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Abstract

This work revisits the PCP Verifiers used in the works of Håstad [Hås01], Guruswami et al. [GHS02],
Holmerin [Hol02] and Guruswami [Gur00] forsatisfiableMAX -E3-SAT and MAX -Ek-SET-SPLITTING,
and independent set in2-colorable4-uniform hypergraphs. We provide simpler and more efficientPCP
Verifiers to prove the following improved hardness results:

Assuming that NP6⊆ DTIME(NO(log logN)),

• There is no polynomial time algorithm that, given ann-vertex2-colorable4-uniform hypergraph,
finds an independent set of n

(logn)c vertices, for some constantc > 0.

• There is no polynomial time algorithm that satisfies7
8 + 1

(logn)c fraction of the clauses of asatis-
fiableMAX -E3-SAT instance of sizen, for some constantc > 0.

• For any fixedk ≥ 4, there is no polynomial time algorithm that finds a partitionsplitting (1 −
2−k+1) + 1

(logn)c fraction of thek-sets of asatisfiableMAX -Ek-SET-SPLITTING instance of size
n, for some constantc > 0.

Our hardness factor for independent set in2-colorable4-uniform hypergraphs is an exponential im-
provement over the previous results of Guruswami et al. [GHS02] and Holmerin [Hol02]. Similarly,
our inapproximability of(logn)−c beyond the random assignment threshold for MAX -E3-SAT and
MAX -Ek-SET-SPLITTING is an exponential improvement over the previous bounds proved in [Hås01],
[Hol02] and [Gur00].

The PCP Verifiers used in our results avoid the use of avariable biasparameter used in previous
works, which leads to the improved hardness thresholds in addition to simplifying the analysis substan-
tially. Apart from standard techniques from Fourier Analysis, for the first mentioned result we use a
mixing estimate of Markov Chains based onuniform reverse hypercontractivity over general product
spaces from the work of Mossel et al. [MOS13].
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Researcher at IBM T.J. Watson Research Center, NY, USA.

http://arxiv.org/abs/1312.2915v1


1 Introduction

A k-uniform hypergraph consists of a set ofverticesand a collection ofhyperedgeswhere each hyperedge
is a subset of exactlyk vertices. A hypergraph is said to beq-colorable if its vertices can be colored withq
distinct colors such that no hyperedge contains all vertices of the same color. A related notion is that of an
independent set, which is a subset of vertices that does not completely contain any hyperedge. It is easy to
see that aq-colorable hypergraph has at least one independent set ofq−1 fraction of vertices, i.e.relative
size.

Computing the minimum numberq – thechromatic number– of colors required to color a hypergraph
is a very well studied optimization problem. There is a simple polynomial time algorithm to decide whether
a given graph (k = 2) can be colored usingq = 2 colors, i.e. is bipartite. However, fork ≥ 3 or q ≥ 3,
this problem is NP-hard. A natural question in this context is how well can the chromatic number be
approximated.

The first strong inapproximability for hypergraph coloringwas given by Guruswami, Håstad and Sudan
[GHS02] who showed that it is NP-hard to color ann-vertex2-colorable4-uniform hypergraph using con-
stantly many colors, and quasi-NP-hard1 to color it withO

(
(log log log n)−1 log log n

)
colors. They used a

notion ofcovering complexitycombined with techniques developed in the seminal work of H˚astad [Hås01].
In particular, the Probabilistically Checkable Proof (PCP) verifier of [GHS02] is identical to the one used
in [Hås01] for the satisfiable MAX -E4-SET-SPLITTING problem. Subsequently, Holmerin [Hol02] used a
more direct approach – with the same PCP verifier – to obtain a qualitatively stronger result. Holmerin
showed that, given a2-colorable4-uniform it is NP-hard to compute an independent set of relative sizeδ,
for any constantδ > 0, and it is quasi-NP-hard to do so forδ = Ω

(
(log log n)−1 log log log n

)
.

In this work we prove the following quantitatively strongerresult with an exponential improvement in
the hardness factor.

Theorem 1.1. Given ann-vertex2-colorable4-uniform hypergraph it is quasi-NP-hard to find an indepen-
dent set of relative size 1

(logn)c for some constantc > 0.

As mentioned above, the results of [GHS02] and [Hol02] are based on the PCP verifier used by Håstad
[Hås01] for satisfiable MAX -E4-SET-SPLITTING. In this problem the input is a ground set and a collection
of its 4-sets, and the goal is to partition the ground set into two subsets to maximize the number ofsplit
4-sets. Another fundamental constraint satisfaction problem studied by Håstad [Hås01] is MAX -E3-SAT,
where the goal is to satisfy the maximum number of a collection of 3-literal clauses. Håstad showed that
approximating both these problems – on satisfiable instances – withinδ of their random assignment threshold
of 7

8 is NP-hard for any constantδ > 0 and quasi-NP-hard forδ = Ω
(
(log log n)−1 log log log n

)
. Using

a strengthened analysis of Holmerin [Hol02], Guruswami [Gur00] extended the inapproximability to MAX -
Ek-SET-SPLITTING, for any constantk ≥ 4, with the corresponding threshold of

(
1− 2−k+1

)
.

In this work we prove the following hardness thresholds for these problems improving exponentially the
non-constant parameterδ.

Theorem 1.2. Given an instance ofMAX -E3-SAT of sizen, it is quasi-NP-hard to decide whether it is
satisfiable or at most78 + δ fraction of the clauses can be satisfied, whereδ = 1

(logn)c for some positive
constantc > 0.

1For ease of presentation, in this paper we exclusively use astrongernotion ofquasi-NP-hardness, i.e. a problem is quasi-NP-
hard if it admits a DTIME(NO(log logN)) reduction from3SAT. This differs from the weaker requirement of DTIME(Npoly(logN))
reductions.
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Theorem 1.3. For any fixedk ≥ 4, given an instance ofMAX -Ek-SET-SPLITTING of sizen, it is quasi-
NP-hard to decide whether there is a partition of the ground set into two subsets splitting all thek-sets
in the collection or at most

(
1− 2−k+1

)
+ δ fraction of thek-sets are split by any such partition, where

δ = 1
(logn)c

for some positive constantc > 0.

The results of this paper are obtained using simpler PCP verifiers for the above problems, compared to
the ones used by Håstad [Hås01], Guruswami et al. [GHS02] and Holmerin [Hol02]. In particular, we avoid
the use of avariable biasparameter, which yields an exponential improvement in the inapproximability
thresholds. This also considerably simplifies our analysiscompared to previous works. In addition, for
proving Theorem 1.1, we are able to use an estimate of the mixing probability of Markov Chains over
general product spaces shown – usinguniform reverse hypercontractivity – by Mossel et al. [MOS13]. The
proofs of Theorems 1.2 and 1.3 use well known techniques fromFourier Analysis, while avoiding some of
the complications in previous results. We remark that the starting point of our hardness reductions is the
standard Label Cover problem instead of the so-calledSmoothLabel Cover which can also be used to avoid
the variable bias but incurs the same loss in the hardness factors [Kho]. Section 1.4 elaborates more on the
techniques used in this paper.

Our results also yield similar improvements in the hardnessfor satisfiable instances for other predicates
whose inapproximability in [Hås01] is shown to follow fromthe PCP verifiers used for satisfiable MAX -
E3-SAT and MAX -E4-SET-SPLITTING. The reader is referred to Theorems 6.15, 6.18, 7.17 and 7.18and
Section 9 of [Hås01] for more details on these predicates.

1.1 Problem Definition

For a hypergraphG, let IS(G) be the size of its maximum independent set and letχ(G) be its chromatic
number. The following is the problem of finding independent sets inq-colorable hypergraphs.

Definition 1.4. ISCOLOR(k, q,Q) : Given ak-uniform hypergraphG(V,E), decide between,

(i) YES Case:χ(G) ≤ q. (ii) NO Case:IS(G) < |V |
Q .

The problem defined above is a generalization of hypergraph coloring: if ISCOLOR(k, q,Q) is NP-hard
for some parametersq,Q ∈ Z

+ then it is NP-hard to color aq-colorablek-uniform hypergraph withQ
colors.

The following constraint satisfaction problems are studied in this paper.

Definition 1.5. An Ek-CNF formula is a conjunction of clauses (disjunctions), where each clause has
exactlyk literals. It is said to besatisfiableis there is an assignment to the variables such that each clause
has at least one true literal, i.e. is satisfied.

Definition 1.6. An instance ofMAX -Ek-SAT is anEk-CNF formula, and the goal is to find an assignment
to satisfy the maximum number of clauses. In satisfiableMAX -Ek-SAT, the input is a satisfiableEk-CNF
formula.

In this paper we study the above fork = 3, i.e. MAX -E3-SAT.

Definition 1.7. An instance ofMAX -Ek-SET-SPLITTING is a ground set and a collection of its subsets,
each of size exactlyk. The goal is to find a partition of the ground set into two subsets to maximize the
number ofsplit k-sets in the collection, i.e. which are not contained in one of the subsets of the partition. In
satisfiableMAX -Ek-SET-SPLITTING, the input admits a partition that splits allk-sets in the collection.
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1.2 Previous Work

The problem of finding large independent sets inq-colorable graphs and hypergraphs (for small values ofq)
is very well studied algorithmically. On2-colorable, i.e. bipartite, graphs, the maximum independent set can
be computed in polynomial time. A long line of research – [Wig83], [Blu94], [KMS98], [BK97], [ACC06],
and [KT12] – has shown that a3-colorable graph can be efficiently colored withnα colors thus solving
ISCOLOR(2, 3, nα). The current best value ofα ≈ 0.2038 is due to [KT12]. For2-colorable3-uniform
hypergraphs Krivelevich et al. [KNS01] gave a coloring algorithm usingO(n1/5) colors. An upper bound of
O(n3/4) was shown for coloring2-colorable4-uniform hypergraphs by Chen and Frize [CF96] and Kelsen,
Mahajan and Ramesh [KMH96].

On the complexity side, the work of Guruswami, Håstad and Sudan [GHS02] and Holmerin [Hol02]
showed that ISCOLOR

(
4, 2, O

(
(log log log n)−1(log log n)

))
is quasi-NP-hard. Khot [Kho02a, Kho02b]

showed the inapproximability of ISCOLOR(4, 5, (log n)c) and ISCOLOR(3, 3, (log log n)c). Assuming the
so calledAlpha Conjecture, Dinur et al. [DMR09] showed that ISCOLOR(2, 3, C) is NP-hard for arbitrarily
large constantC > 0. Recently, assuming thed-to-1 Games Conjecture, Khot and Saket [KS14] showed
that ISCOLOR(3, 2, C) is similarly NP-hard.

In another recent work, Dinur and Guruswami [DG13] showed a hardness factor of exp
(
2
√
log logn

)
for

a variant of coloring2-colorable6-uniform hypergraphs. They also showed that ISCOLOR(6, 2, (log n)c)
is quasi-NP-hard. The former result is obtained via a novel use of the recently introducedShort Code,
while the latter result uses a more standard PCP verifier based on theLong Code. Building upon [DG13]
and concurrent to our work, Guruswami, Harsha, Håstad, Srinivasan and Varma [GHH+13] proved the first
super-polylogarithmic hardness for hypergraph coloring showing, in particular, the hardness of

ISCOLOR
(
8, 2,exp

(
2
√
log logn

))
, ISCOLOR

(
4, 4,exp

(
2
√
log logn

))
and ISCOLOR

(
3, 3, (log n)O(1/ log log logn)

)
.

However, previous to our work the best inapproximability for case of2-colorable4-uniform hypergraphs re-
mained the result of [GHS02].

For satisfiable MAX -E3-SAT studied in this paper, the random assignment gives a7
8 approximation.

Karloff and Zwick [KZ97] showed a semi-definite programming(SDP) relaxation based algorithm yields
the same factor on instances where each clause hasat most3 literals. Their algorithm can be used to obtain
a (folklore) 7

8 + δ approximation in time poly(n)2O(δn). Håstad [Hås01] showed the inapproximability
of satisfiable MAX -E3-SAT beyond the random assignment threshold. In particularan approximation of
7
8 + δ is NP-hard for any constantδ > 0 and quasi-NP-hard forδ = Ω

(
(log log n)−1(log log log n)

)
. On

the other hand, Max-E3-Set-Splitting is known to admit an approximation factor of0.912 in the satisfiable
case, while the best inapproximability is1920 + δ by Guruswami [Gur00]. However, satisfiable MAX -E4-
SET-SPLITTING was shown by Håstad [Hås01] to be hard to approximate beyond its random assignment
threshold, i.e. an approximation factor of7

8 + δ is NP-hard for for any constantδ > 0 and quasi-NP-
hard forδ = Ω

(
(log log n)−1(log log log n)

)
. Guruswami [Gur00] extended this to satisfiable MAX -Ek-

SET-SPLITTING for k ≥ 5 with a corresponding inapproximability of
(
1− 2−k+1

)
+ δ. The techniques

used in the above results can also be combined with the subconstant error Label Cover of Moshkovitz and
Raz [MR10] to obtain NP-hardness forδ = Ω

(
(log log n)−O(1)

)
.

1.3 Our Results

This paper shows the following quasi-NP-hardness results obtained via DTIME
(
NO(log logN)

)
reductions

from 3SAT.

Theorem. [Theorem 1.1] ISCOLOR(4, 2, (log n)c) is quasi-NP-hard for some constantc > 0.
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Theorem. [Theorem 1.2]SatisfiableMAX -E3-SAT onn variables is quasi-NP-hard to approximate within
7
8 +

1
(log n)c for some constantc > 0.

Theorem. [Theorem 1.3]For anyk ≥ 4, satisfiableMAX -Ek-SET-SPLITTING on a ground set ofn ele-
ments is quasi-NP-hard to approximate within

(
1− 2−k+1

)
+ 1

(logn)c for some constantc > 0.

The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 4respectively. Theorem 1.3 follows
from the following inapproximability of MAX -E4-SET-SPLITTING.

Theorem 1.8. There is a DTIME
(
NO(log logN)

)
reduction from3SAT to an instance ofMAX -E4-SET-

SPLITTING over a ground set of sizen such that:

YES Case:There is a partition of the ground set which splits every4-set of the instance.

NO Case:Any fractionρ > 0 of the ground set completely contains at leastρ4 − 1
(log n)c fraction of the

4-sets of the instance, for some constantc > 0.

Theorem 1.8 is proved in Section 5. For the reduction from Theorem 1.8 to Theorem 1.3 we refer the
reader to Theorem 8 of [Gur00].

1.4 Techniques

The results of this paper, as well as those of [Hås01], [GHS02] and [Hol02] are obtained by constructing
PCPs based on Long Codes, i.e. the verifier accepts or rejectsbased on a3 or 4 query test of the sup-
posed Long Code encodings. The main technical difference from previous works is our construction of the
these tests. Let us for now focus on PCP verifier used to prove hardness of independent set in2-colorable
4-uniform hypergraphs, and abstract out the essence of the verifier’s test. The main ingredient is a joint
distribution overx, x′, y, y′ ∈ {−1, 1}d for some parameterd, to satisfy (among others) the following prop-
erty: for eachi, j ∈ [d], (xi, x′i, yj , y

′
j) 6∈ {(1, 1, 1, 1), (−1,−1,−1,−1)}. The tuplesx andx′ constitute

the building blocks of two queries made by the verifier to one purported Long Code encoding, whereasy
andy′ correspond to those made to a second encoding.

The difference of our PCP test in comparison to that of previous works is illustrated in the distribution
of the pair(x, x′) (which is identical to that of(y, y′)). In previous works this is induced by the following
randomized process. Selectx uniformly at random and with probability12 setx′ = −x, otherwise: for each
i ∈ [d] independently, setx′i = xi with probability1− ε andx′i = −xi with probabilityε. Hereε is a bias
parameter which itself is chosen from an appropriate distribution. This variable bias leads to an exponential
loss in the hardness factor.

In our case, the distribution on(x, x′) is simpler and obtained as follows. Selectx u.a.r. and with
probability 1

2 setx′ = −x, otherwise selectx′ u.a.r. This test does not use any variable bias. Additionally,
−x′ is a 1

2 -correlated copy ofx which allows us to use results of Mossel, Oleszkiewicz and Sen [MOS13] to
estimate the mixing probability of the corresponding Markov Chain. This estimate is based on the uniform
reverse hypercontractivity proved in the same work, wherein the parameters do not depend on the measure
of the smallest atom in the probability space. This property– unlike the usual hypercontractivity inequality
– is crucial for us, as the smallest atom in our application has measure exponential ind, which one cannot
afford.

The PCP verifiers for satisfiable MAX -E3-SAT and MAX -E4-SET-SPLITTING also use similar distri-
butions as above. While their analysis does not require any mixing probability estimate, the avoidance of
the variable bias improves the inapproximability threshold and simplifies the analysis substantially.
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2 Preliminaries

Let us define the following notion ofρ-correlated spaces used by Mossel et al. [MOS13].

Definition 2.1. Consider a product space(Ω, µ) = (
∏n

i=1Ωi,⊗
n
i=1µi) where(Ωi, µi) are finite probability

spaces. We say that(X,Y ) ∈ Ω2 are ρ-correlated ifX is distributed according toµ and the conditional
distribution ofY givenX is as follows: for eachi independently, with probabilityρ, Yi = Xi and with
probability 1− ρ, Yi is sampled independently fromµi.

For our analysis in Section 3 we require an estimate of the mixing probability of Markov Chains over
general product spaces. The corresponding bound for the case of the boolean hypercube was proved by
Mossel, O’Donnell, Regev, Steif and Sudakov [MOR+06] using reverse hypercontractivity over the boolean
domain. The generalization below was subsequently shown byMossel et al. [MOS13], using uniform
reverse hypercontractivity over general product spaces proved in the same work. We refer the reader to
[MOS13] for more details.

Theorem 2.2. Let (Ω, µ) be the product probability space in Definition 2.1. LetA,B ⊆ Ω be two sets
such thatµ{A}, µ{B} ≥ δ ≥ 0. LetX be distributed according to the product measureµ and Y be a
ρ-correlated copy ofX for some0 ≤ ρ ≤ 1. Then,

Pr [X ∈ A,Y ∈ B] ≥ δ
2−

√
ρ

1−
√

ρ .

The starting point of the reductions in this paper is the LABELCOVER problem which is defined as
follows.

Definition 2.3. An instanceL of LABELCOVER consists of a bipartite graphG(U, V,E) along with label
sets[k] and [m]. For each edgee betweenu ∈ U and v ∈ V , there is a projectionπvu : [m] 7→ [k]. A
labeling lu ∈ [k] to u and lv ∈ [m] to v satisfies the edge ifπvu(lv) = lu. The goal is to find a labeling ofU
andV to satisfy the maximum number of edges.

The inapproximability of LABELCOVER stated below follows from the PCP Theorem [AS98, ALM+98],
Raz’s Parallel Repetition Theorem [Raz98] and a structuralproperty proved by Håstad [Hås01].

Theorem 2.4. For every positive integerr, there is a deterministicNO(r) time reduction from a3SAT
instance of sizeN to an instanceL(G(U, V,E), {πvu}{v,u}∈E , [k], [m]) of LABELCOVER with the following
properties:

a. |U |, |V | ≤ NO(r). k,m ≤ 23r. G is bi-regular with left and right degrees bounded by2O(r).

b. There is a universal constantc0 > 0 such that for anyv ∈ V andS ⊆ [m], taking an expectation
over a random neighboru of v,

E

[
|πvu(S)|

−1
]
≤ |S|−2c0 .

The above implies that with probability over a random neighbor u of v,

Pr [|πvu(S)| < |S|c0 ] ≤ |S|−c0 .

c. There is a universal constantγ0 > 0 such that,

YES Case:If the 3SAT instance is satisfiable then there is a labeling toU andV that satisfies all
edges ofL.

NO Case:If the 3SAT instance is unsatisfiable then any labeling toU andV satisfies at most2−γ0r

fraction of the edges.
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3 Independent Set in2-Colorable 4-Uniform Hypergraphs

In this section we give a hardness reduction from an instanceof LABELCOVER to a4-uniform hypergraph
proving Theorem 1.1.

The input is an instanceL of LABELCOVER from Theorem 2.4 consisting of a bipartite graphG(U, V,E),
label sets[k] and[m] and projections{πvu : [m] 7→ [k] | {u, v} ∈ E, u ∈ U, v ∈ V }. The following is the
construction of the4-uniform hypergraphG(H, E).

Vertices. For each vertexv ∈ V , we have a copy of the binary Long Code over domain[m], viz. Hv :=
{−1, 1}m. Clearly the number of vertices in eachHv is the same :2m. The set of verticesH is the union of
all the copies, i.e.H = ∪v∈V Hv.

Hyperedges.The hyperedgesE are added via the following procedure.

1. Choose a vertexu ∈ U u.a.r and two of its neighborsv,w ∈ V independently and u.a.r.

2. Letx, x′ ∈ Hv andy, y′ ∈ Hw be chosen as follows. For eachi ∈ [k], with probability 1
2 do Step 2a

and with probability12 do Step 2b.

2a. Independently for eachj ∈ π−1
vu (i) choosexj u.a.r. from{−1, 1} and setx′j to be−xj. Inde-

pendently for eachj ∈ π−1
wu(i) chooseyj andy′j independently and u.a.r. from{−1, 1}.

2b. Independently for eachj ∈ π−1
wu(i) chooseyj u.a.r. from{−1, 1} and sety′j to be−yj. Inde-

pendently for eachj ∈ π−1
vu (i) choosexj andx′j independently and u.a.r. from{−1, 1}.

3. For all possible choices ofu ∈ U , v,w ∈ V , x, x′ ∈ Hv andy, y′ ∈ Hw in the above steps, add a
hyperedge betweenx, x′, y, y′.

3.1 Analysis: YES Case

In the YES case there is a labelingσ : V 7→ [m] such that for anyu ∈ U and neighborsv,w of u,
πvu(σ(v)) = πwu(σ(w)). We partition the vertex setH into two disjoint subsetsH−1 andH1 where,
Hℓ ∩Hv = {z ∈ Hv | zσ(v) = ℓ}, for ℓ ∈ {−1, 1}.

Consider a choice ofu ∈ U and two of its neighborsv andw in Step 1 of the hyperedges construction.
Steps 2a and 2b ensure that eitherxσ(v) = −x′σ(v) or yσ(w) = −y′σ(w), asπvu(σ(u)) = πwu(σ(w)). Thus,
no hyperedge lies completely in eitherH−1 or H1 and hypergraphG is 2-colorable.

3.2 Analysis: NO Case

Suppose for a contradiction that there is an independent setI ⊆ H such that|I| ≥ δ|H|. Our analysis shall
show that this implies a labeling to the LABELCOVER instanceL that satisfiesδO(1) fraction of its edges.
This is in contrast to the bound ofδO(δ−1) obtained in [GHS02], [Hol02].

By averaging, for at leastδ/2 fraction of the verticesv ∈ V , |I ∩ Hv| ≥ (δ/2)|Hv |. Call such vertices
as “good” vertices. We useIv to denoteI ∩ Hv for anyv ∈ V .

For now fix a choice of “good” verticesv andw that share a neighboru ∈ U . LetA : Hv 7→ {0, 1} be
the indicator of the subsetIv. Similarly, letB : Hw 7→ {0, 1} be the indicator forIw. Thus we have,

Ex∈Hv [A(x)] ≥ δ/2 , Ey∈Hw [B(y)] ≥ δ/2. (1)

6



Furthermore, sinceI is an independent set, we have,

Ex,x′,y,y′
[
A(x)A(x′)B(y)B(y′)

]
= 0, (2)

where the expectation is according to the distribution induced by Steps 2, 2a and 2b of the hyperedges
construction. Expanding out the Fourier expansion of the above product we obtain,

Ex,x′,y,y′



∑

α,α′,
β,β′⊆[m]

ÂαÂα′B̂βB̂β′χα(x)χα′(x′)χβ(y)χβ′(y′)


 = 0.

Dropping the subscripts from the expectation and taking it inside summation,
∑

α,α′,
β,β′⊆[m]

ÂαÂα′B̂βB̂β′E
[
χα(x)χα′(x′)χβ(y)χβ′(y′)

]
= 0. (3)

Using the properties of the distribution induced in Steps 2-2b of the construction, we have the following
lemma.

Lemma 3.1. Unlessα = α′, β = β′ andπvu(α) ∩ πwu(β) = ∅,

E
[
χα(x)χα′(x′)χβ(y)χβ′(y′)

]
= 0.

Proof. It can be seen thatxj andx′j′ are independent forj′ 6= j, and either one is independent ofy andy′.
Thus the expectation vanishes ifα 6= α′. An identical argument handles the case whenβ 6= β′.

We may assume thatα = α′ andβ = β′. Consider the case wheni ∈ πvu(α) ∩ πwu(β). From the
construction, in Step 2a, the variables{yj, y′j |j ∈ π−1

wu(i) ∩ β} are chosen independently and u.a.r. from
{−1, 1}. Otherwise, in Step 2b, the variables{xj , x′j|j ∈ π−1

vu (i) ∩ α} are chosen independently and u.a.r.
from {−1, 1}. In both cases the expectation vanishes.

Observe thatπvu(α) ∩ πwu(β) = ∅ implies that the variableχα(x)χα(x
′) = χα(xx

′) is independent of
χβ(y)χβ(y

′) = χβ(yy
′). For convenience we use the following notation:

Γvu
α := E

[
χα(xx

′)
]

and Γwu
β := E

[
χβ(yy

′)
]
. (4)

Note thatΓvu
α andΓwu

β depend on the projectionsπvu andπwu respectively. Using Lemma 3.1 and Equation
(3) we obtain, ∑

α,β
πvu(α)∩πwu(β)=∅

Â2
αB̂

2
βΓ

vu
α Γwu

β = 0. (5)

Using standard arguments along with the fact thatxi is independent ofx′j for i 6= j we obtain,

Ex,x′

[
A(x)A(x′)

]
=

∑

α

Â2
αE
[
χα(xx

′)
]

=
∑

α

Â2
αΓ

vu
α . (6)

Similarly,

Ey,y′
[
B(y)B(y′)

]
=

∑

β

B̂2
βΓ

wu
β . (7)

To use the above equalities, the goal of the next lemma is to lower boundE[A(x)A(x′)] andE[B(y)B(y′)].

7



Lemma 3.2. For x, x′, y andy′ as distributed in Steps 2-2b of the construction of the hyperedges,

E[A(x)A(x′)] ≥ (δ/2)c1 , E[B(y)B(y′)] ≥ (δ/2)c1 ,

wherec1 = 2
√
2−1√
2−1

is an absolute constant.

Proof. Let us considerE[A(x)A(x′)]. The proof forE[B(y)B(y′)] is analogous. Recall thatA is the
indicator forIv ⊆ Hv. Let−Iv := {−x | x ∈ Iv}. It is easy to see that,

E
[
A(x)A(x′)

]
= Pr

[
x ∈ Iv, x′ ∈ Iv

]
= Pr

[
x ∈ Iv,−x′ ∈ −Iv

]
= Pr

[
x ∈ Iv, x′′ ∈ −Iv

]
, (8)

where we usex′′ to denote−x′.
Consider the product probability space(Ω, µ) = (

∏k
i=1 Ωi,⊗

k
i=1µi), where for eachi ∈ [k], Ωi =

{−1, 1}π
−1
vu (i) andµi is the uniform measure. Thus, a uniformly randomx ∈ Hv (as chosen in Steps 2-

2b of the construction) can be thought of as belonging to(Ω, µ) with x|π−1
vu (i) being drawn from(Ωi, µi)

independently for eachi ∈ [k]. In Equation (8), bothx and x′′ have uniform marginals distributions.
Furthermore, givenx, independently for eachi ∈ [k], with probability 1

2 , x′′|π−1
vu (i) = x|π−1

vu (i) and with

probability 1
2 , x′′|π−1

vu (i) is chosen uniformly from(Ωi, µi). Thus,x andx′′ areρ-correlated elements of

(Ω, µ) with ρ = 1
2 , according to Definition 2.1. Sinceµ(Iv) = µ(−Iv) ≥ δ, applying Theorem 2.2 to

Equation 8 we obtain,

E
[
A(x)A(x′)

]
= Pr

[
x ∈ Iv, x′′ ∈ −Iv

]
≥ (δ/2)c1 , (9)

which completes the proof of the lemma.

Using the above lemma along with Equations (6) and (7) we have,

(
δ

2

)2c1

≤

(∑

α

Â2
αΓ

vu
α

)
∑

β

B̂2
βΓ

wu
β


 =

∑

α,β

Â2
αB̂

2
βΓ

vu
α Γwu

β . (10)

Subtracting Equation (5) from Equation (10), we obtain,

∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βΓ

vu
α Γwu

β ≥

(
δ

2

)2c1

. (11)

To continue with the analysis we calculateΓvu
α andΓwu

β in the following lemma.

Lemma 3.3. Let,

πodd

vu (α) :=
{
i ∈ πvu(α)|

∣∣π−1
vu (i) ∩ α

∣∣ is odd
}
, and, πodd

wu (β) :=
{
i ∈ πwu(β)|

∣∣π−1
wu(i) ∩ β

∣∣ is odd
}
.

Then,

Γvu
α =

(−1)|π
odd
vu (α)|

2|πvu(α)| , and, Γwu
β =

(−1)|π
odd
wu(β)|

2|πwu(β)| .

8



Proof. From the definition ofΓvu
α we can rewrite it as,

Γvu
α = E


∏

i∈[k]


 ∏

j∈π−1
vu (i)∩α

xjx
′
j




 =

∏

i∈[k]
E


 ∏

j∈π−1
vu (i)∩α

xjx
′
j


 . (12)

For a giveni ∈ [k], with probability 1
2 all the variablesxj , x′j (j ∈ π−1

vu (i)) are uniformly random and
independent. Otherwise,xj (j ∈ π−1

vu (i)) are chosen independently u.a.r and eachx′j is set to−xj. Thus,

E


 ∏

j∈π−1
vu (i)∩α

xjx
′
j


 =

{
1
2 if |π−1

vu (i) ∩ α| is even.

−1
2 otherwise.

(13)

Substituting the above in Equation (12) proves the lemma forΓvu
α . The proof forΓwu

β is analogous.

Let R andT (R > T ) be positive integers to be determined later. Using the above lemma and Equation
(11) we obtain,

∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β+

∑
[
(|α|≥R,|πvu(α)|<T )

∨(|β|≥R,|πwu(β)|<T )
]
,

πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β

+
∑

[
(|α|≥R,|πvu(α)|≥T )

∨(|β|≥R,|πwu(β)|≥T )
]
,

πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β2

−(|πvu(α)|+|πwu(β)|) ≥
(
δ

2

)2c1

. (14)

The third term on the LHS of the above inequality is at most2−T
(∑

α Â
2
α

)(∑
β B̂

2
β

)
≤ 2−T , using

Parseval’s identity and the fact thatA andB are indicator functions. Similarly, the second term in the LHS
of Equation (14) is upper bounded by,




∑

|α|≥R,
|πvu(α)|<T

Â2
α





∑

β

B̂2
β


+

(∑

α

Â2
α

)



∑

|β|≥R,
|πwu(β)|<T

B̂2
β


 ≤

∑

|α|≥R,
πvu(α)<T

Â2
α +

∑

|β|≥R,
πwu(β)<T

B̂2
β.

Substituting the above in Equation (14) we obtain that for any two good verticesv,w ∈ V which share a
neighboru ∈ U ,

∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β +

∑

|α|≥R,
|πvu(α)|<T

Â2
α +

∑

|β|≥R,
|πwu(β)|<T

B̂2
β ≥

(
δ

2

)2c1

− 2−T . (15)

Consider the following process of selectingu, v andw. Chooseu u.a.r fromU andv andw be two neighbors
of u chosen independently and u.a.r from its neighborhood. Letpu be the fraction of the neighbors ofu
that are “good”. Since,δ/2 fraction of the vertices inV are good and the graphG(U, V,E) is bi-regular,
Eu∈U [pu] ≥ (δ/2). Thus, the probability that bothv andw are “good” isEu[p

2
u] ≥ (Eu[pu])

2 ≥ (δ/2)2.
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Taking an expectation over the choice ofu, v andw, and noting that the LHS of Equation (15) is always
positive, we obtain,

Eu,v,w




∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β +

∑

|α|≥R,
πvu(α)<T

Â2
α +

∑

|β|≥R,
πwu(β)<T

B̂2
β


 ≥

(
δ

2

)2
[(

δ

2

)2c1

− 2−T

]
. (16)

In order to bound the second and third terms in the above expectation we use property (b) in Theorem 2.4.
For a fixed vertexv ∈ V and subsetα ⊆ [m] such that|α| ≥ R,

Pr
u
[|πvu(α)| < Rc0 ] ≤

1

Rc0
, (17)

where the probability is over a random neighboru of v. Thus,

Eu




∑

|α|≥R,
|πvu(α)|<Rc0

Â2
α


 =

∑

|α|≥R

[
Â2

α · Pr
u
[|πvu(α)| < Rc0 ]

]
≤
∑

|α|≥R

Â2
α ·

1

Rc0
≤

1

Rc0
. (18)

SettingT = Rc0 and substituting the above into Equation (16) we obtain,

Eu,v,w




∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β


 ≥

(
δ

2

)2
[(

δ

2

)2c1

− 2−Rc0

]
−

2

Rc0
. (19)

Let c′ = 2 + 2c1. SettingR = 8/(δ/2)c
′/c0 and using2−Rc0 ≤ R−c0 in the above inequality yields,

Eu,v,w




∑

|α|,|β|<8/(δ/2)c
′/c0

πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β


 ≥

1

4

(
δ

2

)c′

. (20)

Labeling. The above analysis yields the following randomized labeling σ of the vertices ofL. For a vertex
v ∈ V , choose a subsetα probability Â2

α and assign as labelσ(v) a randomi ∈ α. For any vertexu ∈ U ,
randomly choose a neighborw and assignπwu(σ(w)) as the label tou. Equation (20) implies that the
expected fraction of constraints satisfied is at least,

1

256

(
δ

2

)c′+2c′/c0

. (21)

3.2.1 Choice of parameters

In Theorem 2.4 we can chooser = (log logN)/4. This ensures that the instanceG is of sizen =
NO(r)22

3r
≤ NO(log logN). The soundness ofL is 2−Ω(log logN) = 2−Ω(log logn). Combining this with the

above analysis in the NO Case, choosingδ = 1
(log n)c for some positive constantc (depending onc0, c1, γ0)

we obtain a contradiction to our assumption on the size of theindependent set.
Thus, in the NO Case,G does not contain independent set of1(logn)c relative size. This completes the

proof of Theorem 1.1.
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4 SatisfiableMAX -E3-SAT

As before, the input is an instanceL of LABELCOVER from Theorem 2.4 consisting of a bipartite graph
G(U, V,E), label sets[m] and[k] and projections{πvu : [m] 7→ [k] | {u, v} ∈ E, u ∈ U, v ∈ V }.

The PCP proof is the same as in [Hås01]. For each vertexu ∈ U there is a Long CodeHu = {−1, 1}k.
Similarly, for eachv ∈ V , there isHv = {−1, 1}m. The assignments to these Long Codes areAu :
Hu 7→ {−1, 1} andBv : Hv 7→ {−1, 1}. We can assume that these assignments arefoldedover−1, i.e.
Au(x) = −Au(−x) andBv(y) = −Bv(−y).

The instance of MAX -E3-SAT is given by the following PCP verifier whose acceptance predicate cor-
responds to a3-literal clause. Letε > 0 be a parameter which we shall set later.

PCP Verifier

1. Choose a vertexu ∈ U u.a.r and one of its neighborsv ∈ V u.a.r.

2. Choosex ∈ Hu u.a.r.

3. Lety, y′ ∈ Hv be chosen as follows. For eachi ∈ [k], if xi = 1 do Step 3 otherwise do Step 4.

4. xi = 1: Independently for eachj ∈ π−1
vu (i) chooseyj u.a.r from{−1, 1} and sety′j = −yj.

5. xi = −1: Do Step 5a with probability1− ε, or Step 5b with probabilityε.

5a. Independently for eachj ∈ π−1
vu (i) chooseyj u.a.r. from{−1, 1} and sety′j to beyj.

5b. Independently for eachj ∈ π−1
vu (i), chooseyj andy′j independently and u.a.r. from{−1, 1}.

6. Accept if(Au(x), Bv(y), Bv(y′)) 6= (1, 1, 1).

The above PCP predicate (after folding) is equivalent – in terms of its completeness and soundness – to a
gap instance of MAX -E3-SAT.

4.1 Analysis: YES Case

In the YES case there is a labelingσ to the vertices ofL that satisfies all the constraints. Consider the
assignmentAu(x) = xσ(u) and similarlyBv(y) = yσ(v) for all u ∈ U andv ∈ V . Clearly, these as-
signments are folded over−1. Furthermore, in the choice ofx, y, y′ in the PCP test, it is easy to see that
(xσ(u), yσ(v), y

′
σ(v)) 6= (1, 1, 1) sinceπvu(σ(v)) = σ(u). Thus, the PCP test is always satisfied and there is

an assignment that satisfies all the clauses of the corresponding MAX -E3-SAT instance.
For notational simplicity in the rest of the analysis we shall drop the superscripts to denoteAu byA and

Bv by B.

4.2 Analysis: NO Case

Suppose for a contradiction that,

E u,v
x,y,y′

[
1−

(1 +A(x))(1 +B(y))(1 +B(y′))
8

]
≥

7

8
+ δ, (22)

where the expectation is over the choices of the verifier and thus the LHS denotes the probability that the
verifier accepts. We shall show that (for an appropriate setting of ε) there is a labeling to the vertices ofL
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that satisfiesδO(1) fraction of edges. This is in contrast to the PCP test in [Hås01] which yields a bound of
δO(δ−1).

In the following analysis we fix the choice ofu andv for the time being.
Since the Long Codes are folded, we haveE[A(x)] = E[B(y)] = E[B(y′)] = 0, as the distributions of

x ∈ Hu andy, y′ ∈ Hv are respectively uniform. Further,x is independent ofy and independent ofy′, and
thusE[A(x)B(y)] = E[A(x)B(y′)] = E[A(x)]E[B(y)] = 0. The rest of the terms are analyzed as follows.

Lemma 4.1. |E[B(y)B(y′)]| ≤ ε/2.

Proof. Using the Fourier expansion ofB, and sinceB is folded,

E[B(y)B(y′)] =
∑

|β|odd

B̂2
βE
[
χβ(yy

′)
]

=
∑

|β| odd

B̂2
β

∏

i∈[k]
E

[
χβ∩π−1

vu (i)(yy
′)
]
. (23)

For an odd sizedβ, there is ai ∈ [k] such that
∣∣β ∩ π−1

vu (i)
∣∣ is odd. It is easy to check that for such a

i, E
[
χβ∩π−1

vu (j)(yy
′)
]
= −ε/2. Also note that for anyi,

∣∣∣E
[
χβ∩π−1

vu (i)(yy
′)
]∣∣∣ ≤ 1. Thus, Equation (23)

yields, ∣∣E[B(y)B(y′)]
∣∣ ≤ (ε/2)

∑

|β| odd

B̂2
β = ε/2.

Lemma 4.2. For any positive integersR,T such thatR ≥ T ,

∣∣E[A(x)B(y)B(y′)]
∣∣ ≤




∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

Â2
αB̂

2
β




1
2

+
∑

|β|≥R
|πvu(β)|<T

B̂2
β +

(
1−

ε

2

)T
2
.

Proof. Using the factyj (y′j) is independent ofxi for anyi, the termE
[
χα(x)χβ(y)χβ′(y′)

]
is zero unless

β = β′ andα ⊆ πvu(β). Thus,

E[A(x)B(y)B(y′)] =
∑

|α|,|β| odd
α⊆πvu(β)

ÂαB̂
2
βE
[
χα(x)χβ(yy

′)
]

=
∑

|α|,|β| odd
α⊆πvu(β)

ÂαB̂
2
β

(∏

i∈α
E

[
xiχβ∩π−1

vu (i)(yy
′)
])


 ∏

i∈πvu(β)\α
E

[
χβ∩π−1

vu (i)(yy
′)
]

 . (24)

To simplify the above equation we require the following lemma.
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Lemma 4.3. Fix β 6= ∅ and letr = |πvu(β)|. For anyα ⊆ πvu(β) let,

pβ(α) :=

∣∣∣∣∣
∏

i∈α
E

[
xiχβ∩π−1

vu (i)(yy
′)
]∣∣∣∣∣ ·

∣∣∣∣∣∣
∏

i∈πvu(β)\α
E

[
χβ∩π−1

vu (i)(yy
′)
]
∣∣∣∣∣∣
.

Then,

pβ(α) =
(ε
2

)r′ (
1−

ε

2

)r−r′

,

wherer′ =
∣∣α∆πodd

vu (β)
∣∣ andπodd

vu is as defined in Lemma 3.3. Thus,pβ(α) is a probability measure over
α ⊆ πvu(β).

Proof. It is easy to verify that for anyi ∈ [k] andJ ⊆ π−1
vu (i), J 6= ∅, |J | even,

∣∣E
[
xiχJ(yy

′)
]∣∣ = ε

2
,

∣∣E
[
χJ(yy

′)
]∣∣ = 1−

ε

2
. (25)

Similarly, for i ∈ [k] andJ ⊆ π−1
vu (i), |J | odd,

∣∣E
[
xiχJ(yy

′)
]∣∣ = 1−

ε

2
,

∣∣E
[
χJ(yy

′)
]∣∣ = ε

2
. (26)

The above equations imply,
∣∣∣∣∣
∏

i∈α
E

[
xiχβ∩π−1

vu (i)(yy
′)
]∣∣∣∣∣ =

(
1−

ε

2

)|α∩πodd
vu (β)| (ε

2

)∣∣
∣
α∩πodd

vu (β)
∣

∣

∣

, (27)

and, ∣∣∣∣∣∣
∏

i∈πvu(β)\α
E

[
χβ∩π−1

vu (i)(yy
′)
]
∣∣∣∣∣∣
=
(
1−

ε

2

)∣∣
∣
α∩πodd

vu (β)
∣

∣

∣

(ε
2

)|α∩πodd
vu (β)|

, (28)

where, in the above two equations· denotes theπvu(β) \ . operation. Combining them we obtain the
lemma.

Using the above in Equation (24) we obtain,

∣∣E[A(x)B(y)B(y′)]
∣∣ ≤

∑

|α|,|β| odd
α⊆πvu(β)

∣∣∣ÂαB̂
2
β

∣∣∣ pβ(α). (29)

A categorization of the terms of the above inequality based on the parametersR andT yields,

∣∣E[A(x)B(y)B(y′)]
∣∣ ≤

∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

∣∣∣ÂαB̂
2
β

∣∣∣ pβ(α) +
∑

|α|,|β| odd
α⊆πvu(β)
|β|≥R

|πvu(β)|<T

∣∣∣ÂαB̂
2
β

∣∣∣ pβ(α)

+
∑

|α|,|β| odd
α⊆πvu(β)
|β|≥R

|πvu(β)|≥T

∣∣∣ÂαB̂
2
β

∣∣∣ pβ(α) (30)
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For each of the three terms in the RHS above, we apply Cauchy-Schwarz in the following manner. EacĥB2
β

is multiplied by,

∑

α⊆πvu(β)
|α| odd

∣∣∣Âα

∣∣∣ pβ(α) ≤
∑

α⊆πvu(β)
|α| odd

∣∣∣Âα

∣∣∣
√

pβ(α)
√

pβ(α)

≤




∑

α⊆πvu(β)
|α| odd

Â2
α




1
2 
 ∑

α⊆πvu(β)

pβ(α)




1
2 (

max
α⊆πvu(β)

√
pβ(α)

)
(31)

By Parseval’s and sincepβ(α) is a probability measure overα we obtain that the RHS of Equation (31) is
bounded by1. Thus, the second term in the RHS of Equation (30) is bounded by,

∑

|β|≥R
|πvu(β)|<T

B̂2
β. (32)

Further, observe that forβ such thatπvu(β) ≥ T ,

pβ(α) ≤
(
1−

ε

2

)T
,

for anyα ⊆ πvu(β). Thus, the third term in the RHS of Equation (30) is bounded by,

(
1−

ε

2

)T
2
∑

β

B̂2
β ≤

(
1−

ε

2

)T
2
. (33)

For the first term in the RHS of Equation (30), we use Equation (31) to obtain the following upper bound.

∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

∣∣∣ÂαB̂
2
β

∣∣∣ pβ(α) ≤
∑

|β| odd,|β|<R




∑

α⊆πvu(β)
|α| odd

Â2
α




1
2

B̂2
β

≤




∑

|β| odd,|β|<R




∑

α⊆πvu(β)
|α| odd

Â2
α


 B̂2

β




1
2 
 ∑

|β| odd,|β|<R

B̂2
β




1
2

≤




∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

Â2
αB̂

2
β




1
2

, (34)

where the second last inequality above is obtained by an application of Cauchy-Schwarz and the last by
Parseval’s. Substituting Equations (32), (33) and (34) into (30) completes the proof of the Lemma 4.2.
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SettingT = Rc0, taking the expectation over a random neighboru of a fixedv in Lemma 4.2 and using
the analysis of Equation (18), we obtain,

Eu

[∣∣Ex,y,y′ [A(x)B(y)B(y′)]
∣∣] ≤ Eu







∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

Â2
αB̂

2
β




1
2



+

1

Rc0
+
(
1−

ε

2

)Rc0
2

. (35)

Using the above, Lemma 4.1 and Equation (22) we obtain,

Eu,v







∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

Â2
αB̂

2
β




1
2



≥ 8δ −

ε

2
−

1

Rc0
−
(
1−

ε

2

)Rc0
2

. (36)

Applying Cauchy-Schwarz and settingR =
(
4
ε log

(
1
ε

)) 1
c0 , simplifies the above to,



Eu,v




∑

|α|,|β| odd
α⊆πvu(β)
|β|<R

Â2
αB̂

2
β







1
2

≥ 8δ − 2ε. (37)

Finally, we setε = δ to make the RHS of the above at least6δ. This yields a labeling for the LABELCOVER

instanceL: for every vertexu ∈ U uniformly choose a subsetα of labels with probabilityÂu
2

α and assign it
a random label fromα. Similarly, for every vertexv ∈ V uniformly select a set of labelsβ with probability

B̂v
2

β and assign it a random label fromβ. The above analysis shows that the expected fraction of edges
satisfied is,

36δ2

R
= Ω

(
δc

′
)
,

for some positive constantc′ depending onc0.

4.2.1 Choice of parameters

In Theorem 2.4 we can chooser = (log logN)/4. This ensures that the reduction to MAX -E3-SAT is of
sizen = NO(r)22

3r
≤ NO(log logN). The soundness ofL is 2−Ω(log logN) = 2−Ω(log logn). Combining this

with the above analysis in the NO Case, choosingδ = 1
(logn)c for some positive constantc (depending on

c0 andγ0) we obtain a contradiction to our assumption on the probability of acceptance of the verifier.
Thus, in the NO Case, the verifier accepts with probability atmost78 +

1
(logn)c . This completes the proof

of Theorem 1.2.
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5 SatisfiableMAX -E4-SET-SPLITTING

As in the previous sections, the input is an instanceL of LABELCOVER from Theorem 2.4 consisting of
a bipartite graphG(U, V,E), label sets[m] and [k] and projections{πvu : [m] 7→ [k] | {u, v} ∈ E, u ∈
U, v ∈ V }.

The PCP proof is similar to the previous sections. For each vertex v ∈ V , there is a Long Code
Hv = {−1, 1}m. The assignments to these Long Codes areAv : Hv 7→ {−1, 1}. In the case of MAX -E4-
SET-SPLITTING wedo nothave folding of the Long Codes.

The instance of MAX -E4-SET-SPLITTING is given by the following PCP verifier whose4-query tests
correspond to the4-sets of the instance. The rejection probability of the predicate estimates the fraction
4-query tests completely contained in the subset corresponding to the1s of the proof locations. Letε > 0
be a parameter which shall be set later.

PCP Verifier.

1. Choose a vertexu ∈ U u.a.r and two of its neighborsv,w ∈ V independently and u.a.r.

2. Choosex ∈ Hv andy ∈ Hw independently and u.a.r.

3. For eachi ∈ [k], either do Step 3a or Step 3b with probability1
2 each.

3a. For eachj ∈ π−1
vu (i) setx′j = −xj. Further, with probability1 − ε do Step 3a.1, or Step 3a.2

with probabilityε.

3a.1 For eachj ∈ π−1
wu(i) sety′j = yj.

3a.2 For eachj ∈ π−1
wu(i) independently, sety′j u.a.r from{−1, 1}.

3b. For eachj ∈ π−1
wu(i) sety′j = −yj. Further, with probability1 − ε do Step 3b.1, or Step 3b.2

with probabilityε.

3b.1 For eachj ∈ π−1
vu (i) setx′j = xj.

3b.2 For eachj ∈ π−1
vu (i) independently, setx′j u.a.r from{−1, 1}.

4. Reject if(Av(x), Av(x′), Aw(y), Aw(y′)) = (1, 1, 1, 1).

The above PCP verifier is equivalent – in terms of its completeness and soundness – to a gap instance of
MAX -E4-SET-SPLITTING.

5.1 Analysis: YES Case

In the YES case there is a labelingσ to the verticesL that satisfies all its edges. Consider the assign-
mentAv(x) = xσ(v) for all v ∈ V . For the choice ofu, v, andw in the above PCP we haveπvu(σ(v)) =
πwu(σ(w)). Thus, from the choice ofx, x′, y, y′ in the PCP test, it is easy to see that(xσ(v), x

′
σ(v), yσ(w), y

′
σ(w)) 6∈

{(1, 1, 1, 1), (−1,−1,−1,−1)}. Thus, the PCP test is always satisfied and the there is an assignment that
splits all the4-sets of the MAX -E4-SET-SPLITTING instance.

For notational simplicity in the rest of the analysis we shall drop the superscripts to denoteAv byA and
Aw by B.
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5.2 Analysis: NO Case

The probability that the PCP verifier rejects is given by,

1

16
· E
[
(1 +A(x))(1 +A(x′))(1 +B(y))(1 +B(y′))

]
,

where the expectation is above the random choice ofu, v, w, x, x′, y andy′ by the PCP verifier. Expanding
the above we obtain that the probability of rejection of the verifier is ,

1

16
· E

[
1 +A(x) +A(x′) +B(x)+B(y′) +A(x)A(x′) +A(x)B(y) +A(x)B(y′)

+A(x′)B(y) +A(x′)B(y′) +B(y)B(y′) +A(x)A(x′)B(y)

+A(x′)B(y)B(y′) +A(x)B(y)B(y′) +A(x)A(x′)B(y′)

+A(x)A(x′)B(y)B(y′)
]
. (38)

Let the number of1s in the proof be exactlyρ fraction, i.e.,

Ev,x [A
v(x)] = 2ρ− 1. (39)

where the expectation is over a random vertexv ∈ V and a uniformly chosenx ∈ Hv. Assume that the
probability that the verifier rejects is at mostρ4−δ for someδ > 0. We shall show that this implies a labeling
to the vertices ofL that satisfiesδO(1) fraction of edges (using an appropriate choice ofε > 0 depending only
on δ). For the analysis we shall consider the terms in the expectation in Equation (38) one by one. Before
proceeding, we fix the choice ofu in the expectation for the time being. Letpu := Ev∼u,x∈Hv [Av(x)],
where the expectation is over a random neighborv of u.

Sincev andw are u.a.r neighbors ofu, and by the uniformity ofx, x′, y andy′,

E[A(x)] = E[A(x′)] = E[B(y)] = E[B(y′)] = pu. (40)

Observe thatx is independent ofy and ofy′. For a fixed choice ofu, v andw are two independently
chosen random neighbors ofu. This implies that,

E [A(x)B(y)] = (Ev,x∈Hv [Av(x)])2 = p2u.

This also holds for the othercrossterms and thus,

E [A(x)B(y)] = E
[
A(x)B(y′)

]
= E

[
A(x′)B(y)

]
= E

[
A(x′)B(y′)

]
= p2u. (41)

Before analyzing the rest of the terms we require the following lemmas. Fix the choice ofv andw for
the next two lemmas.

Lemma 5.1. Let i ∈ [k] andJ ⊆ π−1
vu (i), be non-empty. Then,

E
[
χJ(xx

′)
]
=

{
1− ε

2 if |J | even.

− ε
2 if |J | odd.

(42)

A similar property holds forπwu with y andy′.
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Proof. Note that in the choice of the verifierx′|π−1
vu (i) is chosen to be−x|π−1

vu (i) with probability 1
2 , x|π−1

vu (i)

with probability 1−ε
2 , and u.a.r with probabilityε2 . The lemma follows, and holds analogously forπwu with

y andy′.

The above immediately implies the following lemma,

Lemma 5.2. Letα ⊆ [m], andr = |πvu(α)| andr′ =
∣∣πodd

vu (α)
∣∣ (as per the definition in Lemma 3.3). Then,

E
[
χα(xx

′)
]
=
(
1−

ε

2

)r−r′ (
−
ε

2

)r′
. (43)

Similarly, forβ ⊆ [m], r = |πwu(β)| andr′ =
∣∣πodd

wu (β)
∣∣,

E
[
χβ(yy

′)
]
=
(
1−

ε

2

)r−r′ (
−
ε

2

)r′
. (44)

We are now ready to bound the termsE [A(x)A(x′)] andE [B(y)B(y′)], where the choice ofu is fixed.

Lemma 5.3. Ev,x,x′ [A(x)A(x′)] = Ew,y,y′ [B(y)B(y′)] ≥ p2u − ε/2.

Proof. Using the Fourier expansion along with standard arguments we have,

Ev,x,x′

[
A(x)A(x′)

]
= Ev


Â2

∅ +
∑

α6=∅
Â2

αE
[
χα(xx

′)
]

 ≥

(
Ev

[
Â∅
])2

+ Ev


∑

α6=∅
Â2

αE
[
χα(xx

′)
]

 .

Lemma 5.2 implies thatE [χα(xx
′)] ≥ −ε/2. Using Parseval’s we obtain the lemma. Also, by symmetry

E [A(x)A(x′)] = E [B(y)B(y′)].

Observe thatx andx′ individually are independent of the pair(y, y′). Similarly, y andy′ individually
are independent of the pair(x, x′). Thus, we obtain,

E[A(x)B(y)B(y′)] = E[A(x′)B(y)B(y′)

= E[A(x)A(x′)B(y)]

= E[A(x)A(x′)B(y′)]

= E[A(x)]E[B(y)B(y′)]

≥ pu(p
2
u − ε/2)

≥ p3u − ε/2. (45)

We are left with analyzing the termE [A(x)A(x′)B(y)B(y′)]. Fix the choice ofv andw for now. The
Fourier expansion along with standard arguments (analogous to those in earlier sections) yield,

E
[
A(x)A(x′)B(x)B(y′)

]
=
∑

α,β

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]

=
∑

α,β
πvu(α)∩πwu(β)=∅

Â2
αB̂

2
βE
[
χα(xx

′)
]
E
[
χβ(yy

′)
]

+
∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]
. (46)
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It is easy to see that Lemma 5.2 implies thatE [χα(xx
′)]E [χβ(yy

′)] ≥ −ε/2. Thus, the first summation

in the RHS of Equation (46) is at least̂A2
∅B̂

2
∅ − (ε/2)

(∑
α Â

2
α

)(∑
β B̂

2
β

)
= Â2

∅B̂
2
∅ − ε/2. Using this we

obtain,

E
[
A(x)A(x′)B(x)B(y′)

]
≥ Â2

∅B̂
2
∅ +

∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]

−
ε

2
.

Taking a further expectation overv andw and applying Jensen’s inequality we obtain,

Ev,w
x,x′

y,y′

[
A(x)A(x′)B(x)B(y′)

]
≥ p4u + Ev,w




∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]

−

ε

2
. (47)

Combining the above inequality with our assumption on the probability of rejection of the verifier, along
with Equations (40), (41), (45), and Lemma 5.3, yields,

ρ4 − δ ≥
1

16
Eu

[
4pu + 4p2u + 2p2u − ε+ 4p3u − 2ε+ p4u −

ε

2

]

+
1

16
Eu,v,w




∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]



≥
1

16
Eu

[
(1 + pu)

4 − 4ε
]
+

1

16
Eu,v,w




∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]



≥
1

16

[
(1 + Eu[pu])

4 − 4ε
]
+

1

16
Eu,v,w




∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]

 , (48)

where Jensen’s inequality is used to obtain the last inequality. Substituting the valueρ from Equation (39)
in the above and simplifying we obtain,

Eu,v,w




∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]

 ≤ −16δ + 4ε, (49)

where the inner expectation is over the choice ofx, x′, y andy′. Before proceeding, we need the following
lemma which follows from the wayx, x′, y, y′ are chosen by the verifier.

Lemma 5.4. For i ∈ [k], letJ ⊆ π−1
vu (i) andK ⊆ π−1

wu(i) be non-empty subsets. Then,

E
[
χJ(xx

′)χK(yy′)
]
=





(1− ε) if both |J |, |K| even,

−(1− ε) if both |J |, |K| odd,

0 otherwise.
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Combining the above lemma with Lemma 5.1, we obtain that,

∣∣E
[
χα(xx

′)χβ(yy
′)
]∣∣ ≤

[(
1−

ε

2

)|(πvu(α)∪πwu(β)\(πvu(α)∩πwu(β))|
]
·
[
(1− ε)|πvu(α)∩πwu(β)|

]

≤
(
1−

ε

2

)max{|πvu(α)|,|πwu(β)|}
. (50)

LetR andT (R ≥ T ) be positive integers we shall fix later. Using the above we have,
∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β

∣∣E
[
χα(xx

′)χβ(yy
′)
]∣∣ ≤

∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β

+
∑

[
(|α|≥R,|πvu(α)|<T )

∨(|β|≥R,|πwu(β)|<T )
]
,

πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β

+
∑

[
(|α|≥R,|πvu(α)|≥T )

∨(|β|≥R,|πwu(β)|≥T )
]
,

πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β

(
1−

ε

2

)T
(51)

By Parseval’s, the second term in the RHS above is at most,
∑

|α|≥R,
πvu(α)<T

Â2
α +

∑

|β|≥R,
πwu(β)<T

B̂2
β ,

and the third term is at most, (
1−

ε

2

)T
.

We setT = Rc0 wherec0 is the constant from Theorem 2.4, and using the above analysis and Equation
(18), we obtain,

∣∣∣∣∣∣∣∣
Eu,v,w




∑

α,β
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
βE
[
χα(xx

′)χβ(yy
′)
]



∣∣∣∣∣∣∣∣
≤ Eu,v,w




∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β




+
2

Rc0

+
(
1−

ε

2

)Rc0

. (52)

Let us setR =
(
2
ε log

(
1
ε

)) 1
c0 andε = δ. Using the above equation in conjunction with Equation (49)yields,

Eu,v,w




∑

|α|<R,|β|<R
πvu(α)∩πwu(β)6=∅

Â2
αB̂

2
β


 ≥ 10δ.
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This yields a randomized labeling as follows: for every vertexv ∈ V , chooseα ⊆ [m] with probabilityÂv
2

α

and select a random label fromα. For a vertexu ∈ U , choose a random neighborw of u and assignu the
labelπwu(jw) to u wherejw is the label assigned tow. The expected fraction of edges of theL satisfied by
this labeling is,

(10δ)

(
1

R

)2

= Ω(δc
′
),

for some constantc′ > 0 depending onc0.

5.2.1 Choice of parameters

Analogous to previous sections, choosingr = (log logN)/4 in Theorem 2.4 we get that the reduction to
MAX -E4-SET-SPLITTING is of sizen = NO(r)22

3r
≤ NO(log logN). The soundness ofL is2−Ω(log logN) =

2−Ω(log logn). Combining this with the above analysis in the NO Case, choosing δ = 1
(log n)c for some

positive constantc (depending onc0 andγ0) we obtain a contradiction to our assumption on the probability
of rejection of the verifier.

Thus, in the NO Case, the verifier rejects with probability atleastρ4− 1
(log n)c . This completes the proof

of Theorem 1.8.
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