, we consider the composition limit of block sensitivity. We prove Theorem 22
which says that for any boolean function f , the composition limit of bs(f) is equal to the
composition limit of C∗(f).

• In Section 4.3, we discuss the previously mentioned example from [BSW86] and correct the
analysis of bslim(f).

3

• In Section 5, we give improved separations between block sensitivity and fractional block
sensitivity, and between block sensitivity and certificate complexity. We present two distinct
examples that give the tight lower bounds crit(C,C∗) ≥ 2 and crit(C, bs) ≥ 2 and an example
that shows crit(C∗, bs) ≥ 3/2.

• In Appendix A we prove that fractional certificate complexity is within a constant factor of
the randomized certificate complexity defined in [Aar08].

Independently, Tal ([Tal12, Tal13]) proved results that have some overlap with our work. He
showed that bs(f) is not submultiplicative and proved that (C∗)lim(f) = bslim(f). He also observed
the submultiplicativity of the measures C(f), C∗(f), and s(f). Finally, he showed a lower bound
on crit(C,C∗) of log(26)/ log(17), which we improve here to the optimal constant 2.

2 Preliminaries

2.1 Combinatorial objects over an index set I

Let I be an arbitrary finite set, called the index set. We will be considering a large number of
mathematical objects built relative to I.

• A map from I to the nonnegative reals is called a weight function over I. A weight function
is said to be [0, 1]-valued (respectively integral, boolean) if all weights lie in [0, 1] (respectively
Z, {0, 1}). A boolean weight function w corresponds naturally to the subset w−1(1). For any
weight function w over I and J ⊆ I we write w(J) for

∑
j∈J w(j) and |w| for w(I).

• A weight function family over I is a set of weight functions over I. The family is [0, 1]-valued
(respectively integral, boolean) if weight functions in the family have this property. A boolean
weight function family corresponds in the obvious way to a collection of subsets (hypergraph)
on I. We will use the terms hypergraph and boolean weight function family interchangeably.

• A boolean assignment over I or, simply, an assignment is a map from I to {0, 1}.

• A boolean function over I is a map from assignments over I to {0, 1}.

We now introduce a few non-standard notions:

• A selector is a function on domain {0, 1}. We typically denote selectors by vector notation
~α = (α0, α1).

• An assignment selector is a selector ~α = (α0, α1) where α0 and α1 are boolean assignments
over I.

• An assignment selector ~α is f -compatible for a boolean function f provided that f(α0) = 0
and f(α1) = 1.

• A weight function selector is a selector ~w = (w0, w1) where w0 and w1 are weight functions
over I.

4

2.2 Packing and covering in hypergraphs

In the previous section we introduced both hypergraphs over I and weight functions over I. We
will also need to consider weight functions whose domain is H (rather than I). For a hypergraph
H on I, we have the following (fairly standard) definitions:

• For a weight function w on I, a fractional w-packing of H is a weight function λ on H with
the property that for each i ∈ I the sum of λ(E) over all E containing i is at most w(i). If
we omit the word fractional then λ is assumed to be integer valued. Given M ∈ N, an M -fold
packing of H is an integral w-packing for the constant weight function w(·) ≡ M . Thus a
1-fold packing corresponds to a collection of pairwise disjoint edges of H, and is called simply
a packing. The weight of a (fractional) packing λ, denoted |λ| is the sum of λ(E) over all
E ∈ H.

• A fractional hitting set for H is a weight function β on I satisfying β(E) ≥ 1 for all E ∈ H.
If “fractional” is omitted then β is assumed to be boolean and so corresponds to a subset S
of I that meets every edge.

• ν(H), νw(H), νM(H) and ν∗(H) denote the maximum weight (size) of a packing of H, the
maximum size of a w-packing of H, the maximum size of an M -fold packing of H, and the
maximum weight of a fractional packing of H respectively.

• τ(H) and τ∗(H) denote the size of the smallest hitting set of H and the minimum weight of
a fractional hitting set for H respectively.

For a hypergraph H we denote by ∂H the hypergraph consisting of those edges of H that are
minimal under inclusion. It is not hard to see that all of the definitions above for a hypergraph H
only depend on ∂H.

The following chain of relations always holds:

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H).

where the inequalities are immediate consequences of the definitions and the equality follows from
the duality theorem of linear programming.

It is also known (see [SUB11, Chapter 1]) that τ∗(H) = limM→∞ τM (H)/M = supM τM (H)/M .

2.3 Assemblages

An assemblage A over I is a map which associates each function-assignment pair (f, x) to a family
Ax(f) of weight functions over I that is compact (when viewed as a subset of RI). An important
special case is when all of the weight functions are {0, 1}-valued, in which case Ax(f) can be viewed
as a hypergraph. Some important examples of assemblages are:

• The block assemblage B. A block of f at x is a subset B of I such that f(x ⊕ B) 6= f(x)
where x⊕ B is obtained by complementing the bits of x in the positions indexed by B. For
the block assemblage B, Bx(f) is equal to the set of blocks of f at x.

• The minblock assemblage ∂B. A min-block of f at x is a block which is minimal under
containment (but not necessarily minimum size). We define ∂Bx(f) to be the set of min-
blocks of f at x.

5

• The witness assemblage W. A witness w of f at x is a hitting set for Bx(f) (equivalently, for
∂Bx(f)). For the witness assemblage W, Wx(f) is the set of witnesses of f at x. Note we
view witnesses as boolean valued weight functions over the index set of f .

• The fractional witness assemblage W∗. A fractional witness w of f at x is a fractional hitting
set for Bx(f), and W∗

x(f) is the set of all fractional witnesses for f at x. Thus a weight
function w on I belongs to W∗

x(f) if and only if:

– 0 ≤ w(i) ≤ 1 for each i ∈ I

– w(B) ≥ 1 for each B ∈ ∂Bx(f).

• The sensitivity assemblage Ψ. A sensitive index for f at x is an index i such that {i} is a
block. For the sensitivity assemblage Ψ, Ψx(f) consists of a single boolean weight function
which is 1 on the set of indices that are sensitive for f at x and 0 otherwise.

2.4 Local complexity measures

A local complexity measure m depends on a function f and an input x to the function. The value
is written mx(f) and is read as the m-complexity of f at x. Given such a local complexity measure
we define:

m0(f) = max{mx(f) : x ∈ f−1(0)}
m1(f) = max{mx(f) : x ∈ f−1(1)}
~m(f) = (m0(f),m1(f))

m(f) = max{m0(f),m1(f)}
mlim(f) = lim inf

k→∞
m(f (k))1/k

The measure m(f) is said to be induced by a local complexity measure. Each of the following
(standard) combinatorial measures of complexity of f , i.e., certificate complexity, fractional certifi-
cate complexity, sensitivity and block sensitivity, are induced by local complexity measures. The
corresponding local measures are defined in the following subsections.

Let m be induced by a local complexity measure. For a function f and an f -compatible selector
~α, we define ~m~α(f) := (mα0(f),mα1(f)). Note that ~m(f) ≥ ~mα(f) (coordinate-wise) with equality
if and only if α0 maximizes mx(f) over all x ∈ f−1(0) and α1 maximizes mx(f) over x ∈ f−1(1).
In this case we say that ~α is an m-optimal selector for f .

2.5 Assemblage-based measures

Associated to any assemblage A is a local complexity measure m = m[A] where mx(f) is equal
to the minimum of |w| over all w ∈ Ax(f). We say that this complexity measure is induced by
assemblage A. In this way we define the following local complexity measures:

• The certificate complexity of f at x, Cx(f) is the minimum of |w| over w ∈ Wx(f).

• The fractional certificate complexity of f at x, C∗(f), is the minimum of |w| over w ∈ W∗
x(f).

6

• The sensitivity of f at x, sx(f), is the number of sensitive indices of f at x which is (trivially)
the size of the set in Ψx(f).

Fix an assemblage A with associated local complexity measure m and a boolean function f .
Let ~α = (α0, α1) be an f -compatible assignment selector and let ~w = (w0, w1) be a weight function
selector. We say that (~α, ~w) form an (f,A)-compatible pair if w0 ∈ Aα0(f) and w1 ∈ Aα1(f). For
such a compatible pair, we say ~w is ~α-compatible.

If (~α, ~w) form an (f,A)-compatible pair, |w0| = mα0(f), and |w1| = mα1(f), then we say ~w is
an m-optimal selector for f at ~α.

2.6 Block sensitivity and its variants

Next we define some local complexity measures related to packings of blocks:

• bsx(f), the block sensitivity of f at x, is ν(Bx(f)), the size of the maximum packing of blocks.

• bs∗x(f), the fractional block sensitivity of f at x, is ν∗(Bx(f)), the weight of the maximum
fractional packing of blocks.

• bsMx (f), the M -fold block sensitivity of f at x, where M is a positive integer, is νM(Bx(f)),
the weight of the maximum M -fold packing of blocks.

• bswx (f), the w-block sensitivity of f at x, where w is a weight function on I, is νw(Bx(f)), the
w-block sensitivity of f at x.

Applying the general inequalities for hypergraph parameters (mentioned in Section 2.2) we have:

sx(f) ≤ bsx(f) ≤ bs∗x(f) = C∗
x(f) ≤ Cx(f).

Also, we have
bs∗(f) = lim

M→∞
bsM (f)/M = sup

M
bsM(f)/M.

2.7 Compositions

We will need to define the composition of various objects over an index set. For this purpose, it is
convenient to represent an index set as the set of leaves of a rooted tree.

We define an indexed tree to be a rooted tree T with labelled edges such that for each internal
node the edges to its children have distinct labels. For a node v, we write C(v) = CT (v) for the set
of children of v and I(v) = IT (v) for the set of labels on the edges from v to C(v). It follows that,
for any node v, the sequence of edge labels along the path from the root to v uniquely identifies
v, and we identify v we this sequence. Thus the root of the tree is the empty sequence Λ, and for
each internal node v, the children of v are nodes of the form vs where s ∈ I(v). We write L(T) for
the set of leaves of T , and Int(T) for the set of internal nodes (non-leaves) of T . The set L(T) is
the index set associated with T . In what follows we switch freely between the notion of index set
and indexed tree. We also restrict attention to trees of uniform depth, that is where all leaves are
at the same distance from the root.

We now define compositions of indexed trees. If T is an indexed tree and (Tv : v ∈ L(T)) is a
family of trees indexed by L(T), then the composition T◦ = T (Tv : v ∈ L(T)) is the indexed tree

7

obtained by identifying each leaf v of T with the root of Tv. The index set L(T◦) associated with
T◦ is the set of all strings of the form vw where v is a leaf of T and w is a leaf of Tv.

Every tree T can be constructed as a composition of the star from the root, with the collection
of subtrees rooted at the children of the root. By applying this decomposition recursively, we can
build up every tree from the collection of stars corresponding to each internal vertex.

In the special case that all Tv are the same tree T ′, we say the composition is uniform and
write it as T ◦ T ′. This composition clearly forms an associative operation on indexed trees so
that the notation T1 ◦ · · · ◦ Tk is well defined. The leaf set of T1 ◦ · · · ◦ Tk consists of sequences
v1, . . . , vk where vi is a leaf of Ti. Such trees may be thought of as representations of product sets
I1 × I2 × · · · × Ik. If all Ti are the same tree T , we write this composition as T (k), which is the
k-wise iterated composition of T .

2.7.1 Compositions of various objects

With the framework of indexed trees, we now define notions of compositions for various types of
objects over index sets. For an appropriate object type τ the form of the composition is the same.
Every object of type τ is defined with respect to an index set, and the index set is represented as
the leaf set of a tree. For simplicity we say that object ω is defined over T if its index set is L(T).

Let T be a tree, and let (Tv : v ∈ L(T)) be a family of trees indexed by the leaves of T . We
defined the composition of T with (Tv : v ∈ L(T)) to be the tree T◦ obtained by identifying the
roots of each Tv with the leaf v of T . Recall that L(T◦) consists of pairs vw where v ∈ L(T) and
w ∈ L(Tv).

Let τ be some type of object (such as hypergraph) over an index set. Suppose that ω is an
object of type τ over the index set L(T) and for each v ∈ L(T) let ωv be an object of type τ over
the index set L(Tv). For certain types τ we define a composition ω◦ = ω(ωv : v ∈ L(T)) over L(T◦).
Our composition operation for τ will combine these objects into an object ω◦ over index set L(T◦).

Here are compositions for some basic object types:

• Weight functions. If τ is the class of weight functions, w is a weight function on T , and for
each v ∈ L(T), wv is a weight function on L(Tv), then the composition w◦ = w(wv : v ∈ L(T))
is the weight function on L(T◦) where ω◦(vw) := ω(v)ωv(w).

• Subsets. By associating a subset of a set I with the weight function given by its characteristic
function, the composition of weight functions gives a notion of composition of subsets.

• Weight function families. Let Ω be a family of weight functions on L(T) and for each v ∈ L(T)
let Ωv be a family of weight functions over L(Tv). Then Ω◦ = Ω(Ωv : v ∈ L(T)) is the weight
function family on L(T◦) consisting of all compositions w(wv : v ∈ L(T)) where w ∈ Ω and
for each v ∈ L(T), wv ∈ Ωv.

• Hypergraphs. By viewing a hypergraph as a set of boolean weight functions, the notion of
composition of weight function families specializes to a notion of composition of hypergraphs.

• Boolean functions. Let f be a boolean function over L(T) and, for each v ∈ L(T), let fv be
a boolean function over L(Tv). Then the composition f◦ = f(fv : v ∈ L(T)) is the boolean
function defined over L(T◦) whose value on a boolean assignment over L(T◦) is computed by
defining bv for v ∈ L(T) to be fv evaluated on the subset of inputs corresponding to L(Tv)
and then evaluating f on assignment (bv : v ∈ L(T)).

8

The notions of uniform and iterated compositions are defined in the natural way. If T =
T1 ◦ · · · ◦ Tk is a uniform composition of trees and for each i ∈ [k], Ωi is an object of type τ over
L(Ti) then Ω1 ◦ · · · ◦ Ωk is an object of type τ over T . It is easy to verify that for the various
compositions we define that the operation ◦ is associative so that the uniform composition is well-
defined. We write Ω(k) for the k-wise iterated composition of Ω.

Given an arbitrary indexed tree T , a T -ensemble of objects of type τ is an indexed family
ωT = (ωv : v ∈ Int(T)) where ωv is an object of type τ over the index set I(v). We define the
composition of ωT , denoted ⊙ωT inductively: For a null tree (consisting of only a root Λ so that
L(T) = {Λ}), there is a null object of type τ . For weight functions, the null object is the weight
function mapping Λ to 1, and for boolean functions the null object is the (univariate) identity
function. For a non-null tree T , ⊙ΩT is given by ΩΛ(Ωv : v ∈ C(Λ)), which is the composition of
the object associated with the root with the collection of objects associated with the children of
the root. Unwinding this recursion gives the following alternative description of the compositions
of T -ensembles for various objects:

• Weight functions. Let wT = (wv : w ∈ Int(T)) be a T -ensemble of weight functions (so that
wv is a weight function on I(v)). We can view wv as assigning a weight to each edge coming
out of v. Then the composition ⊙wT assigns a weight to each leaf l which is given by the
product of the weights on the edges along the path from the root to l.

• Subsets. By associating a subset of a set I with the weight function given by its characteristic
function, the composition of weight functions gives a notion of composition of subsets.

• Weight function families. Let ΩT = (Ωv : v ∈ Int(T)) be a T -ensemble of weight function
families. Thus, for each v, Ωv is a set of weight functions over I(v). The composition ⊙ΩT

is the set of all weight functions of the form ⊙wT where wT is a weight function ensemble
satisfying wv ∈ Ωv for each v.

• Hypergraphs. Let HT = (Hv : v ∈ Int(T)} be a T -ensemble of hypergraphs. Thus for each
v, Hv is a hypergraph on I(v), which can be viewed as a family of boolean-valued weight
functions on I(v). The composition ⊙HT is obtained by specializing the composition of
weight function families, and is a hypergraph on L(T)

• Boolean functions. Let fT = (fv : v ∈ Int(T)) be a T -ensemble of boolean functions. The
composition ⊙fT is the function over L(T) obtained by viewing T as a circuit and each vertex
v as a gate which computes the function fv.

• Assignment selectors. This is described more easily in the context of the next subsection, so
we present it there.

2.8 Boolean labelings of trees, and compositions of assignment selectors

A boolean T -labeling for an indexed tree T is a mapping bT = (b(v) : v ∈ T) that assigns a bit to
each vertex of T . Given a boolean T -labeling bT we define bv, for an internal node v, to be the
labeling bT restricted to the children of v. Note the difference between the notation b(v), which
is a single bit, and bv, which is an assignment to C(v). Thus, any boolean T -labeling bT induces
an assignment T -ensemble (bv : v ∈ Int(T)). Also, the leaf assignment determined by bT is the
boolean assignment to the leaves obtained by restricting bT to L(T).

9

Boolean T -labelings will arise for us in two ways:

• (Bottom-up labelings) If fT = (fv : v ∈ Int(T)) is a T -ensemble of boolean functions and
α ∈ {0, 1}L(T) is a boolean assignment to the leaves of T then viewing fT as a circuit with
node v being a gate computing fv, then the evaluation of fT on input α, denoted fT (α), is a
boolean T -labeling (b(v) : v ∈ T)) where the label b(v) for a node v is defined from the leaves
upward as follows: if v is a leaf then b(v) = α(v) and if v ∈ Int(T), then having defined b(w)
for each child w of v we have b(v) = fv(bv), where as above bv is the assignment to C(v)
determined by b. We call the resulting boolean T -labeling the evaluation labeling induced by
fT and α.

• (Top-down labelings) If c ∈ {0, 1} and ~αT = (~αv : v ∈ Int(T)) is a T -ensemble of assignment
selectors, then c and ~αT induce a boolean T -labeling in the following way. Label the root
by b(r) = c. Now starting from the root apply the following procedure: Having labeled an

internal node v by b(v), use the bit b(v) to select the assignment α
b(v)
v from the assignment

selector ~αv, and then label the children of v according to α
b(v)
v . We call this the boolean T -

labeling induced by root label c and ~αT . Note that by definition the assignment T -ensemble

associated to b, (bv : v ∈ Int(T)) is given by bv = α
b(v)
v .

If we don’t specify a bit c, then the T -ensemble of assignment selectors ~αT defines a boolean
T -labeling selector ~bT = (b0T , b

1
T), where for c ∈ {0, 1}, bcT is the boolean T -labeling induced

by c and ~αT . We call this the boolean T -labeling selector induced by ~αT .

The top-down construction implicitly provides a natural notion of composition of assignment
selectors:

Composition of assignment selectors. Let ~αT = (~αv : v ∈ Int(T)) be a T -ensemble of assignment
selectors. Let ~bT be the boolean T -labeling selector induced by ~αT . If we restrict each of the
labelings ~b1T and ~b0T to L(T) we get an assignment selector over L(T). This assignment selector is
defined to be the composition of the ensemble ~αT and is denoted ~α◦ = (α0

◦, α
1
◦) = ⊙~αT .

As with compositions of other objects, we specialize composition of assignment selectors to
the case of uniform compositions, and denote a uniform composition of assignment selectors by
~α1 ◦ · · · ◦ ~αk.

Observe that the bottom-up labelings and top-down labelings fit together in the following way.
Suppose fT is a T -ensemble of boolean functions and ~αT is a T -ensemble of assignment selectors.
Suppose that for each vertex v ∈ Int(T), ~αv is fv-compatible, which we defined earlier to mean
fv(α

0
v) = 0 and fv(α

1
v) = 1. In this case we say that the ensemble ~αT is fT -compatible.

Proposition 4. Let fT be a T -ensemble of boolean functions and ~αT be a T -ensemble of assignment
selectors. Let ~bT be the boolean T -labeling selector induced (top-down) by ~αT and let ~α◦ be the
composition ⊙~αT (which was defined to be the restriction of ~bT to L(T)). If for each v ∈ Int(T),
~αv is fv compatible with fv then:

• For c ∈ {0, 1}, The (bottom-up) labeling induced by fT and αc
◦ is bcT .

• The composed assignment selector ⊙~αT is F -compatible, where F = ⊙fT is the composition
of fT .

10

Proof. For c ∈ {0, 1}, let acT be the labeling induced by fT and αc
◦. We prove that, for all v ∈ T ,

acT (v) = bcT (v). We proceed by induction on the size of the subtree rooted at v. For v ∈ L(T) we
have acT (v) = αc

◦(v) = bcT (v). For v ∈ Int(T), by the induction hypothesis, we have acT (w) = bcT (w)
for all children w of v, equivalently, we have av = bv. Now by the definition of aT we have

a(v) = fv(av) = fv(bv). On the other hand, by the definition of bT we have that bv is equal to α
b(v)
v ,

and since ~αv is compatible with fv this implies f(bv) = b(v) and so b(v) = a(v), as required.
For the second part, the composed assignment ~α◦ is (by definition) equal to ~bT restricted to

L(T), and by the first part this is the same as ~aT restricted to L(T). For each c ∈ {0, 1}, the value
of fT at acT is the value of the root in the bottom-up labeling (viewing T as a circuit with gates
(fv : v ∈ Int(T))), and this is the label given to the root by acT = bcT which is equal to c by the
definition of the top-down labeling bcT

3 The growth of various complexity measures under iterated com-

position

Our goal in this section is to understand how m(f (k)) relates to m(f) for various complexity
measures. In Section 3.1 we provide a high level discussion of how to analyse m(f (k)). To do so we
will initially state, without proofs, the lemmas which lead to the main result. We will then prove
the main theorem modulo these lemmas. Finally, in Section 3.2, we will provide all the remaining
proofs and definitions which were left out.

3.1 Analysing m(fk)

Fix an assemblage A and let m be the associated complexity measure. Informally, m(f) is high if
there is a hard input α, which means that every weight function in Aα(f) has high total weight.

Let’s start with the most general function composition, where F is the composition of a T -
ensemble fT = (fv : v ∈ Int(T)}) for an arbitrary tree T of uniform depth. Fix an input α to the
leaves of T and let (b(v) : v ∈ T) be the evaluation labeling of fT on α and (bv : v ∈ Int(T)) be the
corresponding assignment ensemble. Recall that, for each v ∈ Int(T), we have b(v) = fv(bv).

To determinemα(F) we want to determine the minimum weight of a weight function w ∈ Aα(F).
In trying to analyze this minimum, it is natural to look at weight functions which are representable
as T -compositions of weight functions as follows: For each internal node v of T select a weight
function wv that belongs to the set of weight functions Abv(fv), and take w to be the composition of
the T -ensemble (wv : v ∈ Int(T)). We say that such an ensemble is compatible with (fv : v ∈ Int(T))
and α. Our hope is that the minimum weight of a weight function in Aα(F) is attained by such
a composition. It is easy to show that this is true provided that the assemblage A satisfies the
following two properties:

1. For any weight function ensemble that is compatible with (fv : v ∈ Int(T)) and an assignment
α, its composition belongs Aα(F).

2. If w is any weight function inAα(F) then there is a weight function ensemble (wv : v ∈ Int(T))
that is compatible with (fv : v ∈ Int(T)) and α whose composition has total weight less than
that of w.

11

We call an assemblage well behaved if it satisfies (1) and (2). Summarizing the above, we have:

Proposition 5. Let m be a complexity measure associated to a well-behaved assemblage. Let
(fv : v ∈ Int(T)) be a T -ensemble of functions with composition F and let α be an input to F .
Then

mα(F) = min |w|,
where w ranges over all compositions of weight function ensembles (wv : v ∈ Int(T)) that are
compatible with (fv : v ∈ Int(T)) and α.

In section 3.2, we will prove

Lemma 6. Each of the assemblages ∂B, W, W∗ and Ψ are well-behaved.

This implies that Proposition 5 can be applied to certificate complexity, fractional certificate
complexity and sensitivity. In the remaining discussion we assume that the assemblage A is well-
behaved.

At this point, we restrict attention to F which are uniform compositions F = f1 ◦ · · · ◦ fk where
fi is a boolean function over the index set L(Ti) where Ti is an indexed star. To understand m(F)
we want to identify an input α that maximizes mα(F). Actually we’ll try to identify an assignment
selector ~α = (α0, α1) for F that is m-optimal for F , which (as defined in Section 2.4) means that
α0 maximizes mα(F) over α ∈ F−1(0) and α1 maximizes mα(F) over α ∈ F−1(1). It is natural to
speculate that we can obtain such an assignment selector ~α as a composition of assignment selectors
~α1 ◦ · · · ◦ ~αk where ~αi is an assignment selector for fi. This indeed turns out to be the case, as is
stated in the second part of the following lemma:

Lemma 7. Let f1, . . . , fk be a sequence of boolean functions and let F be their composition.

• If ~α1, . . . , ~αk are assignment selectors, where ~αi is fi-compatible, then ~α := ~α1 ◦ · · · ◦ ~αk is an
F -compatible assignment selector.

• There are assignment selectors ~α1, . . . , ~αk, where ~αi is fi-compatible, such that ~α := ~α1◦· · ·◦ ~αk

is an m-optimal selector for F .

Note that it is not the case in this lemma that each ~αi in the conclusion is m-optimal for
fi. Nevertheless, the lemma is useful because, in evaluating m(F), it is enough to consider all
assignment selectors of the form ~α1 ◦ · · · ◦ ~αk where each αi is fi-compatible.

Now consider such a composed assignment selector ~α. We want to understand mα0(F) and
mα1(F) and for this it suffices to determine the weight functions w0 ∈ Aα0(F) and w1 ∈ Aα1(F) of
minimum weight. One might hope that w0 and w1 can each be expressed as a uniform composition
of weight functions, but this need not be true. Once again we need to consider compositions of
weight function selectors rather than weight functions. There is a natural way to compose any
sequence of weight function selectors, but it is a bit complicated because it depends not only on the
sequence ~w1, . . . , ~wk but also on the associated assignment selectors ~α1, . . . , ~αk. What we end up
with is a composition operation which acts on pairs (~αi, ~wi) consisting of an assignment selector and
weight function selector for fi and produces such a pair (~α, ~w) for f . We call this an assignment-
weight selector-pair, or simply AW-selector pair. The assignment selector ~α is just the composition
of the assignment selectors ~αi as before (and does not depend on the ~wi, but ~w depends on both the

12

~αi and ~wi). Again, due to the technical nature of this construction, we delay the explicit definition
for Section 3.2. For now it is enough to note that this composition operation satisfies the following
properties (see Section 2.5 for the definition of (f,A)-compatible):

Lemma 8. Let f1, . . . , fk be a sequence of boolean functions and let F be their composition. Let
~α1, . . . , ~αk be assignment selectors such that each ~αi is fi-compatible. Then the following hold:

• For any sequence ~w1, . . . , ~wk of weight function selectors, where (~αi, ~wi) is (fi,A) compatible,
the composition (~α, ~w) := (~α1, ~w1) ◦ · · · ◦ (~αk, ~wk) is (F,A)-compatible.

• There are weight function selectors ~w1, · · · , ~wk such that the weight function ~w that comes
from the composition (~α, ~w) := (~α1, ~w1)◦· · ·◦(~αk, ~wk) is an m-optimal weight function selector
for F at ~α.

We now define the following function, which maps a sequence of AW selector-pairs to a real
number:

V ((~α1, ~w1), . . . , (~αk, ~wk)) := max{|w0|, |w1|},
where the weight function selector ~w is given by (~α, ~w) = (~α1, ~w1) ◦ · · · ◦ (~αk, ~wk). Combining
Lemmas 7 and 8 we obtain

Lemma 9. Let F = f1 ◦ · · · ◦ fk. Then m(F) is equal to the maximum, over all se-
quences of assignment selectors ~α1, . . . , ~αk where each ~αi is fi-compatible, of the minimum, over
all sequences ~w1, . . . , ~wk of weight function selectors such that (~αi, ~wi) is (fi,A)-compatible, of
V ((~α1, ~w1), . . . , (~αk, ~wk)).

So next we want to understand the function V . The following definitions will be helpful.

• Largest eigenvalue. For a square real matrix A, ρ(A) denotes the maximum of |λ| over all
eigenvalues λ of A.

• The profile matrix of an AW selector-pair (~α, ~w) is defined to be the 2 by 2 matrix M~α,~w with
rows and columns indexed by {0, 1} with s, t entry equal to

∑
j w

s(j) where the sum ranges
over indices j such that αs

j = t. Note that for s ∈ {0, 1}, the sth row sum of M~α,~w is equal to
|ws|.

• Profile matrix family M~α(f) for the assemblage A. For each function f and assignment
selector ~α, M~α(f) is the set of all matrices M~α,~w where ~w ranges over weight function selectors
such that (~α, ~w) form an (f,A)-compatible pair. Note that the set of profile matrices depends
on the assemblage. In particular, the set of profile matrices for the assemblage W will be a
subset of the set of profile matrices for the assemblage ⊒∗.

Example. Consider f = NANDn(x), that is f(x) = 0 only at the all 1’s input. Let α0 =
(1, 1, · · · , 1) and α1 = (0, 1, 1, 1, · · · , 1). Take m to be certificate complexity. The only witness for
α0 is w0 ≡ 1, and we take w1 to assign weight 1 on the 0 index and weight 0 otherwise. Here the
profile matrix

M~α,~w =

[
0 n
1 0

]
.

13

Note that ρ(M~α,~w) =
√
n. It is also true that C lim(f) =

√
n (this is not a coincidence as we will

see).
It turns out that matrix multiplication captures the mechanism behind the composition of AW

selector-pairs. In fact, for any sequence {(~αi, ~wi)}ki=1 we have that V ((~α1, ~w1), . . . , (~αk, ~wk)) is equal
to the maximum row sum of the product M~α1, ~w1

· · ·M~αk, ~wk
. This follows from

Proposition 10. For any sequence (~α1, ~w1), . . . , (~αk, ~wk) of AW selector-pairs, if (~α, ~w) is their
composition then the profile matrix M~α,~w is given by:

M~α,~w = M~α1, ~w1
· · ·M~αk , ~wk

.

Lemma 9 and Proposition 10 imply

Corollary 11. Let F = f1 ◦ · · · ◦ fk. Then m(F) is equal to the maximum, over all sequences
~α1, . . . , ~αk where ~αi is fi-compatible, of the minimum, over all choices of matrices M1, . . . ,Mk

where Mi belongs to the profile matrix family M~α(fi), of the maximum row sum of the product
M1 · · ·Mk.

At last we are ready to consider the case of iterated composition, where all of the fi are the
same function f . We wish to understand m(f (k)), which we now know is the maximum over choices
of ~αi of the minimum over choices of ~wi ∈ A~αi

(f) of V ((~α1, ~w1)◦· · ·◦(~αk, ~wk)). Intuitively, one may
think of the choice of each assignment selector ~αi as defining the set of profile matrices M~αi

(f),
and the choice of each weight function selector ~wi as choosing a matrix Mi ∈ M~αi

(f).
If we wish to lower bound m(f (k)) we hope to find assignment selectors ~αi for which all possible

products of the form
M1M2 · · ·Mk, Mi ∈ M~αi

(f)

have a large max row sum. We will need the following simple fact about matrices:

Fact 12. For any matrix M ∈ R
2×2
≥0 we have

||M ||∞ ≥ ρ(M)/2.

It turns out that the minimum of ρ(M) over matrices in the family M~α(f) gives a good notion
of how hard the input selector ~α is. We now introduce two more definitions:

• The characteristic value m̂~α(f) for (f, ~α). For a boolean function f and assignment selector
~α compatible with f , define m̂~α(f) to be the minimum of ρ(A) over all A ∈ M~α(f). The
function m̂~α(f) can be viewed as another complexity measure derived from the assemblage A
which is bi-local rather than local in the sense that it depends on a pair of assignments rather
than just one.

• The characteristic value m̂(f) is the maximum, over all assignment selectors ~α compatible
with f , of m̂~α(f).

If we can prove thatm~α(f) ≥ λ then this will imply by Fact 12 that max(mα0(f),mα1(f)) ≥ λ/2.
This suggests that, in order to construct a hard assignment selector for f (k), we should choose a
selector ~β which maximizes m̂~β

(f) and then set ~α = ~β(k). We will use this idea to prove

14

Lemma 13. For any boolean function f and k ∈ N

m(f (k)) ≥ m̂(f)k/2.

Next we obtain an upper boundm(f (k)). We show that for any sequence of assignment selectors
~α1, · · · , ~αk, we can find matrices Mi ∈ Mαi

(f) such that the product M = M1M2 · · ·Mk has no
entry larger than nk(m̂(f))k−1. This will prove

Lemma 14. For any boolean function f on n variables and k ∈ N,

m(f (k)) ≤ 2nk(m̂(f))k−1.

Armed with these lemmas, we easily obtain the main result of this section:

Theorem 15. Let m be a complexity measure with associated well-behaved assemblage A. Then,
for any boolean function f , mlim(f) = m̂(f).

Proof. Assume f is a function on n variables. Recall that mlim(f) := limk→∞m(f (k))1/k. By
Lemmas 13 and 14 we have that

lim
k→∞

(1/2)1/k(m̂(f)) ≤ mlim(f) ≤ lim
k→∞

(2nk)1/km̂(f).

Both the above limits approach m̂(f), thus the result follows.

This concludes the informal discussion of the main result. We note that Theorem 15 has been
proven modulo all lemmas and propositions stated in this section. It remains to explicitly define
the composition of assignment selectors, and AW selector-pairs, and provide the proofs which were
left out of this section. All such proofs and definitions are in the following section.

3.2 Filling in the details

In this section we prove the technical lemmas which were referred to in the previous section.
Our first step is to prove Lemma 6 that sensitivity, certificate complexity, and fractional cer-

tificate complexity all induced by well behaved assemblages. The following proposition shows that
certificates (respectively fractional certificates) compose and decompose nicely.

Proposition A. Let T be an indexed tree, and let (Ωv : v ∈ Int(T)) be an ensemble of boolean
valued weight function families (i.e., hypergraphs). Let ΩT be the composition ⊙T (Ωv : v ∈ Int(T)).

• If (hv : v ∈ Int(T)) is a T -ensemble of weight functions such that each hv is a fractional hitting
set for Ωv, then hT = ⊙T (hv : v ∈ Int(T)) is a fractional hitting set for ΩT . Furthermore, if
all of the hv are boolean valued (so that hv is a hitting set), then so is hT .

• If h is any fractional hitting set for ΩT , then there exists a T -ensemble of weight functions
(hv : v ∈ Int(T)) such that each hv is a hitting set for Ωv, and h ≥ ⊙T (hv : v ∈ Int(T))
pointwise. Furthermore, if h is boolean valued, then all of the hv can be chosen to be boolean
valued.

15

Proof. For both parts of the lemma we first prove the case where every leaf in T is distance 2 from
the root, and then use induction to obtain the general result.

Recall that hT assigns to leaf l the product of the values that hv assigns to the edges along the
unique path from the root to l. Thus, if all the hv are boolean valued, then hT is boolean valued.
We now show that, for all w ∈ ΩT ,

∑

l∈L(T)

hT (l)w(l) ≥ 1. (1)

Let r be the root of T and fix w ∈ ΩT . Since ΩT = Ωr(Ωv : v ∈ C(r)), it follows that for some
choice of wr ∈ Ωr and wv ∈ Ωv (for each v ∈ C(r)) we have

w = wr (wv : v ∈ C(r)) .

Likewise, by assumption
hT = hr(hv : v ∈ C(r)).

For v ∈ C(r), let Tv be the subtree whose root is v. It follows that

∑

l∈L(T)

hT (l)w(l) =
∑

v∈C(r)

∑

l∈L(Tv)

hr(v)hv(l)wr(v)wv(l)

=
∑

v∈C(r)

hr(v)wr(v)


 ∑

l∈L(Tv)

hv(l)wv(l)


 .

Each hv is a fractional hitting set for Ωv, thus the inner sums are all at least 1. Therefore, the
above is

≥
∑

v∈C(r)

hr(v)wr(v).

This, however, is at least 1 because hr is a fractional hitting set for the hypergraph Ωr. This proves
(1).

To see the induction step, for view an arbitrary tree T of uniform depth as a composition
Tr(Tv : v ∈ C(r)) where Tr is a rooted star. Then let hv = ⊙Tv(hu : u ∈ Int(Tv)), which by
induction will be a fractional hitting set for Ωv := ⊙Tv(Ωu : u ∈ Int(Tv)). We may then ignore the
inner structure of the subtrees Tv, treating them as rooted stars, which reduces the problem to the
depth 2 case already shown.

For the next part we show that, given any hT which is a hitting set for ΩT , we can find weight
functions hr and {hv : v ∈ C(r)} such that hT ≥ hr (hv : v ∈ C(r)) pointwise and all the hv, and
hr are hitting sets for Ωv and Ωr respectively.

The construction is as follows: For each v ∈ C(r) we define

hr(v) := min


1, min

w∈Ωv

∑

l∈L(Tv)

w(l)hT (l)


 .

Note that hr(v) will be boolean valued if w and hT are. Let S = {v ∈ C(r) : hr(v) 6= 0}. For
v ∈ S and l ∈ L(Tv) we define hv(l) := hT (l)/hr(v). For v /∈ S, we set hv ≡ 1. Again, each hv

16

defined in this way will be boolean valued if hT is boolean valued. It is clear by construction that
hT ≥ hr(hv : v ∈ Int(T)).

By construction, each hv is a hitting set for Ωv. This is trivial if v /∈ S. Otherwise, if v ∈ S and
w ∈ Ωv, then

∑

l∈L(Tv)

w(l)hv(l) =
∑

l∈L(Tv)

w(l)hT (l)

hr(v)

≥

∑
l∈L(Tv)

w(l)hT (l)

minv hr(v)
≥

∑
l∈L(Tv)

w(l)hT (l)

min
w′∈Ωv

∑
l∈L(Tv)

w′(l)hT (l)

≥ 1.

It remains to show that hr is a hitting set for Ωr. Let wr ∈ Ωr be given. For each v ∈ C(r),
let wv ∈ Ωv be such that min(1,

∑
l∈L(Tv)

wv(l)hT (l)) = hr(v). Define wT := wr(wv : v ∈ C(r)). Note

that wT ∈ ΩT because ΩT = Ωr(Ωv : v ∈ C(r)). In the following analysis recall that wr is boolean
valued by assumption.

∑

v∈C(r)

wr(v)hr(v) =
∑

v∈C(r)

wr(v)min


1,

∑

l∈L(Tv)

wv(l)hT (l)




=
∑

v∈C(r):wr(v)=1

min


1,

∑

l∈L(Tv)

wv(l)hT (l)




≥ min


1,

∑

v∈C(r):wr(v)=1

∑

l∈L(Tv)

wv(l)hT (l)




≥ min


1,

∑

l∈L(T)

wT (l)hT (l)




≥ 1.

The induction step works as follows. Given a tree T of uniform depth k, view it as a composition
Tr(Tv : v ∈ C(r)) where each Tv has depth k − 1. Then decompose ΩT = Ωr(ΩTv : v ∈ C(r)),
where each ΩTv is the Tv-composition of (Ωu : u ∈ Int(Tv)). Apply the height 2 case to get hr and
hTv with the desired properties. Then continue this process on each of the subtrees Tv until hT has
been fully decomposed.

We are now ready to prove Lemma 6, which we repeat for convenience.

Lemma 6. Each of the assemblages ∂B, W, W∗ and Ψ are well-behaved.

Proof. We prove each part separately. To prove that the minblock assemblage is well behaved, we
only prove the case where T is an indexed tree of height 2, that is where F = fr (fv : v ∈ C(r)) is

17

a composition of boolean functions and T = Tr(Tv : v ∈ C(r)). The general case will then follow
by induction (we omit this part as it follows similarly to the induction in Proposition A).

The assemblage ∂B is well-behaved:

We will prove the stronger statement:

Claim B. For each input x to F ,

∂Bx(F) = ⊙T (∂Bxv(fv)) .

Let x be an arbitrary input for F . Let (xv : v ∈ Int(T)) be the assignment ensemble induced
by evaluating the circuit for F on assignment x. Let BT be a min-block for F at x. BT induces
a boolean valued weight function over C(r) in the following natural way: Br(v) := 1 if and only
if there exists a leaf l ∈ L(Tv) such that BT (l) = 1. Likewise, BT induces weight functions Bv on
the leaves of the subtrees rooted at v for v ∈ C(r) in the same way, that is Bv(l) := 1 if and only
if BT (l) = 1. In this way, BT = Br(Bv : v ∈ C(r)). It remains to show that each Bv which is not
identically 0 is a min block for fv at xv and that Br is a min block for fr at xr.

First we show that, for each v ∈ C(r), Bv is a block at xv. Suppose for contradiction that
fv(xv ⊕Bv) = fv(xv) for some v ∈ C(r) where Bv is not empty. Then changing BT to be 0 on the
leaves of v will create a strictly smaller block B′

T . Similarly, if Bv is a block but not a min-block,
then again BT may be modified to be strictly smaller. Thus each Bv is a min block for fv for
v ∈ C(r).

Now we show that Br is a min block. Recall that we defined Br(v) = 1 if and only if Bv is
not identically 0. Furthermore, we just showed that if Bv is not identically 0, then it is a min
block. Therefore, it follows that Br(v) = 1 if and only if fv(xv ⊕ Bv) 6= fv(xv). This implies that
F (x⊕BT) = fr(xr⊕Br). Thus, since BT is a block for F , Br must be a block for fr at xr. However
Br must also be a min block, otherwise, by replacing it by a strictly smaller block B′

r, the block
B′

r(Bv : v ∈ C(r)) will be strictly smaller than BT .
We have shown that each min-block BT may be decomposed as a composition of min-blocks.

By a similar argument, if BT is a composition of min-blocks, then it is a min-block for F . This
shows that ∂B is well-behaved.

The assemblages W,W∗ are well-behaved:

Let T be an indexed tree and let (fv : v ∈ Int(T)) be a boolean function ensemble with
composition F . Let BT be the set of min blocks for F at input x. For each v ∈ Int(T), let Bv

be the set of min blocks for fv at input xv. We just proved that BT = ⊙T (Bv : v ∈ Int(T)). By
the second part of Proposition A, for each hT which is a fractional hitting set for the hygergraph
BT , there exists a composed fractional hitting set h′T = ⊙T (hv : v ∈ Int(T)) such that h′T ≤ hT
(pointwise) and each hv is a fractional hitting set for Bv. Thus, each minimal hitting set may be
decomposed as a composition of hitting sets. This proves property (2). For property (1), assume
that hv is a fractional hitting set for Bv for each v ∈ Int(T). It follows by Proposition A that
⊙T (hv : v ∈ Int(T)) is a fractional hitting set for BT . This shows that W∗ is well-behaved. The
same argument works for boolean valued hitting sets, thus W is well-behaved.

The assemblage Ψ is well-behaved: If x is an input to F , then Ψx(F) consists of a single
set (the set of sensitive indices) and this set will precisely be the composition of the sets Ψxv(fv).

Lemma 7. Let f1, . . . , fk be a sequence of boolean functions and let F be their composition.

18

• If ~α1, . . . , ~αk are assignment selectors, where ~αi is fi-compatible, then ~α := ~α1 ◦ · · · ◦ ~αk is an
F -compatible assignment selector.

• There are assignment selectors ~α1, . . . , ~αk, where ~αi is fi-compatible, such that ~α := ~α1◦· · ·◦ ~αk

is an m-optimal selector for F .

Proof. The first part follows from the second part of Proposition 4. For the second part of the
present lemma, we first prove the case of k = 2, the full statement will follow by induction. Let
F = f1 ◦ f2 where each fi is a function on rooted star Ti, and let T = T1 ◦ T2. Let ~α = (α0, α1)
be an m-optimal selector for the function F . Let (bc(v) : v ∈ Int(T)) be the boolean T -labeling
induced by evaluating F (αc) and let (bcv : v ∈ Int(T)) be the corresponding assignment ensemble.

We choose ~β2 be any m-optimal selector for the function f2, and set ~β1 := (b0r , b
1
r). Our goal is

to prove that ~β = ~β1 ◦ ~β2 is also an m-optimal selector for F .
Writing ~β as (β0, β1), we prove that mβ0(F) ≥ mα0(F); the analogous result for β1 follows

similarly. The construction of β0 also induces an assignment ensemble which we denote as (β0
v :

v ∈ Int(T)). Fix a minimum size weight function w ∈ Aβ0(F). We show how to modify w to
obtain a weight function w′ ∈ Aα0(F) of size at most |w|. This will prove the lemma, since then
mα0(F) ≤ |w′| ≤ |w| = mβ0(F).

Since A is well-behaved and w is minimal, we know that w = wr (wv : v ∈ C(r)) for some
choices of wr ∈ Aβ0

r
(f1) and wv ∈ Aβ0

v
(f2). Note that for each v, f2(α

0
v) = f2(β

0
v). It follows that

mα0
v
(f2) ≤ mβ0

v
(f2) (because ~β2 is an m-optimal selector for f2). Hence, we can find ρv ∈ Aα0

v
(f2)

such that |ρv| ≤ |wv|. Having found the functions ρv, we set w′ := wr (ρv : v ∈ C(r)) which will be
an element in the assemblage Aα0(F). Moreover,

|w′| =
∑

v∈C(r)

wr(v)|ρv | ≤
∑

v∈C(r)

wr(v)|wv | = |w|.

To complete the proof for general k we view a composed function F = f1 ◦ · · · ◦ fk as f1 ◦Fk−1,
where Fk−1 = f2 ◦ · · · ◦ fk. By induction on k, there is an m-optimal selector for Fk−1 of the form
~α = ~α2 ◦ · · · ◦ ~αk. We may then repeat the proof of the case of height 2, where we view f2 as the
function Fk−1 and choose ~β2 := ~α. Then there is an m-optimal selector for F which is of the form
~β1 ◦ ~β2 = ~β1 ◦ ~α2 ◦ · · · ~αk.

We now turn to the proof of Lemma 8. Recall that an AW-selector pair over index set I is a
pair (~α, ~w) consisting of an assignment selector ~α over I and a weight function selector ~w over I.
We need to define the uniform composition of AW-selector pairs. Let ~α1, · · · , ~αk be assignment
selectors and ~w1, · · · , ~wk be weight function selectors over L(T1), · · · , L(Tk) respectively. We define
(~α1, ~w1) ◦ · · · ◦ (~αk, ~wk) to be the pair (~α, ~w) where ~α is the assignment selector ~α1 ◦ · · · ◦ ~αk,
and ~w = (w0, w1) is a weight function selector defined in the following manner. Each of w0 and
w1 are defined, respectively, as compositions of weight function T -ensembles w0

T and w1
T . To

construct these ensembles, first recall from Section 2.8 that each component αc (for c ∈ {0, 1}) of
the composition ~α is naturally associated to a boolean T -labeling bcT = (bc(v) : v ∈ Int(T)). We
use the labeling bcT to define the ensemble wc

T = (wc
v : v ∈ Int(T)) where for node v is at level m

(treating the root as level 1), the function wc
v is a copy of either w0

m or w1
m depending on whether

bc(v) = 0 or 1.

19

Lemma 8. Let f1, . . . , fk be a sequence of boolean functions and let F be their composition. Let
~α1, . . . , ~αk be assignment selectors such that each ~αi is fi-compatible. Then the following hold:

• For any sequence ~w1, . . . , ~wk of weight function selectors, where (~αi, ~wi) is (fi,A) compatible,
the composition (~α, ~w) := (~α1, ~w1) ◦ · · · ◦ (~αk, ~wk) is (F,A)-compatible.

• There are weight function selectors ~w1, · · · , ~wk such that the weight function ~w that comes
from the composition (~α, ~w) := (~α1, ~w1)◦· · ·◦(~αk, ~wk) is an m-optimal weight function selector
for F at ~α.

Proof. In the proof of both statements let T = T1 ◦ · · · ◦ Tk be the indexed tree for the function F .
Also let (b(v) : v ∈ T) be the boolean T -labeling induced by α0, and let (α0

v : v ∈ Int(T)) be the
corresponding assignment ensemble.

For the first part, it follows from Lemma 7 that ~α is F -compatible. Recall the construction
of ~w = (w0, w1); in particular the weight function w0 is the composition of the weight function
ensemble (wv : v ∈ Int(T)) where, if v is at depth i (i = 1 being the root), then wv is a copy of

w
b(v)
i . Also, the assignment α0

v is the assignment α
b(v)
i . Since (~αi, ~wi) is a compatible pair for each

i, it follows that wv ∈ Aα0
v
(fi) for each v. Because A is well-behaved, we have w0 = ⊙T (wv : v ∈

Int(T)) ∈ Aα0(F). The exact same proof shows that w1 ∈ Aα1(f (k)). This proves that (~α, ~w) is
an F -compatible pair.

Now we prove the second statement. Again we prove the case k = 2, letting the general case
follow by induction. Let ~α = (α0, α1). To construct ~w, we will choose ~w2 to be any m-optimal
weight function selector for f2 at ~α2 and construct ~w1 = (w0

1, w
1
1).

We first construct w0
1. Let w

∗ be any minimum sized weight function in Aα0(f). Because A is
well-behaved and w∗ is minimal, we may decompose w∗ = w∗

r(w
∗
v : v ∈ C(r)) where w∗

r ∈ Aα0
r
(f1)

and w∗
v ∈ Aα0

v
(f2). We will set w0

1 := w∗
r and check that it satisfies the properties we need. Consider

w′ := w∗
r(wv : v ∈ C(r)) where wv := w

b(v)
2 . Note that w′ ∈ Aα0(f) because A is well-behaved and

moreover it has size

|w′| =
∑

v∈C(r)

w∗
r(v)|wb(v)

2 | ≤
∑

v∈C(r)

w∗
r(v)|w∗

v | = |w∗|.

Here the inequality follows from the fact that w0
2 and w1

2 have minimum sizes in the families Aα0
2
(f2)

and Aα1
2
(f2) respectively.

In the same manner construct w1
1. Finally, set (~α, ~w) := (~α1, ~w1) ◦ (~α2, ~w2) where ~w = (w0, w1).

Then by construction, w0 = w′, and we have shown |w0| ≤ |w∗|. Thus, w0 must have minimum
size in the family Aα0(f). By the same argument, the function w1 will have minimum size in the
family Aα1(f). Therefore, ~w is an m-optimal selector for f at ~α as desired.

To see the induction step, view F = f1 ◦ · · · ◦ fk as a composition of two functions f1 ◦ Fk−1

where Fk−1 = f2 ◦ · · · ◦ fk. We now use the same construction, only noting that by induction on k
we may choose ~w2 to a composition of AW selector-pairs.

We now show that multiplication of profile matrices encapsulates crucial information about AW
selector-pair composition. The following definitions will be helpful.

• Profile vector of a weight function w on assignment x. The profile of (x,w) is the pair
px(w) := (p0, p1) where p0 :=

∑
i:xi=0

wi and p1 :=
∑

i:xi=1
wi.

20

• Profile vector family Px(f) for the assignment x and assemblage A. This is the set of all
profile vectors px(w) where w ranges over weight functions in Ax(f).

For any profile matrix M := M~α,~w, the first row of M is the profile vector pα0(w0) and the
second row is the profile vector pα1(w1).

Proposition 10. For any sequence (~α1, ~w1), . . . , (~αk, ~wk) of AW selector-pairs, if (~α, ~w) is their
composition then the profile matrix M~α,~w is given by:

M~α,~w = M~α1, ~w1
· · ·M~αk , ~wk

.

Proof. We prove the special case where k = 2, the general case will then follow by induction. Let
(~α, ~w) = (~α1, ~w1) ◦ (~α2, ~w2) be the composed pair, where ~w = (w0, w1) and ~α = (α0, α1), and let T
be the corresponding indexed tree. Let

M~α1, ~w1
=

[
a00 a01
a10 a11

]
M~α2, ~w2

=

[
b00 b01
b10 b11

]
M~α,~w =

[
c00 c01
c10 c11

]
.

We check that c00 = a00b00+a01b10, the other entries will follow by similar arguments. We check
this by computing the profile vector for the input α0. Let (b(v) : v ∈ T) be the boolean T -labeling
induced by the construction of α0 and let (bv : v ∈ Int(T)) be the corresponding assignment

ensemble. By construction, br = α0
1 and bv = α

b(v)
2 for v ∈ C(r). Recall that w0 := wr(wv : v ∈

C(r)), where wr = w0
1 and wv := w

b(v)
2 for v ∈ Int(T).

The profile vector pα0(w0) := [c00, c01]. In particular, c00 =
∑

l∈L(T) : α0(l)=0 w
0(l). Thus, we

have

c00 =
∑

l∈L(T)
α0(l)=0

w0(l)

=
∑

v∈C(r)

∑

l∈C(v)
α0(l)=0

wr(v)wv(l)

=
∑

v∈C(r)
br(v)=0

wr(v)
∑

l∈C(v)
bv(l)=0

w0
2(l) +

∑

v∈C(r)
br(v)=1

wr(v)
∑

l∈C(v)
bv(l)=0

w1
2(l)

=
∑

v∈C(r)
α0
1(v)=0

wr(v)
∑

l∈C(v)
α0
2(l)=0

w0
2(l) +

∑

v∈C(r)
α0
1(v)=1

wr(v)
∑

l∈C(v)
α1
2(l)=0

w1
2(l)

=
∑

v∈C(r)
α0
1(v)=0

w0
1(v)b00 +

∑

v∈C(r)
α0
1(v)=1

w0
1(v)b10

= a00b00 + a01b10.

We now present the two main lemmas which imply our main result. The proofs reduce the
statements to two claims regarding the largest eigenvalue of the product of certain matrices which
we delay for the next section.

21

Lemma 13. For any boolean function f and k ∈ N

m(f (k)) ≥ m̂(f)k/2.

Proof. Let λ := m̂(f). Let ~β be an assignment selector for which m̂~β
(f) = λ. Let ~α := ~β(k).

By Corollary 11 and Fact 12, the claim will follow from showing that, for any sequence of profile
matrices Mi ∈ M~β(f

(k)), we have

ρ(M1M2 · · ·Mk) ≥ λk. (2)

Let {Mi}ki=1 be any such sequence of matrices and let M be their product. Because of our

choice of ~β, we know that ρ(Mi) ≥ λ for each i. In general, this is not enough to guarantee that
ρ(M) ≥ λk. However, these matrices contain additional structure which will allow us to make such
a conclusion.

Recall that each profile matrix Mi ∈ M~β
(f) corresponds to a weight function selector ~wi which

is ~β-compatible. For each i, j ∈ [k] let Mij denote the matrix who’s first row is the first row
of Mi (i.e., the profile vector pβ0(w0

i)), and who’s second row is the second row of Mj (i.e., the
profile vector pβ1(w1

j)). Then Mij is precisely the profile matrix M~β,~wij
where ~wij = (w0

i , w
1
j). In

particular, each Mij ∈ M~β
(f) and ρ(Mij) ≥ λ by the definition of λ. Noting this property, we

apply Lemma 17 (see the following section 3.3) and conclude that

ρ(M) ≥ λk.

Lemma 14. For any boolean function f on n variables and k ∈ N,

m(f (k)) ≤ 2nk(m̂(f))k−1.

Proof. Let λ := m̂(f). Take ~α which is an m-optimal selector for f (k). By lemma 7, we may
assume that ~α = ~α1 ◦ ~α2 ◦ · · · ◦ ~αk. By Corollary 11, the claim will follow by exhibiting matrices
Mi ∈ Mαi

(f) such that
||M1M2 · · ·Mk||∞ ≤ nkλk−1.

Let Ui be the profile vector family Pα0
i
(f), and let Vi = Pα1

i
(f). When considering the possible

choices of Mi ∈ M~αi
(f), the set Ui is the set of possible first rows of Mi. Likewise, Vi is the set of

possible second rows of Mi. One may hope to use the definition of λ and choose each Mi such that
ρ(Mi) ≤ λ. This in general though is not enough to bound all entries in the product M1 · · ·Mk.
Once again we need to use additional structure of these matrix families. Note crucially that, for
each i, j ∈ [k], there exists u ∈ Ui and v ∈ Vj such that

ρ

([
u
v

])
≤ λ.

This follows by the definition of λ and the fact that the set of profile matrices

M~αij
(f) = {

[
u
v

]
| u ∈ Ui, v ∈ Vj},

where ~αij := (α0
i , α

1
j). By Corollary 21 (see section 3.3), there exists matrices M1,M2, · · · ,Mk,

where Mi ∈ M~αi
(f) for each i, such that ||M1M2 · · ·Mk||∞ ≤ nkλk−1.

22

3.3 Facts about non-negative matrices

In this subsection, we prove Lemmas 17 and 18 which were used in the previous subsection. We
will need the following well-known facts about 2×2 non-negative matrices that follow from Perron-
Frobenius theory (for omitted proofs see, e.g., [Mey00, Chapter 8]).

Fact 16. Fix A ∈ R
2×2
≥0 . We have the following:

1. There exists a non-zero z ≥ 0 s.t. Az = ρ(A)z.

2. For λ ∈ R, the following are equivalent: (1) ρ(A) ≥ λ, (2) ∃x ≥ 0 such that x 6= 0 and
Ax ≥ λx, and (3) For every ε > 0, there exists an x > 0 such that Ax ≥ (λ− ε)x.

3. For λ ∈ R, we have ρ(A) ≤ λ iff for every ε > 0, there is an x > 0 s.t. Ax ≤ (λ+ ε)x.

4. ‖A‖∞ ≥ ρ(A)/2.

5. limk→∞‖Ak‖1/k∞ = ρ(A).

We can now prove the two main lemmas of this subsection.

Lemma 17. Let M1, . . . ,Mk ∈ R
2×2
≥0 and let M := M1 · · ·Mk. For each i, j ∈ [k], let Mi,j denote

the matrix whose first and second rows are the first row of Mi and the second row of Mj respectively.
If ρ(Mi,j) ≥ λ ≥ 0 for each i, j ∈ [k], then ρ(M) ≥ λk.

Proof. The lemma is trivial for λ = 0. Thus, we assume that λ > 0. By dividing each matrix
through by λ, we can assume w.l.o.g. that λ = 1. In this case, we need to show that ρ(M) ≥ 1.

By Fact 16, we can show that ρ(M) ≥ 1 by showing that there exists a non-zero z ∈ R
2 s.t.

z ≥ 0 and Mz ≥ z. To do this, it suffices to produce a z as above s.t. Miz ≥ z for each i.
Denote by ui = (ui,1, ui,2) and vi = (vi,1, vi,2) the first and second rows (respectively) of Mi.

We need Miz ≥ z, which is the same as requiring that 〈u′i, z〉 ≥ 0 and 〈v′i, z〉 ≥ 0 for every i, where
u′i = (ui,1 − 1, ui,2)

T and v′i = (vi,1, vi,2 − 1)T . Clearly, if u′i or v
′
i is non-negative, the corresponding

constraint is trivial (since we are looking for z ≥ 0). Let P and Q denote the set of i where ui,1 < 1
and vi,2 < 1 respectively.

Thus the constraint corresponding to u′i for i ∈ P may be rewritten as z1 ≤ (ui,2/(1−ui,1)) · z2.
Clearly, this constraint gets strictly harder to satisfy as the parameter ui,2/(1 − ui,1) gets smaller
and therefore, to satisfy all the constraints indexed by P , it suffices to satisfy just the constraint
corresponding to i0 ∈ P for which this parameter is minimized. Similarly, there is a j0 ∈ Q s.t. any
non-negative z that satisfies 〈v′j0 , z〉 ≥ 0 automatically satisfies all the other constraints indexed by

Q. However, we know that ρ(Mi0,j0) ≥ 1 and hence by Fact 16, there is some non-zero z ∈ R
2
≥0 s.t.

Mi0,j0z ≥ z and thus 〈u′i0 , z〉 ≥ 0 and 〈v′j0 , z〉 ≥ 0. This z satisfies all the constraints and hence has
the property that Miz ≥ z for each i ∈ [k].

Given u, v ∈ R
2, we denote by [uv] the 2 × 2 matrix whose first and second rows are u and v

respectively.

Lemma 18. Assume we have compact subsets U1, . . . , Uk, V1, . . . , Vk ⊆ R
2
≥0 s.t. for each i, j ∈ [k],

there exists ui,j ∈ Ui and vi,j ∈ Vj s.t. the matrix
[ui,j
vi,j

]
satisfies ρ

([ui,j
vi,j

])
≤ λ. Then, there exist

ui ∈ Ui and vi ∈ Vi for each i ∈ [k] s.t. the matrices Mi := [ui
vi] and M [i,j] := Mi ·Mi+1 · · ·Mj for

i ≤ j ∈ [k] satisfy ρ(M [i,j]) ≤ λj−i+1.

23

Proof. We will show that for each ε > 0, there is a choice of ui ∈ Ui, vi ∈ Vi (i ∈ [k]) so that for
Mi := [ui

vi] and M [i,j] := Mi · · ·Mj, we have

ρ(M [i,j]) = ρ(Mi · · ·Mj) ≤ (λ+ ε)j−i+1. (3)

for each i, j ∈ [k] with i < j. Since the sets Ui, Vi for i ∈ [k] are all compact and ρ : R2×2 → R is
a continuous function, a standard argument shows there must be a choice of these vectors so that
M as defined above in fact satisfies the requirements of the lemma.

Fix ε > 0 and let λ′ = λ+ ε. We first show how to choose ui, vi (i ∈ [k]) and z ∈ R
2
>0 such that

for each i, Mi := [ui
vi] satisfies Miz ≤ λ′z. We then show how this implies (3).

Claim 19. There exist ui ∈ Ui and vi ∈ Vi for each i ∈ [k] and a z ∈ R
2
>0 such that for each

i ∈ [k], we have Miz ≤ λ′z, where Mi is as defined above.

Proof of Claim 19. The vectors u1, . . . , uk, v1, . . . , vk and z ∈ R
2
>0 that we choose will in fact have

the stronger property that for each i, j ∈ [k], we will have Mi,jz ≤ z, where Mi,j :=
[ui
vj

]
. Let us

fix i, j ∈ [k] and consider the problem of coming up with such a ui, vj , and z. Therefore, we want
ui ∈ Ui and vj ∈ Vj s.t.

〈ui, z〉 ≤ λ′z1 〈vj , z〉 ≤ λ′z2

We can rewrite the above constraints on z as

〈u′i, z〉 ≤ 0 〈v′j, z〉 ≤ 0

where u′i := (λ′ − ui,1, ui,2) and v′j := (vj,1, λ
′ − vj,2). Consider the set of constraints {〈u′i, z〉 ≤

0 | ui ∈ Ui}. Note that this set of constraints has the property is that there is a weakest constraint :
more precisely, there exists a ui ∈ Ui s.t. for any z > 0, if there exists a ui ∈ Ui s.t. 〈u′

i, z〉 ≤ 0,
then 〈u′i, z〉 ≤ 0 as well. Similarly, we also have a vj ∈ Vj .

We need a crucial observation regarding the vectors ui, vi chosen above. By the assumptions of
Lemma 18, for every i, j ∈ [k], we know that for each i, j ∈ [k], there is some choice of ui,j ∈ Ui

and vj,i ∈ Vj so that ρ
([ui,j

vi,j

])
≤ λ. By Fact 16, this means that there is some zi,j ∈ R

2
>0 s.t.[ui,j

vi,j

]
zi,j ≤ λ′zi,j, which is equivalent to saying that 〈u′i,j, zi,j〉 ≤ 0 and 〈v′i,j , zi,j〉 ≤ 0. But this

implies that 〈ui, zi,j〉 ≤ 0 and 〈vj , zi,j〉 ≤ 0 as well. Thus, we have shown that

Observation 20. For every i, j ∈ [k], there exists a zi,j ∈ R
2
>0 s.t. 〈u′i, zi,j〉 ≤ 0 and 〈v′j , zi,j〉 ≤ 0.

Now that we have chosen ui, vi for each i ∈ [k], we only need to choose z ∈ R
2
>0 as mentioned

above. Again, we need to choose z ∈ R
2
>0 so that for each i, j, 〈u′i, z〉 ≤ 0 and 〈v′j , z〉 ≤ 0. Consider

the sets of constraints {〈u′i, z〉 ≤ 0 | i ∈ [k]} and {〈v′j , z〉 ≤ 0 | j ∈ [k]}. This time we consider
the strongest constraints in these sets: in other words, we fix an i0 ∈ [k] so that for any z > 0,
if 〈u′i0 , z〉 ≤ 0, then in fact 〈u′i, z〉 ≤ 0 for every i ∈ [k] and a j0 ∈ [k] similarly for the vj . By
Observation 20, we know that there is a z := zi0,j0 > 0 that satisfies these constraints and since
these are the strongest constraints, we see that z satisfies Mi,jz ≤ z for every i, j ∈ [k].

Fix any i, j ∈ [k] s.t. i < j and consider M [i,j] = Mi · · ·Mj , where the Mℓ (ℓ ∈ [k]) are as
given by Claim 19. We show ρ(M [i,j]) ≤ (λ′)j−i+1. By Fact 16, it suffices to obtain z ∈ R

2
>0

s.t. M [i,j] · z ≤ (λ′)j−i+1z. Consider the z guaranteed to us by Claim 19. We have M [i,j] · z =
(Mi · · ·Mj)z ≤ (Mi · · ·Mj−1)(λ

′z) . . . ≤ (λ′)j−i+1z, where the inequalities follows from the choice
of z and the fact that the matrices Mℓ are all non-negative. This finishes the proof of Lemma
18.

24

Corollary 21. Let U1, . . . , Uk, V1, . . . , Vk, and λ be as in Lemma 18. Suppose further that, for
any i and any u ∈ Ui and v ∈ Vi, the entries of u and v are bounded above by a constant n.
Then there exist ui ∈ Ui and vi ∈ Vi for each i ∈ [k] such that the matrices Mi := [ui

vi] satisfy
||M1M2 · · ·Mk||∞ ≤ nkλk−1.

Proof. For i ∈ [k] let ui, vi and Mi := [ui
vi] be the matrices guaranteed by Lemma 18. Also, let

M [1,i] := M1M2 · · ·Mi. By lemma 18, for each i we have that ρ(Mi) ≤ λ and ρ(M [1,i]) ≤ λi. It is
easy to check that given a 2×2 matrix M with non-negative entries, if ρ(M) ≤ C then the diagonal
entries are both ≤ C.

We prove by induction on i that the matrices M [1,i] are entry-wise ≤
[

λi niλi−1

niλi−1 λi

]
. The base

case follows because we have M1 ≤
[
λ n
n λ

]
. The diagonal entries of M [1,i+1] are ≤ λi+1, because

ρ(M [1,i+1]) ≤ λi+1. For the off diagonal entries, note that M [1,i+1] = M [1,i]Mi+1. By the inductive

hypothesis, M [1,i] ≤
[

λi niλi−1

niλi−1 λi

]
. Also because ρ(Mi) ≤ λ we have Mi ≤

[
λ n
n λ

]
. Thus the off

diagonal entries of M [1,i+1] are bounded above by nλi + niλi = n(i+ 1)λi.
This completes the proof as then, ||M [1,k]||∞ ≤ nkλk−1.

4 The behaviour of Block sensitivity under iterated composition

In this section, we characterize the behavior of the block sensitivity bs(f) under iterated composi-
tion. We show that for any function f : {0, 1}I → {0, 1}, we have bslim(f) = (bs∗)lim(f). We use
similar notation as in the previous sections such as the concepts of indexed trees T , T -ensembles,
and T -compositions, only now we will denote by I to be the index set for a function f (which
corresponds to a rooted star T).

We state the main result of this section formally below.

Theorem 22. For any boolean function f : {0, 1}I → {0, 1}, we have bslim(f) = (bs∗)lim(f).

The above is easily proved when f is either monotone or anti-monotone. In this case, we
know that for each k ∈ N, f (k) is either monotone or anti-monotone and hence bs(f (k)) = C(f (k))
[Nis91, BdW02]. As bs∗(f (k)) is sandwiched between bs(f (k)) and C(f (k)), we have bs(f (k)) =
bs∗(f (k)) and thus we are done. So from now on, we assume that f is neither monotone nor
anti-monotone.

4.1 Some simple claims

Recall Fekete’s lemma for superadditive sequences (see, e.g., [SUB11, Section A.4]).

Lemma 23 (Fekete’s lemma). Let {am}m∈N be a sequence of real numbers such that for any
p, q ∈ N, ap+q ≥ ap+aq. Then, the limit limk→∞ ak/k exists (and is possibly infinite) and moreover,
we have limk→∞ ak/k = supk ak/k.

We have the following easy corollary to the above lemma for sequences that are “almost super-
additive”.

Corollary 24. Let {am}m∈N be a sequence of real numbers such that for any p, q ∈ N, ap+q ≥
ap + aq − c for some fixed c ∈ R

≥0. Then, the limit limk→∞ ak/k exists.

25

Proof. Consider the sequence {bm}m∈N defined by bm = am − c. Then, {bm}m is clearly superad-
ditive and moreover, we have limk→∞(ak − bk)/k = 0. Thus, by Lemma 23, we are done.

Lemma 25. Fix any boolean function f : {0, 1}I → {0, 1} and any x ∈ {0, 1}I . For any M,k ≥ 1,
we have bskMx (f) ≥ k · bsMx (f).

Proof. Given any M -fold packing B of blocks of size s in Bx(f), we can construct a kM -fold packing
of blocks B′ of size ks in Bx(f) by simply repeating B k times. When B is chosen to be the M -fold
packing of maximum size for f at x, this shows that bskMx (f) ≥ k|B| = k · bsMx (f).

The following lemma will be crucial in showing that bs(f (k)) grows like bs∗(f (k)).

Lemma 26. Let gi : {0, 1}Ii → {0, 1} (i ∈ [2]) be any non-constant boolean functions. Let G denote
the depth-2 composition g1 ◦ g2 defined on the index set I1 × I2. Then, for any b ∈ {0, 1}, we have

bsb(G) ≥ bsMb (g1)

where M = min{bs0(g2), bs1(g2)}.

Proof. As a short remark, we may view the index set I1 × I2 as the leaves of the tree T = T1 ◦ T2

where Ti is a rooted star corresponding to the index set Ii. Also, for an assignment x to I1 and
i ∈ I1, we will use x(i) to denote the boolean value x assigns to i.

We prove the lemma for b = 0; an identical proof works for b = 1. Let ~α = (α0, α1) be
a g2-optimal selector (so bsαb(g2) = bsb(g2) for b ∈ {0, 1}). Let x ∈ g−1

1 (0) be chosen so that
bsMx (g1) = bsM0 (g1). Consider the composed assignment X = x ◦ ~α to the input of G. We will show
that bsX(G) ≥ bsM0 (g1), which will prove the lemma.

For b ∈ {0, 1}, let Bb be any maximum-sized packing in the hypergraph Bαb(g2). Note that
min{|B0|, |B1|} = M . Let B be a maximum-sized M -fold block packing in Bx(g1). We now give an
algorithm that constructs a block packing B′ in BX(G) such that |B′| = |B| = bsM0 (g1).

For each i ∈ I1, the algorithm maintains a packing Bi of the hypergraph Bαx(i)(g2). We initialize
Bi to be Bx(i). We now perform the following for each block B ∈ B (considered in some arbitrary
order):

• For each i ∈ I1, define the set Bi to be empty if i 6∈ B, and to be a member of Bx(i) if
i ∈ B. Let B′ be the composition B(Bi : i ∈ I1). (Here the composition of blocks is subset
composition which, as defined in Section 2.7, is obtained by viewing each block as a boolean
weight function, and using composition of weight functions.)

• For i ∈ B, the set Bi is updated to Bi \ {Bi}.

The blocks B′ thus constructed are easily seen to belong to BX(G) and to be pairwise disjoint
and so form a block packing in BX(G). Provided that we can carry out the process for each block
B ∈ B we get the correct number of blocks in our packing. We need to verify that the first step
inside the loop is well-defined, for which we require that when the block B is considered, for each
i ∈ B, B(x(i) must be nonempty so that we can select Bi. This is true since Bx(i) initially has size
at least M , and decreases by 1 each time we consider a block C that contains i, and i belongs to
at most M blocks of B.

26

Lemmas 25 and 26 yield the following.

Corollary 27. Let f be such that min{bs0(f), bs1(f)} ≥ 2. Then, min{bs0(f (k)), bs1(f
(k))} ≥ 2k.

In particular, min{bs0(f (k)), bs1(f
(k))} goes to infinity as k → ∞.

Proof. By Lemmas 26 and 25, for any k ≥ 1, we have bs(f (k+1)) ≥ bs2(f (k)) ≥ 2bs(f (k)). Hence,
by induction on k, we have the claim.

4.2 Proof of Theorem 22

Throughout f : {0, 1}I → {0, 1} is a boolean function defined on index set I := [n] that is neither
monotone nor anti-monotone.

We start off by arguing that limk→∞ bs(f (k))1/k exists. In order to do this, we need the following
simple claim.

Lemma 28. Let f be an n-variate boolean function that is neither monotone nor antimonotone.
For all k ≥ 0 and b ∈ {0, 1}, we have

bs(f (k)) ≤ bsb(f
(k+1)) ≤ n · bs(f (k))

bs∗(f (k)) ≤ bs∗b(f
(k+1)) ≤ n · bs∗(f (k))

(Here f (0) denotes the univariate identity function.) In particular, for k ≥ 1, we have
min{bs0(f (k)), bs1(f

(k))} ≥ bs(f (k))/n and similarly for the fractional block sensitivity.

Note that the hypothesis that f is non-monotone is essential. If f is the n-variate OR function
then bs0(f

(k)) = nk while bs1(f
(k)) = 1. The hypothesis that f is not antimonotone is not essential

and is included for convenience.

Proof. We only prove the claim for block sensitivity. The case of fractional block sensitivity follows
by using the exact same reasoning for fractional block packings.

We start with the first inequality. We show it for the case b = 0, the case b = 1 is similar. Let
c ∈ {0, 1} such that bs(f (k)) = bsc(f

(k)) = N . Fix assignments α0, α1 to I(k) so that the selector
~α := (α0, α1) is f (k)-compatible and moreover, αc satisfies bsαc(f (k)) = N .

Since f is neither monotone nor anti-monotone, we can fix an assignment x to I such that
x ∈ f−1(0) and flipping some index i from c to 1− c in x results in an assignment x′ ∈ f−1(1). Let
X be the assignment to I(k+1) defined by X = x ◦ ~α. We claim that bsX(f (k+1)) ≥ N , which will
prove the lower bound.

To see this, note that for any block B belonging to Bαc(f (k)), we can construct a block lift(B) ∈
BX(f (k+1)) defined using composition as lift(B) := ei(B

j : j ∈ I), where ei is the singleton block
{i} and Bj = B for j = i and ∅ otherwise. Using this method, any block packing B in Bαb(f (k))
may be “lifted” to a block packing B′ = {lift(B) | B ∈ Bαb(f (k))} of the same size as B. Hence,
bsX(f (k+1)) ≥ bsαc(f (k)) = N , which proves the first inequality.

Next we prove the second inequality. Let X be an assignment to I(k+1); we want to show that
bsX(f (k+1)) ≤ n · bs(f (k)). Let B be any block packing in BX(f (k+1)) of maximum size. We may
assume that B contains minimal blocks only, that is, B ⊆ ∂BX(f (k+1)).

Let π denote the mapping from I(k+1) to Ik obtained by mapping i1, . . . , ik+1 to i2, . . . , i(k+1).

For i ∈ I, let Ui be the set of i1, . . . , ik+1 ∈ I(k+1) with i1 = i and let Xi be the assignment to
I(k) with Xi(j1, . . . , jk) = X(i, j1, . . . , jk). For each block B ∈ B, let Bi = B ∩ Ui. Since each

27

B ∈ B is a minimal block for f (k+1) at X, it follows that if Bi 6= ∅ then π(Bi) is a block for
f (k) at Xi (otherwise B − Bi would be a block for f (k+1) at X, contradicting the minimality of
B). Let Bi = {π(Bi) : B ∈ B, Bi 6= ∅}. Then Bi is a packing of blocks for f (k) at Xi. Since
for each B ∈ B, Bi is nonempty for at least one index i, we have

∑
i |Bi| ≥ |B|. It follows that

n · bs(f (k)) ≥ ∑
i bsXi

(f (k)) ≥ bsX(f (k+1)), as required.

Lemma 29. The limit limk→∞ bs(f (k))1/k exists and is finite.

Proof. It clearly suffices to show that limk→∞ log(bs(f (k)))/k exists and is finite. Finiteness is
trivial, since 1 ≤ bs(f (k)) ≤ nk and hence the sequence log(bs(f (k)))/k is bounded. To show
that the limit exists, we use Corollary 24. To show that {log(bs(f (k)))}k satisfies the hypothesis of
Corollary 24, it suffices to show that bs(f (k+ℓ)) = Ω(bs(f (k))bs(f (ℓ))), where the constant in the Ω(·)
is independent of k (but may depend on n). But by Lemma 26, we have bs(f (k+ℓ)) ≥ bs(f (k)) ·M ,
where M = min{bs0(f (ℓ)), bs1(f

(ℓ))}. By Lemma 28, we have M ≥ bs(f (ℓ))/n and thus, it follows
that bs(f (k+ℓ)) ≥ bs(f (k))bs(f (ℓ))/n and therefore, by Corollary 24, we are done.

Lemma 29 is useful since we can now analyze the limit of an arbitrary subsequence of the
sequence {bs(f (k))1/k}k that we are actually interested in.

We now proceed to the proof of Theorem 22. We will need that min{bs0(f (k)), bs1(f
(k))} → ∞

as k → ∞. By Corollary 27, this holds whenever min{bs0(f), bs1(f)} ≥ 2. We now look at what
happens when this is not the case. Without loss of generality assume that bs0(f) = 1 (since f is non-
monotone and hence non-constant, we have min{bs0(f), bs1(f)} ≥ 1). It can be checked that this
happens if and only if f is a conjunction of literals. Since f is neither monotone nor anti-monotone,
there must be at least one positive and one negative literal. In this case, it can be checked that
min{bs0(f (2)), bs1(f

(2))} ≥ 2. Thus, by Corollary 27, we see that min{bs0(f (2k)), bs1(f
(2k))} ≥ 2k

and by Lemma 28, we have min{bs0(f (2k+1)), bs1(f
(2k+1))} ≥ bs(f (2k)) ≥ 2k. It follows that

min{bs0(f (k)), bs1(f
(k))} → ∞ as k → ∞.

Let L denote limk→∞ bs∗(f (k))1/k. As bs(f (k)) ≤ bs∗(f (k)) for each k ≥ 1, we have
limk→∞ bs(f (k))1/k ≤ L. We now show that for any ε ∈ (0, 1), it is the case that
limk→∞ bs(f (k))1/k ≥ L(1− ε).

Fix any ε ∈ (0, 1). Let ℓ0 ∈ N be chosen large enough so that F = f (ℓ0) satisfies the following
conditions:

• bs∗(F) ≥ (L(1 − ε/4))ℓ0 ,

• n−1/ℓ0 ≥ (1− ε/2).

We will show that limk→∞ bs(F (k))1/kℓ0 ≥ L(1 − ε). Since limk→∞ bs(f (k))1/k =
limk→∞ bs(F (k))1/kℓ0 , this will conclude the proof of Theorem 22.

Recall from Section 2.6 that for any assignment z to the variables of F , bs∗z(F) =
limM→∞ bsMz (F)/M . Thus, there exists an m such that for any M ≥ m, bsM (F) ≥
M(L(1 − ε/2))ℓ0 . Since min{bs0(F (k)), bs1(F

(k))} → ∞ as k → ∞, there exists k0 ∈ N s.t.
min{bs0(F (k)), bs1(F

(k))} ≥ m for each k ≥ k0.
By Lemma 26, for k ≥ k0, we have bs(F

(k+1)) ≥ bsM (F), where M = min{bs0(F (k)), bs1(F
(k))}.

Since M ≥ m by our choice of k0 we know that bsM (F) ≥ M(L(1− ε/2))ℓ0 . Moreover, by Lemma
28, we know that min{bs0(F (k)), bs1(F

(k))} = min{bs0(f (ℓ0k)), bs1(f
(ℓ0k))} ≥ bs(F (k))/n. Thus, we

28

have for k ≥ k0, bs(F
(k+1)) ≥ (L(1 − ε/2))ℓ0 · bs(F (k))/n. Iterating this inequality we obtain for

any k ≥ k0,

bs(F (k)) ≥ (L(1− ε/2))ℓ0(k−k0) · bs(F (k0))/nk−k0

≥ (L(1− ε/2))ℓ0k

C · nk

where C > 0 is some quantity that is independent of k. Thus, we have

lim
k→∞

bs(F (k))1/kℓ0 ≥ (L(1 − ε/2))

n1/ℓ0

≥ L(1− ε/2)2 ≥ L(1− ε)

The second inequality above follows since n−1/ℓ0 ≥ (1 − ε/2). Thus, we have shown that
limk→∞ bs(f (k))1/k = limk→∞ bs(F (k))1/kℓ0 ≥ L(1 − ε). Since ε > 0 can be made arbitrarily
small, this shows that limk→∞ bs(f (k))1/k ≥ L and concludes the proof of Theorem 22.

4.3 Correcting a previous separation result

We use Theorem 22 to correct and clarify a couple of remarks from Aaronson’s paper [Aar08,
Section 5].

Aaronson considers a function f : {0, 1}6 → {0, 1} due to Bublitz et al. [BSW86] for the
purposes of creating some separating examples. A short description of the function follows (the
function is defined slightly differently by Bublitz et al.). The function f(x1, . . . , x6) is defined as
the following depth 2 decision tree with parity gates: First compute x1 ⊕ x2 ⊕ x3 ⊕ x4, if 0 then
output x1 ⊕ x2 ⊕ x5, else output x1 ⊕ x3 ⊕ x6. It can be checked that f has the following property
(the proof of which is omitted):

Lemma 30. For every z ∈ {0, 1}6, bsz(f) = 4, bs∗z(f) = C∗
z (f) = 4.5, and Cz(f) = 5.

1. It is claimed that bs(f (k)) = 4k and C(f (k)) = 5k and thus C(f (k)) = bs(f (k))log4 5 for every k ∈
N. However, it follows from Theorem 22 that for a boolean function g, limk→∞(bs(g(k)))1/k =
limk→∞(bs∗(g(k)))1/k as k → ∞, which may in general be significantly larger than bs(f)k.
In this case, by Lemma 30 and Theorem 15, it follows that (bs∗)lim(f) = 4.5 and hence, by
Theorem 22, for any ε > 0 and large enough k ∈ N depending on ε, bs(f (k)) ≥ (4.5 − ε)k.
In particular, this example only yields crit(C, bs) ≥ log4.5 5, which is smaller than the log4 5
separation claimed.

2. It is also claimed that the family f (k) yields polynomial separations between the block sensi-
tivity bs(·) and RC(·), where RC(F) for any boolean function F is the randomized certificate
complexity of f (see Section A). However, by Theorem 22, it follows that such an approach
(irrespective of the base function f) can never yield a polynomial gap between bs(·) and
RC(·), since

bslim(f) = (C∗)lim(f) = lim
k→∞

(RC(f (k)))1/k

where the last equality follows from Claim 38.

29

5 Separating examples

In this section we prove a tight lower bound of 2 on the critical exponent for C(f) and bs∗(f)
(and the same tight lower bound holds for the critical exponent for C(f) and bs∗(f).) We exhibit
two different families of boolean functions that attain this separation. We also exhibit a family of
boolean functions that proves a lower bound of 3/2 on the critical exponent of bs∗(f) and bs(f).

One of our examples uses iterated composition. The other two examples are obtained by
composing the n-bit OR function ORn with a suitable function g. We will need the following
simple fact:

Proposition 31. Let g be a non-constant boolean function and f = ORn ◦ g. Then for complexity
measure m ∈ {C, bs, bs∗} we have:

m1(f) = m1(g)

m0(f) = n ·m0(g).

Proof. Let I be the index set for the variables of g, so J = [n]× I is the index set for the variables
of f . For i ∈ [n], write Ji for the index subset {i} × I.

First we show m1(f) = m1(g). The function g is a subfunction of f (i.e., can be obtained from
f by restricting some variables) so m1(f) ≥ m1(g) for each of the above complexity measures m.
For the reverse inequality, we argue that C1(f) ≤ C1(g), the argument for the other two measures
is similar. Let α ∈ g−1(1) be an input for which Cα(g) is maximum. Construct an input β for f
by fixing the variables in Jn according to α and for each i ∈ [n− 1] fix the variables in Ji to some
input y for g such that g(y) = 0. It is easy to check that C1(f) ≤ Cβ(f) = Cα(g) = C1(g).

Next we show that m0(f) = n · m0(g). For this, write an assignment to the variables of f as
α1, . . . , αn where each αi is an assignment to the variables of g. We have f(α1, . . . , αn) = 0 if
and only if g(α1) = · · · = g(αn) = 0. It is easy to check that for each of the measures m under
consideration, if g(α1) = · · · = g(αn) = 0 then mα1,...,αn(f) = mα1(g) + · · · + mαn(g). Thus an
input in f−1(0) that maximizes mα1,...,αn(f) is one for which α1 = · · · = αn = α, where α satisfies
m0(g) = mα(g). This gives m0(f) = n ·m0(g).

5.1 Achieving quadratic separation between C(f) and bs(f)

5.1.1 A Probabilistic Construction

In this section we construct a sequence of n-variate functions gn (for n sufficiently large) such
that C0(gn) = Ω(n) and bs0(gn) = O(1). We then define fn = ORn ◦ gn. By Proposition 31, we
have C(fn) ≥ C0(fn) = n · C0(gn) = Ω(n2), while bs(fn) ≤ bs∗(fn) ≤ max(bs∗0(fn), bs

∗
1(fn)) ≤

max(nbs∗0(gn), bs
∗
1(gn)) = O(n).

This will prove:

Theorem 32. For every n ∈ N sufficiently large, there is a function f : {0, 1}n2 → {0, 1} such that
bs(f) ≤ bs∗(f) = O(n) and C(f) = Ω(n2).

Let us write δ(x, y) to denote the Hamming distance between x, y ∈ {0, 1}n. We define g =
gn : {0, 1}n → {0, 1} as follows (we view n as being sufficiently large). Choose x1, . . . , xN ∈ {0, 1}n

30

uniformly at random (with replacement) with N = 2n/50. We set g(xi) = 1 for each i, and g(x) = 0
otherwise.

Claim 33. With high probability, for all i, j distinct δ(xi, xj) ≥ n
100 .

Proof. Let Ai,j denote the event δ(xi, xj) < n
100 . Let x be a fixed point in {0, 1}n and B(x, r)

denote the Hamming ball of radius r and center x. Then |B(x, r)| =
r∑

i=0

(n
i

)
. Thus we have

B
(
x,

n

100

)
< 2

(
n

n/100

)
≤ 2(100e)n/100 < 2n/10.

These inequalities imply that

P(Ai,j) =
B
(
x, n

100

)

2n
< 2−9n/10.

By the union bound the hypothesis fails with probability at most

2−9n/10

(
N

2

)
= o(1).

If the hypothesis of the claim holds and g(x) = 0, then all but possibly one of the blocks for g at
x will have size at least n

200 . Thus, at most 200 blocks can be packed and bs0(g) ≤ 200. Likewise,
this bound on the size of blocks implies that bs∗0(g) ≤ 200.

We now argue that all sufficiently large subcubes of {0, 1}n will contain a 1 of g almost surely.

Claim 34. With high probability, C0(g) ≥ n
100

Proof. Its enough to show that every subcube of co-dimension n
100 will contain a y such that

g(y) = 1. For each S which is a subcube of co-dimension n
100 , denote AS as the event g(x) = 0 for

all x ∈ S. Then

P(AS) ≤ (1− 2−n/100)N < exp(− N

2n/100
) = exp(−2n/100)

There are
(n
n/100

)
2n/100 < 22n subcubes of co-dimension n

100 . Thus by union bound the hypothesis
fails with probability at most

exp(−2n/100)22n = o(1).

We have shown, for sufficiently large n, that with high probability a random function g satisfies
bs∗0(g) ≤ 200 and C0(g) ≥ n

100 . Thus for each n sufficiently large, there exists a function gn with
this property.

31

5.1.2 A Construction Using Iterated Composition

In this section we construct a function f on n variables for which C lim(f) ≥ n
2 and (C∗)lim(f) ≤

4
√
n. For any ǫ > 0, we may choose n large enough to conclude that crit(C∗, C) ≥ 2− ǫ.
Let d, k, n be positive integers such that n ≥ k ≥ d, d | k, and k | n. We define f : {0, 1}n →

{0, 1} to be the following boolean function on n variables:
View the n indices of the input x as being divided into n

k disjoint groups, with each group
containing k indices. f accepts if and only if |x| ≥ d and all the 1’s in x can be found in a single
group. Note that f(x) = 1 implies |x| ≤ k.

Although f shows no separation between bs(f) and C(f), the key is that both the zero and
one certificate complexity for f are large, while the zero block sensitivity is small. Also, any
1-assignment for f contains many 0 indices.

In the following analysis, we assume n is an even perfect square and set k := 2
√
n and d :=

√
n.

We wish to bound C lim(f) and (C∗)lim(f). By Theorem 15, it is enough to bound Ĉ(f) and Ĉ∗(f)
instead.

Claim 35. For the boolean function f : {0, 1}n → {0, 1} defined above we have:

Ĉ∗(f) ≤ 4
√
n.

Proof. We proceed by showing that for any assignment selector ~α = (α0, α1), we can find a pair of
hitting sets (w0, w1) such that the corresponding profile matrix has all eigenvalues less than 4

√
n.

We look at the 0 assignments first, and for each possible α0 we exhibit a small fractional hitting
set w0.

Case 1, α0 = (0, 0, . . . , 0):
Here we choose w0 := (1d ,

1
d , · · · , 1d). It follows that, w0 is a fractional hitting set as each block

for this assignment has size at least d. For this hitting set the profile vector pα0(w0) = (nd , 0).
Case 2, |α0| = j, and all 1’s in α0 appear in the same group:
Note this means that j < d as α0 is a 0 assignment. Let X1 be the set of indices for α0 which

are 1’s, let G1 be the group which contains X1. Pick an s ∈ X1, we define a fractional hitting set
w0 to assign weight 1 to s, weight 1 to all indices in G1 \X1, and weight 0 otherwise. To see that
w0 is indeed a hitting set, note that if B is a block for α0, then either B ⊆ G1 or X1 ⊂ B. If
X1 ⊂ B, then s ∈ B and it has been assigned weight 1. If B ⊆ G1 then B must contain a 0 index
in G1 as |α0| < d, this index was assigned weight 1 by w0. Thus w0 is a hitting set and the profile
vector pα0(w0) = (k − j, 1) ≤ (k, 1).

Case 3, At least two different groups in α0 contain 1’s:
Let G1, G2 be two distinct groups containing 1’s. Let X1,X2 be the set of indices which are

assigned 1 by α0 in G1, G2 respectively. Then if B is a block for α0, either X1 ⊆ B or X2 ⊆ B. We
define w0 to assign weight 1 to an index in X1 and in index in X2. This will be a hitting set, and
the profile vector pα0(w0) = (0, 2). This concludes the analysis of each possible 0 assignment.

The 1 assignments α1:

If α1 is a 1 assignment then |α1| ≥ d and all the 1’s appear in a single group, call it G1. In
this case we define w1 to assign weight 1 to all indices outside G1, and weight 1 to d indices in G1

which are assigned 1 by α1. This will be a hitting set as any block must contain a 0 index outside
of G1 or leave less than d 1’s inside of G1 after flipping the indices in B. Here the profile vector
pα1(w1) = (n− k, d).

32

If M,M ′ are 2 × 2 matrices with nonnegative entries, and M ≤ M ′ entry by entry, then
ρ(M) ≤ ρ(M ′). Considering this along with the 3 cases of 0 assignments above, bounding Ĉ∗(f)
reduces to bounding the largest eigenvalues of the following matrices:

[
n
d 0

n− k d

] [
k 1

n− k d

] [
0 2

n− k d

]

Here the second matrix has the largest eigenvalue of the three. It is easy to check that k = 2
√
n,

d =
√
n implies its largest eigenvalue is less than 4

√
n.

Claim 36.

Ĉ(f) ≥ n

2
.

Proof. To prove this we choose an assignment selector ~α for which all profile matrices A ∈ M~α(f)
have an eigenvalue larger than n

2 . We set α0 := (0, 0, · · · , 0) and α1 to have exactly d 1’s in the
first group, and be identically 0 in every other group.

Any certificate for α0 must fix k−d+1 indices in each group, thus must fix n
k (k−d+1) in total.

It follows that any minimum certificate w0 (viewed as a boolean valued weight function) yields the
profile vector pα0(w0) = (nk (k − d+ 1), 0).

Likewise, any certificate for α1 must fix all 1 indices (there are d of them), and fix all the 0 indices
outside the unique group containing the 1’s. Thus any minimal profile vector pα1(w1) = (d, n− k).
The claim then reduces to looking at the maximum eigenvalue of the matrix

A =

[
n
k (k − d+ 1) 0

n− k d

]
.

When k = 2
√
n and d =

√
n this matrix has an eigenvalue larger than n

2 .

5.2 A separation between fractional block sensitivity and block sensitivity

Theorem 37. For infinitely many natural numbers n, there is an n2-variate function fn :
{0, 1}n2 → {0, 1} s.t. bs(fn) = O(n) and bs∗(fn) = Ω(n3/2). Therefore crit(bs∗, bs) ≥ 3/2.

To construct fn, we build an n-variate function g = gn : {0, 1}n → {0, 1} satisfying bs0(g) =
O(1) and bs∗0(g) = Ω(

√
n). We then define fn = ORn ◦ g. Using Proposition 31 we conclude

that bs(fn) = O(n) and bs∗(g) = Ω(n3/2). (In a previous version of this paper our construction
for the function g was random, and gave a weaker bound of Ω(

√
n/ log n) for bs∗0(g), which was

still enough to show crit(bs∗, bs) ≥ 3/2. Avishay Tal (personal communication) gave an alternate
explicit construction which gave the bound of the theorem, which is what we present here.)

The function g = gn is defined for any n of the form
(s
2

)
for an integer s. Identify the input bits

of g with the edges of the complete graph Ks. An assignment α to the variables of g can be viewed
as an undirected graph Gα consisting of those edges assigned 1 by α. We denote by Hi the star
centered at vertex i and by xi the corresponding input in {0, 1}I1 . The function g(x) is defined to
be 1 iff x = xi for some i ∈ [n].

We now show that g satisfies:

(a) g(0n) = 0,

33

(b) bs∗0n(g) ≥ s/2 = Θ(
√
n),

(c) bs0(g) ≤ 3.

Property (a) is immediate. For property (b), note that the blocks for g at 0s are the stars Hi,
and each edge appears in exactly 2 of these stars, so putting weight 1/2 on each of these stars gives
a fractional packing of blocks of total weight s/2.

We now prove property (c). Fix any assignment a ∈ g−1(0) and let Ga denote the corresponding
graph. We show that bsa(g) ≤ 3. Assume, for the sake of contradiction, that bsa(g) ≥ 4. Then,
there exists four edge-disjoint graphs J1, J2, J3, and J4 such that starting from a and flipping all
the bits indexed by Jℓ (for any ℓ ∈ [4]) produces one of the graphs Hi. By renaming input bits if
necessary, we may assume that the star graphs thus produced are H1,H2,H3, and H4 respectively.
Thus Ji = Ga⊕Hi, where ⊕ denotes symmetric difference. Since edge {1, 2} belongs to H1 and H2

we must have {1, 2} ∈ Ga so that J1 and J2 are disjoint. But then {1, 2} ∈ J3 ∩ J4, contradicting
their disjointness.

6 Acknowledgements

We would like to thank Avishay Tal for his permission to include his separating example used in
the proof of Theorem 37.

References

[Aar08] Scott Aaronson. Quantum certificate complexity. J. Comput. Syst. Sci., 74(3):313–322,
2008.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[BSW86] Siegfried Bublitz, Ute Schurfeld, and Ingo Wegener. Properties of complexity measures
for PRAMs and WRAMs. Theor. Comput. Sci., 48(1):53–73, 1986.

[HKP11] Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the Sensitivity
Conjecture. Number 4 in Graduate Surveys. Theory of Computing Library, 2011.

[Mey00] Carl D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[Mid04] G. Midrijanis. Exact quantum query complexity for total boolean functions. arXiv
preprint quant-ph/0403168, 2004.

[Nis91] Noam Nisan. CREW PRAMs and Decision Trees. SIAM J. Comput., 20(6):999–1007,
1991.

[SUB11] E.R. Scheinerman, D.H. Ullman, and C. Berge. Fractional Graph Theory: A Rational Ap-
proach to the Theory of Graphs. Dover Books on Mathematics Series. Dover Publications,
2011.

34

[Tal12] Avishay Tal. Properties and applications of boolean function composition. Electronic
Colloquium on Computational Complexity (ECCC), 19:163, 2012.

[Tal13] Avishay Tal. Properties and applications of boolean function composition. In ITCS,
pages 441–454, 2013.

A Fractional Certificate complexity vs. Randomized Certificate

complexity

In [Aar08], Aaronson introduced the notion of the Randomized Certificate complexity of a boolean
function g : {0, 1}n → {0, 1}.

For g as above and an input z ∈ {0, 1}n, a Randomized Verifier for z is a non-adaptive random-
ized query algorithm that expects an n-bit input z′ and behaves as follows.1 The query algorithm
queries each bit z′i of its input independently with some fixed probability λi ∈ [0, 1] and accepts iff
it finds no disagreement between z′ and z. Moreover, the query algorithm satisfies the following
soundness property: given any z′ s.t. g(z′) 6= g(z), it rejects z′ with probability at least 1/2.

The cost of such a verifier is the expected number of bits of z′ that are queried, which
is

∑
i∈[n] λi. The Randomized Certificate complexity of f at z is defined to be RCz(f) :=

min {c | There is a cost c verifier for z}. The Randomized Certificate complexity of f is defined
to be RC(f) := maxz∈{0,1}n RCz(f).

The following relation between RC(g) and C∗(g) can be proved.

Claim 38. Fix any boolean function g : {0, 1}n → {0, 1} and any z ∈ {0, 1}n. Then, RCz(g) =
Θ(C∗

z (g)). That is, the quantities RCz(g) and C∗
z (g) are within a fixed universal constant factor

for any g, z as above. In particular, RC(g) = Θ(C∗(g)).

Proof. We first show that C∗
z (g) = O(RCz(g)). Fix an optimal verifier for z and let λi ∈ [0, 1] be

the probability that it queries the ith bit of its input z′. Fix any block B ∈ Bz(g) and consider
the input z′ obtained by starting with z and flipping the bits indexed by B. Since g(z′) 6= g(z),
the soundness property of the verifier implies that the verifier probes a bit in B is at least 1/2; in
particular, by the union bound,

∑
i∈B λi ≥ 1/2.

Consider the function σ : [n] → [0, 1] defined by σ(i) := min{2λi, 1}. The above immediately
implies that for any block B ∈ Bz(g), we have

∑
i∈B σ(i) ≥ 1 and hence σ ∈ W∗

z (g). Moreover,
|σ| ≤ 2

∑
i λi = O(RCz(g)) since we considered an optimal verifier for z. Thus, C∗

z (g) ≤ |σ| =
O(RCz(g)).

We now show that RCz(g) = O(C∗
z (g)). Fix an optimal fractional certificate σ ∈ W∗

z (g).
Consider the randomized query algorithm that queries each bit of its n-bit input z′ with probability
σ(i) and rejects on finding any disagreement with z. To show that this gives us a verifier for z,
we need to verify the soundness property. Given any input z′ s.t. g(z′) 6= g(z), the set of indices
B ⊆ [n] where z and z′ differ is a block of g at z and hence, we must have

∑
i∈B σ(i) ≥ 1.

Thus, the probability that the verifier accepts z′ is equal to
∏

i∈B(1 − σ(i)) ≤
exp{−∑

i∈B σ(i)} ≤ e−1 < 1/2. This proves the soundness property of the verifier. Note

1Strictly speaking, this corresponds to the definition of non-adaptive Randomized Certificate complexity from
Aaronson’s paper. However, by Lemma 2.1 of [Aar08], it follows that this is within a fixed universal constant of the
Randomized Certificate complexity of f .

35

that the expected number of queries made by the verifier is exactly |σ| = C∗
z (g) and hence,

RCz(g) ≤ C∗
z (g).

36

	1 Introduction
	1.1 Measures, critical exponents and iterated limits
	1.2 The contributions of this paper

	2 Preliminaries
	2.1 Combinatorial objects over an index set I
	2.2 Packing and covering in hypergraphs
	2.3 Assemblages
	2.4 Local complexity measures
	2.5 Assemblage-based measures
	2.6 Block sensitivity and its variants
	2.7 Compositions
	2.7.1 Compositions of various objects

	2.8 Boolean labelings of trees, and compositions of assignment selectors

	3 The growth of various complexity measures under iterated composition
	3.1 Analysing m(fk)
	3.2 Filling in the details
	3.3 Facts about non-negative matrices

	4 The behaviour of Block sensitivity under iterated composition
	4.1 Some simple claims
	4.2 Proof of Theorem 22
	4.3 Correcting a previous separation result

	5 Separating examples
	5.1 Achieving quadratic separation between C(f) and bs(f)
	5.1.1 A Probabilistic Construction
	5.1.2 A Construction Using Iterated Composition

	5.2 A separation between fractional block sensitivity and block sensitivity

	6 Acknowledgements
	A Fractional Certificate complexity vs. Randomized Certificate complexity

