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A parallel repetition theorem for entangled projection gam

Irit Dinur* David Steuret Thomas Vidick

Abstract

We study the behavior of the entangled value of two-playeri@mund projection games under par-
allel repetition. We show that for any projection gamef entangled valué — ¢ < 1, the value of the
k-fold repetition ofG goes to zero a®((1 — &°)¥), for some universal constant> 1. Previously paral-
lel repetition with an exponential decaykrwas only known for the case of XOR and unique games. To
prove the theorem we extend an analytical framework regamtioduced by Dinur and Steurer for the
study of the classical value of projection games under [gra@petition. Our proof, as theirs, relies on
the introduction of a simple relaxation of the entangledigghat is perfectly multiplicative. The main
technical component of the proof consists in showing thatrétaxed value remains tightly connected
to the entangled value, thereby establishing the parafmtition theorem. More generally, we obtain
results on the behavior of the entangled value under predafcarbitrary (not necessarily identical)
projection games.

Relating our relaxed value to the entangled value is doneiagiggan algorithm for converting a
relaxed variant of quantum strategies that we call “vect@rgum strategy” to a quantum strategy. The
algorithm is considerably simpler in case the bipartitdritigtion of questions in the game has good
expansion properties. When this is not the case, roundliggren a quantum analogue of Holenstein’s
correlated sampling lemma which may be of independentdsterOur “quantum correlated sampling
lemma” generalizes results of van Dam and Hayden on universbhezzlement to the following ap-
proximate scenario: two isolated parties, given classieatriptions of arbitrary bipartite states), |¢)
respectively such thatp) ~ |¢), are able to locally generate a joint entangled sfeite~ |¢) ~ |¢)
using an initial entangled state that is independent of thputs.

1 Introduction

Two-player one-round games play an important role in maegswof theoretical computer science. They
are prominent in complexity theory, where they are a powedol in the study of constraint satisfaction
problems, and in cryptography, where they give a polyvaddrstraction in which to establish the security
of many two-party primitives. They have also recently progevery convenient framework for the study
of some of the deepest issues in quantum mechanics, givioged viewpoint on the decades-old study of
Bell inequalities which are inequalities that must be satisfied by classi@hanics but can be violated in
the presence of quantum entanglement.
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A gameG is specified by a probability distributiopn on pairs of questiongu,v) € U x V to the
players, and an acceptance criteriorC A x B x U x V which states, for every possible pair of questions
(u,v), which pairs of answer&s, b) € A x B are valid. The most basic quantity associated to a game is
its value the maximum success probability of two cooperating, batiafly isolated, players in the game.
Remarkably, the precise definition of the value depends erphysical interpretation that is given to the
condition of spatial isolation. Under classical theorglased players are fully described by the functions
that each apply to their respective question in order torgete their answer, and this interpretation leads
to theclassical valuevaL of the game. In contrast, in quantum theory isolated plagegsallowed any set
of strategies that can be implemented by performing localsmements on a shared entangled state. The
resulting value is called thentangled valueand denoted/aL*(G). Clearly for every game it holds that
VAL < VAL*, and it is the discovery of Einstein, Podolsky and Rosen [} gormalized by Bell[[Bel64],
simplified by Clauser et al. [CHSHB59] and experimentallyified by Aspect et al[JAGR81]) that there exists
games for which the inequality is strict; indeed there areilias of gamegG,,) for which vaL (G,,) — 0
butvaL*(G,) = 1 [Raz98/ Ara02]. One can go even further and considentresignaling value/aL ",
which corresponds to players allowed to reproduce any fitipatorrelations that do not imply signaling
between their isolated locations. Here agam* < vAL™, and there are games, such as the CHSH
game [CHSH®69], for which the inequality is strict.

One of the most fundamental questions one may ask aboutlayerpgames is that of the behavior of
the value undeproduct Given games; andH, their produciG ® H is defined as follows: the question and
answer sets are the cartesian product of those ttcanmd H; the distribution on questions is the product of
the distributions, and the acceptance criterionatke of those ofG and of H. How does the value ¢& ® H
relate to that ofG and H? While it is clear that each of the three values defined abatisfiesvaL (G ®
H) > vAL(G)VAL (H), the converse, although intuitive, doest hold in most nontrivial scenarios. In
particular, simple constructions of gam@sare known such thataL (G ® G) = VAL(G) < 1 [FL92];
similar constructions exist foraL* [CSUUQ8] andvAaL ' [KR10].

In spite of these examples, one may still ask for the behasioraL (G®"), for “large” values ofk.
This is known as thearallel repetitionquestion: given a gamé such thatvaL (G) < 1, does there exist
ana < 1 such thatvAL (G®F) < a¥? If so, what is the dependence @fn 1 — VAL (G)? Answering
this question is of importance for many of the applicatiohsam-player games. In cryptography, parallel
repetition is a basic primitive using which one may attengpamnplify the security guarantees of a given
protocol; in the study of Bell inequalities it can be used. etg amplify gaps between the quantum and
non-signaling values; in complexity theory it is at the hedihardness amplification.

For the case of the classical value, a long sequence of wdet84 [Fei9l, FK0OO] over the course of a
decade led to the breakthrough by Raz [Raz98], who was theadigovide a positive answer for general
games: Raz showed that one can always take (1 — (1 — VAL (G)¢)#108A*Bl ‘wherec, d are universal
constants. Subsequent work focused on obtaining the besiiy® value for (the best known for general
games ix = 3 [Hol09]) and on removing the dependence on the size of theemalphabet for specific
classes of games [Rad08, BRBI,[RR12]. For the case of the no-signaling value, Holenstkowed one
can always take = 1 — VAL (G)? [Hol09].

In contrast, for the case of the entangled value in spitesafmportance the question is very poorly un-
derstood. Strong results are known for some very specissetaof games such as XOR ganies [CSUUO0S],
for which repetition is exact (one can take= vAL*(G)) and unique games [KR10] (far = 1 — C(1 —
VAL*(G))?, whereC > 0 is a universal constant). However, both these results, dsaweelated results
motivated by cryptographic applications [HR09], rely oa thrmulation of the entangled value as a semidef-
inite program, a characterization that is not believed tem to more general games. Additional results



are known but they only apply to specific games often origmgatrom cryptography [MPA11, TFKW13].
The most general results known to date come friom [KV11], wtlieis shown that a specific type of repeti-
tion inspired by work of Feige and Kilian [FK0O], in which tleeiginal game is mixed with “consistency”
and “free” games, reduces the entangled value at a polyhoate providedvaL*(G) < 1, the value
VAL *(GFK=%k) of k “Feige-Kilian” repetitions ofG behaves ag(1 — VAL (G))k) ¢ for some smalt > 0.

A recent work of Dinur and Steurer [DS13] introduces a newaggh to the parallel repetition question,
focused on the case pfojection gamesA projection game is one in which the referee’s acceptariterion
has a special form: for any pair of questigqns v), any answeb from the second player determines at most
one valid answen = 7,,(b) for the first player. Projection games are the most intergstind widely-
studied type of games. The standard transformation froml38Aa two-player game naturally results in
a projection game: one player is asked for an assignment andom clause, and the other is asked for
an assignment to one of its three variables. This simplestoamation easily generalizes to convert any
constraint satisfaction problem or general two-player géhinto a projection gamé&’, while essentially
preserving the valuel — VAL (G') = ©(1 — VAL (G)) (see ClainiB). In particular, if one is only interested
in “amplifying the gap” betweerAL (G) = 1 andvAL (G) < 1 one can first mag to G’ and then consider
the parallel repetition of5’ itself, and this justifies the predominant role played byjgrtion games in
classical complexity theory. The transformation, howgeweay decreasethe entangled value arbitrarily
whenever the optimal strategy for the players requires sikeeofientanglement (though it can neirarease
it by too much; see Clairnl 3 for precise bounds). Neverthelesmny of the games studied in quantum
information, such as the CHSH game [CHSH69] or the Magic 8ggamel[Ara0?2] are projection games.

The approach of [DS13] is based on the introduction of a eglar of the game value, denotedlL . .
This relaxation can be defined for any game (we give the diefimih Sectiod 1.2 below), and it is perfectly
multiplicative. Moreover, for the case of projection games ; turns out to remain closely related to
VAL, thus giving a parallel repetition theorem. Although su¢herem already follows from Raz’s general
result [Raz98], this arguably simpler approach matchebdiseparameters currently known [Rab08] (which
are known to be optimal [Raz08]). In addition, it yields nesults for repetitions of games with small value
and the case of few repetitions, which has implications Her dpproximability of the ABEL COVER and
SET COVERproblems.

1.1 Ourresults

We extend the analytical framework introduced [in [DS13]He tase of the entangled valusL*. As
a consequence we obtain the following main theorem on thallphrepetition of the entangled value of
projection games.

Theorem 1. There exists constantsC > 0 such that the following holds. For any projection gafthe
VAL*(G®F) < (1—-C(1— VAL*(G))C)k/Z.

Although we do not attempt to fully optimize the constay¥alues that come out of our proof are< 4
for the case of expanding games (see definition in SectigreP@ < 12 for arbitrary projection games.
Parallel repetition results for the classical value weigioally motivated by the study of multi-prover
interactive proofs[[FRS88], and our result is likewise &gille to the study of classes of multi-prover in-
teractive proofs with entangled provers. For instancenatbdes soundness amplification in some specific
cases. Letting MIES (2) denote the class of languages haviagrover1-round interactive proofs in which
completeness = 1 holds with unentangled provers, but soundrelslds even against provers allowed to



share entanglement, then Theoriem 1 implies thatiMIB) = MIPT, ,,,(2) for anys < 1 — poly~t(n).
This is because any protocol in MI2) can be put into a form where the verifier’s test is a projection-
straint by following the reduction already discussed abawe described in Claifd 3; this will preserve both
perfect completeness (for classical strategies) and smsscdounded away froinfor guantum strategies).
Prior to our work it was not known how to amplify soundnessxpanentially small without increasing the

number of rounds of interaction. It follows frorn [IV12, Vig] that Mlplarl—poly_l(B) = NEXP, but very

little is known about th@-prover class MIP, (2).

We believe that our results, however, should find applicatio a much wider range of problems. Going
beyond the application to the parallel repetition questmur main contribution is the development of a
precise framework in which general questions about theviehaf the value under product can be studied.
This framework constitutes a comprehensive extension efotie introduced in_[DS13] for the study of
the classical value: as in [DS13], we introduce a relaxatien’; of the entangled value, prove that it is
perfectly multiplicativity, and show that it remains cltseelated tovaL*. We find it remarkable that the
framework from [[DS13], introduced in a purely classical tm, would find such a direct, if nontrivial,
extension to the case of the entangled value. We hope thabdledeveloped in this extension will find
further applications to the proof of product theorems irman@nging from cryptography to communication
complexity. Even though at a technical level the setting @jgpear quite different, some of the ideas put
forth here could also prove useful to further removed areak as the multiplicativity conjecture for the
minimum output entropy of quantum channéls [AHWO0O0, HWO08s6fH.

We turn to a more detailed explanation of our framework, hgpo highlight precisely those tools and
ideas that may find further application.

1.2 Proof sketch

In order to explain our approach it is useful to first review ttamework introduced in [DS13] for the study
of the classical value.

Classical strategies. The starting point in([DS13] consists in viewing gamesoperatorsacting on the
space ofstrategies In this language a strategy is simply a vecff} of non-negative reals indexed by
pairs(u, a) of possible questions and answef$u, a) is the probability that the strategy decides to provide
answem to questioru. To any game one can associate a magrsuch that, formally, the success probability
of strategieq|f), |g)) for the players precisely evaluates to the vector-matester product f|G|g). The
value of the game is then the norm@Gfwhen viewed as an operator from the appropriately normecespa
of strategies.

The first crucial step taken in [DS13] consists in relaxing talue of a gamé&; to the value of the
squareG'G of the game (this notation will be made precise in Sedfiol); 2v2 will denote the latter by
|G||- In the square of a gantg, the referee first samples a questiofor the first player as iii;. He then
independently samples two questianandv’ for the second player according to the conditional distitsu
The players inG'G are senty andv’ respectively. They have to provide answeérandb’ such that there
exists am such that bott{a, b) is a valid answer t¢u, v) in G, and(a, b’) is a valid answer tdu, v’). Note
that nowG?G treats both players symmetrically, and it turns out that veg miways assume that they both
apply the same strategy. For the special case of projecioreg it is not hard to show that the value of the
game and that of its square are quadratically related:

VAL (G)? < |G|z < vAL(G). (1)



Indeed, using the algebraic language introduced abovérshamequality follows from the Cauchy-Schwarz
inequality and the second is an easy observation.

The second step consists in observing that the applicafittlecperator corresponding to the product
G®H, whereG and H are arbitrary projection games, can be decomposed as agr@e!) - (I®H).
Starting with a strategyf) for G ® H, the result of applyingI®H) to | f) is a new vector which no longer
satisfies the strict normalization requirements of stiatedJnderstanding the new normalization leads to a
further relaxation of| G||5, denotedvAL ;. (G), in which the optimization is performed over the approjgriat
notion of “vector strategies”, which intuitively are veciahat can be obtained by applying game operators
to strategies. With the correct definition, it is easy to shioat

IGeH| < VAL (G) - | H]]3. (2)

The third and last step, which constitutes most of the teahnwork in [DS13], consists in showing that
VAL 4 (G) is a good approximation tdG||5. This is done using eounding procedureby which a vector
strategy associated with a largeL . is mapped back to an actual strategy for the square gamesbdias

a high value, thus serving as a witness for the vallGe; being large as well. Altogether we get a bound
on the value ofG®H as a product of a bound on the value(®find a bound on the value éf. Repeated
application of[(2) then leads to the following chain of inatities

VAL (G®F)2 < ||G®F|12 < VAL, (G) - [|GEF 1|2 < -+ < VAL, (G)* ~ VAL (G)F, (3)

proving the parallel repetition theorem.

Quantum strategies. Our goal now is to extend the above sketch to the case of taaged value/aL*.
There is good reason for optimism. In contrast to most aasgiroofs used in the study of classical two-
player games (such as those that go into Dinur’s proof of tbe theorem [Din07], or earlier approaches to
parallel repetition[[Ver94, FK00, Raz98]), which are oftaformation-theoretic or combinatorial in nature,
the analytic (one could say linear-algebraic) framewotkoithuced in[[DS13] seems much better suited a
priori to an extension to the quantum domain. Indeed, quarginategies themselves are objects that live
in d-dimensional complex vector space: instead of a vector ofmegative reals (describing the probability
of answeringz to questionu, for every possible: anda), a strategy is now a vect¢rl) of d-dimensional
positive semidefinite matrice4? that describe the measurement to be performed upon regeimyques-
tion u. The normalization condition i, A7 = Id for everyu, a constraint dictated by the formalism of
measurements in quantum mechanics.

At an abstract level, going from the classical to the entahglalue thus solely requires us to think
of the gameG as an operator acting on a bigger space of strategies, gamgérthe non-negative reals to
the space ofl-dimensional positive semidefinite matrices. This operais easily realized by “tensoring
with identity”, G — G ® Id¢a. This said, extending each of the steps outlined above theless raises a
number of challenges unique to the quantum setting, in wiaichore than in the classical case the strength
of strategies usually requires them to be studied in comjpmavith the entanglement that enables their
unique form of correlation.

The first step consists in obtaining an analogue_bf (1). Adéndassical case the second inequality
is easy, and follows by observing that,|i) is a quantum strategy i6*G then (G ® Id)|A) is a valid
strategy for the first player i (this notation will be made precise in Sectionl2.2.) The finsguality
in (@) is slightly more subtle. Although it can be proven dihg by applying a suitable matrix version of
the Cauchy-Schwarz inequality, we note that it can also beepr using known properties of a widely used




construct in quantum information theory, thetty-good measuremefRGM) [HW94, HJS 96]. Asitturns
out, the relaxatiovaL*(G)? — ||G||2 precisely corresponds to replacing the first player’s ogtichoice of
strategy inG by a near-optimal choice obtained from the pretty-goodsueament. As a consequendsg, (1)
extends verbatim:

VAL*(G)? < |G| < VAL*(G). (1%

Next we need to find an appropriate notion of vector strategiyamrresponding relaxed valvaL’ . Here
we are helped by the “operational” interpretation of a vedipategy as the result of the application a
game operator to a strategy meant for the product of sevamakg. With the suitable generalization of the
definition of classical vector strategies (see Definifibm@)also obtain an analogue bf (2) fexL? :

IGeHIlz < VAL’ (G) - [[H]fz. (2%

Finally, and most arduous, is to relate the relaxatisn * back to the value of the square ganij&|2.

In the classical case this involves rounding vector to ddtrategies. In the quantum case rounding has
to be performed synchronously by the players, and will resrdly involve the use of an entangled state.
Intuitively, upon receiving their respective questionsdrthe players need to initialize themselves in an
entangled state that corresponds to the “post-measurestetet that they would be in, conditioned on
having given a particular pair of answers to a given pair afagions in the gamg&l from which the vector
strategy is derived (recall that, informally, vector stgies are the result of applying a game operator to a
strategy meant for the product of two or more distinct games)

In case the bipartite distribution of questions in the gaireas good expansion properties we can show
that this conditioned state is roughly the same regardigbg guestions iz, so there is a way for players to
renormalize their measurements and proceed. For the nmmding case the states can differ significantly
from question to question. Nevertheless, we can show ttsschan their respective questions the players
are able to agree on classical descriptions of two closessitpt ~ |¢) that they respectively wish to be in.

At this point an interesting component of our proof is a newdgtum correlated sampling” lemma
which allows the players to generate a joint entangled sthje~ |¢) ~ |¢) from an initial shared
universal “embezzlement staté” [vHO3] independeniigdfor |¢), without any communication. The lemma
can be seen as a quantum variant of Holenstein’s correlateglgg lemmal[Hol09], as well as a “robust”
extension of the results of van Dam and Hayden on universheemement states [vHO3].

All steps having been extended, we obtain a direct genataliz of the chain of inequalitie§](3) to the
case of entangled strateg@s:

VAL* (G < [[GPH2 < VAL (G) - [GHF R < - < VALt (G)f m (vALT(G))E. (39

1.3 Additional related work

Although few general results are known, the question of thlealior of the entangled value of a two-
player game or protocol under parallel repetition arisegdently. It plays an important role in recent
results on device-independent quantum key distributioRQELMPA11] and related cryptographic primi-
tives [TEKW13]. The latter work considers parallel regetitof a game with quantum messages, a setting
which is also the focus of [CJPP11]. The approach of [CIPBailds upon|[JPPG10], who relate the
(classical) value of a two-player one-round game to the nofrthe game when viewed as a tensor on the

1we note however that the approximate equality * (G) = vAL*(G) that we obtain in the quantum case, although it suffices
for our application to parallel repetition, is weaker thaa bne from[[DS13]. In particular, it is probably not tight.



space€l«(¢1) ® ls(¢1). This is similar to our starting point of viewing games asrapers acting on strate-
gies, except that it considers the game as a bilinear fornerahan an operator; the two points of view are
equivalent. This perspective enables the authors to lgedtaown results on the study of tensor norms in
Banach space (resp. operator space) theory to deriveg@suthe classical (resp. entangled) value. To the
best of our knowledge this connection has not led to an @teenapproach to proving parallel repetition
for general classes of games, although partial results aeened in[[CJPP11] for the special case of the
entangled value of rank-one quantum games.

1.4 Open questions

We briefly mention several interesting open questions. g ktilt does not exist any parallel repetition result
that applies to the entangled value of general, non-piiojettvo-player one-round games, and it would be
interesting to investigate whether our techniques cowdd te (even relatively weak) results in the general
setting. The case of three players is also of interest, antbnetrivial parallel repetition results are known
either in the classical or quantum setting. In fact, theallpselated question of XOR repetition of three-
player games is known to fail dramatically even for the ¢tzds/alue [BBLV1Z)].

Organization of the paper. We start with some important preliminaries in Secfibn 2.r€hee introduce
the representation of games and strategies that is usedjtioot the remainder of the paper. In Secfibn 3 we
introduce the two relaxations of the entangled value sleetéh the introduction and give a more detailed
overview of our proof. In Sectiohl4 we prove the main techin@@mponent of our work, the relation
betweervAL* and||-||2. Finally, in Sectiori b we state and prove the quantum cdeelsampling lemma.

2 Preliminaries

2.1 Notation

We identify £(C%,C%), the set of linear operators frofi? to C¢, with the set ofd x d’ matrices with
complex entries: iX € £(C¥,C?) then its matrix has entrieX, , = (a|X|b), where|a), |b) range over
the canonical basis f@?, C* respectively, and we use the bra-ket notation to denoterookectorgb) and
row vectors(a| = (|a))*, wheret denotes the conjugate-transpose. We also wi{i€“) for £(C?, C?).

The spaceC(C%,CY) is a Hilbert space for the inner produgt, B) := Tr(AB). We let||X| - be the
operator norm ok, its largest singular value. A staf#) € C? is a vector with norni.

2.2 Games and strategies

Definitions. A two-player game is specified by question gétand)’, answer setgl and/3, a distribution
nonU x V,and an acceptance rileC A x B x U x V. The game may also be thought of as a bipartite
constraint graph, with vertex setsand)’, edge weights:(u, v), and constraint¥ (a, b, u,v) = 1 on each
edge(u, v). We will write y; for the marginal distribution oft oni/, anduy its marginal on). (We omit
the subscriptd. and R when they are clear from context.) We also often wtite- u to mean thav is
distributed according to the conditional distributipiv|u) = u(u,v)/ur(u). The size ofG is defined as
UV Al|B].

In this paper we focus on projection games, which are ganrestach the acceptance rul is such
that for every(u,v,b) € U x V x B there is at most one € A such thatV(a, b, u,v) = 1. Equivalently,
for every edggu, v) the associated constraint ipeojectionconstraintz,, , : B — A such thatr, ,(b) is



the uniquez such thatV (a, b, u, v) = 1 if it exists, and a special “fail” symbal. otherwise. When the edge
(u,v) is clear from context we will writé — a to mean thatr,,(b) = a. We also writeb <> b’ to mean
that there exists am b — a andb’ — a.

Given a projection gamé&, let H be the weighted adjacency matrix associated with the sopfate
H is the |V| x |V| matrix whose(v, v')-th entry equalsi(v,v’) = Y, u(u)u(vju)u(v'|u). Let D be
the diagonal matrix with the degregg (v) on the diagonal, andl := Id —D~'/2HD~'/2 the normalized
Laplacian associated with the squaretaf We say that a family of gam€ss,,), whereG,, has sizen, is
expanding if the second smallest eigenvalué pf= L(G,) is at least a positive constant independemt .of

Projection games as operators. Let G be a two-player projection game. We will think 6f as a linear
operatorG : C'Vl @ €8l — ¢l & CIl defined as follows:

G:=Y uu) ¥ |u)vaa)b| e ccVech,cHec).

a,b—a

In other words, foiB) € CVl @ C!B, let BY = (v, b|B) denote the value d at pointv, b. Then(GB)“? =
Yo #(v|u) Yy, BL. Note that here we adopted the convention that questioss/ are summed over,
whereas questions € ) are weighted by the corresponding conditional probability|u).

Classical strategies. The actions of players in a gan@egive rise to a “probabilistic assignment”, a col-
lection of probability distributiong p(a, b|u,v) } such that, for any pair of questiofis, v), p(-,-|u,v) is a
probability distribution on pairs of answers to those quest \We may also represeptas the rectangular
|U||A| x |V||B| matrix whose((u, a), (v, b))-th entry isp(a, b|u, v). Thevalueachieved by in the game

is defined as
VAL (G, p) = Tr,(Gp) Zy ZZy olu) Y p(a,blu,0),

b—a

where here we introduced a trace, n the set of allX € £(C CHl @ Cl ) by defining
Tr(X) =Y u(u) Y Xuwa) (ua)-
u a

In cases of interest the family of distributiodg(a,b|u,v)} is not arbitrary, but has a bipartite struc-
ture which reflects the bipartite nature of the gam@lassical strategies correspond to the case when
p(a,blu,v) = f(aju)g(b|v) for functions f(-|u) : A — {0,1} andg(-|v) : B — {0,1} taking the
valuel exactly once. The functiong andg may be represented as vectors

= Y flalw)u)a) e CH o€ and  [g) = Y g(blo)lo)lb) € €V @ ClE
u,a u,b

respectively.p is then the rank-one matrix = |g) (f|, and we may express the value as

VAL (G, p) = Tr,(Gp) = (f,G&)y, = ZP‘L ZP‘ olu) Y Y flalu)g

a b—a
where the inner produdt, -),,, is defined on(C¥ @ C#) x (CY @ C4) by
o8 = Lopn () o f (w,a
a
We may similarly define an inner produ¢t, -),, on (C¥ ® CF) x (CY @ CB), and we will omit the

subscriptsL, R when they are clear from context. Given a game mafjxwe define its adjoinG' as
the unique matrix such thdf, Gg),, = (G'f,g)u, for all f € CY¥*A andg € CV*B. Formally, if

G=Luonu(v 0lt) Ty o ) (0] © la) (8] thenG' = ZMM( [9) Zpsa |0) (] @ |b){al.

8



Quantum strategies. Next we consider quantum strategies. A quantum strategyeisified by measure-
ments{ A%}, for everyu and {B.}, for everyv, where in general a measurement is any collection of
positive semidefinite operators that sum to identity. Forstate|¥) E this strategy gives rise to the family
of distributions

Py (a,blu,0) == (¥[A] © By|¥)B
This formula, dictated by the laws of quantum mechanicsiesponds to the probability that the players
obtain outcomes, b when performing the measureme#it4® }, { B} on their respective share §f). One
can check that positive semidefiniteness of the measureopenators together with the “sum to identity”
condition imply thatpy) (-, -|u,v) is a well-defined probability distribution ol x B. To a quantum
strategy we associate vectors

=Y |y oAl cecewcerc’) and |B)=Y |o)b)@B)ecVockleLL(c).
u,a '(),b

(Note that these definitions reduce to classical strategiemever! = 1.) To express the success probability
of this strategy in a gamé we extend the definition of the inner prodygt-), as follows.

Definition 2 (Extended Inner Product)Ve define the extended inner product
(9 CMecM e () xcHM e cM e £(C?) — £(C) @ £(C?)
by defining(A, B),,,, for |[A) =}, ,|u)|a) ® Aj and|B) =}, , |u)|a) ® Bj, as

B)y, := ) ni(u) } A% ® By
u a

With this definition the success probability of the stratégdy B) in G can be expressed as
VAL*(G, |A), |B)) := ||{A, (G®1d)B),||.,

(1) (2 uolu) ¥ B7)

ab—a

= max u(u,v (¥|A%2 @ B)|¥).
\>wmwwu1§ a§a e

We also define the entangled value of the game; (G), to be the highest value achievable by any quantum
strategy:

VAL*(G) = sup VAL*(G,|A),|B))

|A),|B)
= sup ||(A,(G®Id)B),|,
|A),|B)
— sp Yalwo) ¥ (YA e BYY)
{Aa} {BELIY) wo ab—a
= sup ) p(u)) (¥[AL@BjY), 4)
{AS}ABLLY) u a

2The statd¥') is often considered to be an integral part of the strategweter it will be more convenient for us to not fix it a
priori. Given measurement operators for both players inmaegat is always clear what is the optimal choice of entanglatke; it
is obtained as the largest eigenvector of a given operafmrdiéng on the game and the measurements (see below).

3The complex conjugate aA is not necessary, but for our purposes it is natural to ireiuih light of the proof of Lemmal4.



where here we slightly abuse notation and denote

B, == ((ul(a| @ 1d)(G®1d)[B) = ) p(v[u) }_ By. ()

b—a

We note that in the above the supremum may in general not dieedt as optimal strategies may require
infinite dimensions. In this paper we always restrict owmesglto finite dimensional strategies.

We end this section with the following well-known claim whigshows that in some (though not all)
respects projection games are as general as arbitrary gé@eesAppendik A for the proof.)

Claim 3. There exists a polynomial-time computable transformatmapping any two-player one-round
gameG to a projection gamé&;’ such that the following hold:

1—2(1—-VvAL(G')) < VvAL(G) < VAL(G).

In particular, VAL (G’) = 1 if and only ifvAL (G) = 1, and1 — VAL (G') = ©(1 — vAL(G)). Moreover,
for the entangled value we have the weaker bound

1+ vAL*(G)

* ! <
VAL*(G') < 5 ,

which impliesl — vAL*(G’) = Q(1 — vAL*(G)).

3 Relaxations of the game value

In this section we introduce two relaxations of the entashgi@luevAL* (G) of a projection gamé&. Both
are quantum analogues of relaxations in [DS13], and areingbd same way. The first relaxation, denoted
|G ||=, is related to playing a “squared” version@fwith two players Bob and Bob’ treated symmetrically. It
is defined in Section 3.1, and is easily seen to give a goodappation tovAL*, as shown in the following
lemma (see Sectidn 3.1 for the proof):

Lemma 4. For any projection gamé,
VAL*(G)? < |G|z < VAL*(G). 6)

The second relaxation, denotedL” (G), is defined in Section 3.2. It will be proven to be a good
approximation td| G|z and thus to/aL*, although this will require more work.

Lemma 5. For any projection gamé;,
IGIZ < VAL (G) < ¢(lIGI2), @)
for ¢(x) =1 — C(1 — x)¢ and some positive constar@sc > 0.

The proof of Lemmal5 is given in Sectiaih 4. The definitionveiL’ is motivated by the following
multiplicative property.

Lemma 6. For any two projection gameS and H,

IG@ Hlg < vaLL(G) - || H|lg. (8)

10



The proof of Lemmal6 is given in Sectibn B.2.
With these three inequalities in hand we easily derive thalleh repetition theorem, Theorem 1, as
follows. By repeated applications ¢f (8), we get

IG#¥)E = IG © G2 < VALL(G) - |G IE < -+ < (vaLL(G))".
Combining with [6) and[{[7) we get
VAL*(G®F)? < [|GPF)IE < (vaLZL(G)F < (9 (lIGI2))" < ((vaL™(G))),

where the last step follows frorl(6) and the monotonicitypof

3.1 The square norm

Definition 7. For a gameG and a quantum strategyB) write |G ® Id |B)|jz := (||(G®1dB,G &
Id B) || ) /2 and define

IGlle := S|u§>||G ®1d|B)|ls
B

where the supremum is taken over all quantum stratddiess CIV! @ CIBl @ £(C9).

We note that||- ||y is clearly homogeneous and non-negative. Although we vatl use it, one can
check that||- || is also definite, and hence a norm, by settBfg= Id for everyv and anyb such that
(G+G)(v,b),(v,b) # 0 (when it exists, and for an arbitratyotherwise).

Lemmal4 claims thaf G ® Id |B) || gives a good approximation to the maximum success probabili
in the game, when Bob uses the strategy specifiefBby We give a self-contained proof of the lemma
below, but before proceeding readers familiar with quantofarmation theory may find it interesting
to note that a direct proof of{9) can be derived using knowsperties of the pretty-good measurement
(PGM) [HW94, HIS 96]. We briefly indicate how, before proceeding to give a-selitained proof. Sup-
pose the second player’s strategyGnis fixed to |B). Upon receiving her question, the first player
has to decide on an answer She knows that the second player will receive distributed according to
u(-|u) and apply his measurement, obtaining an outcénaad resulting in the post-measurement state
Tro(Id ®+/BE|¥) (¥|1d ®+/BE) on her system. From her point of view, she needs to providenawer
a such thatr,,(b) = a. Only knowingu, her task thus amounts to optimally distinguishing betwien

collection of states
ph = E Y Try(Id®y/Bb[Y)(¥|1d ®/BY).
b—a

o~u

If, instead of applying the optimal distinguishing measneat, Alice applied the pretty-good measurement
derived from this family of states then it follows from [BKDat the players’ success probability would be
at most quadratically away from what it would be were Alicafply the optimal measurement. Using the
explicit formula for the PGM one can verify that the resugtivalue exactly corresponds (&  Id |B)||2,
which proves the first inequality ib(6).

Proof of Lemm&l4 We prove the following inequality, from whichl(6) follows gking the supremum over
all |B):

IﬁxVAL*(G/IA%IBW < [Geld|B)|E < Il‘fl'a)xVAL*(GIIA>/|B>)~ (9)
A A

11



For the second inequality, using th@tis a projection game we note that for afyglimensional strategiB)
for the second playefG ® Id)|B) is a valid strategy for the first player, hence

1(G®1d)|B)||2 = [{(G®IdB,GRIdB) ;e < rr‘11%x|\<A,(G®Id)B>;,||oo = jleAL*(G,|A>,|B>).

|A)
To show the first, we write the following:

VAL*(G, |A),|B)) = |l{A, (G ®1d)B) |
Y u(u))  Ai®Bj

< | Ty e a;
< |I1(G ©1d)B) [,

[ee]

1/2

1/2 —
PO AL N

where for the first inequality we used the following matrixsien of the Cauchy-Schwarz inequality (see
Claim[20 in Appendix_A for a proof):

[Tz <[Taeal |TEes], 10
and the last inequality follows usirig, A% < Id for everyu, which implies
| LA < | Tideay| < lide i) =1.
O

3.2 The relaxationvaL” (G)

In order to motivate our definition ofAL", let us consider two projection gamés H and any quan-
tum strategy|B) for G ® H that achieves the optimal valyg&G® H||2 in the square game. Letting:=
|GRH||s/ || H||= we want to bound by a quantity that depends @hand not onH. Consider the factor-
izationG® H = (G® I)(I ® H) wherel is the identity operator; note thatcan also be understood as
a game in which the two players are asked the same questiowiantiand only if they return the same
answer. The application @f ® H thus gives rise to a two step process

Ay €25 | 4) E5 By,

mapping|B) to |A) := (I® H ®1d)|B) and then mappingA) to |A") := (GRI®Id)|A). Letus view|B)

as a table with rows indexed B x Bg and columns indexed by x By, whereVg, Vg andBg, By are
the question and answer sets associated with the secoret play and H respectively, and whose entries
are measurement operators, i.e. element3(ii). Then|A) is the result of applyingd ® Id on each row
of |B) separately, and we apply® Id on each column ofA) separately to ggtAd’) = (GRI®Id)|A).

It is instructive to view the strateg)B) as an assignment to eache Vs andb € B of a row vector
({(v|(b|®I®1d)|B) of dimensions Vy||By| (whose entries are again (C?)). Observe that for any,
|By) = Y ((v](b|®I®1d)|B) is a quantum strategy fdd, since for each questiari for H, the sum over
answerd’ of

0,0

(('|('|®1d)|B,) = BY, =Y B
b

12



is Yy BY,) = Y Xy BYY = Id. In particular, | H® 1d |B,)||2 < ||H|]2. We write

oo T

|Ao) =) _((v|(b|®Ix]1d)|A) (11)
b

and observe that it is equal fd® Id |B,), hence it satisfieg|A,)||z < ||H||g for everyv. Thus the
ratio between|GRI® Id |A) ||z and max,||Ay||s is at leastc = ||GRH||z/||H|lz- As a result of our
observations the ratio can be upper bounded in a manner that depends only amd isindependent ofi.
Abstracting the selt/y; x Ay associated with pairs of questions and answers for the fagepin H asQ)
for some discrete €[ we are led to the definition ofaL* (G) as the supremum ¢iiG @ In ® Idca |A)||2
ranging over vector quantum strategjes with norm||A|l; < 1 to be defined below.

Definition 8 (The relaxatiorvAL? ). LetG be a projection game. Then

VALY (G) := sup sup |G ®In®Idea |A) é,
Q |A)ecVigcFlecfeL(cd)
Al+<1

where the supremum is taken over all discrete measured space
The definition of|| A||+- is given by,

Definition 9 (Fractional Strategy and Vector Strategyet G be a projection game an@ a discrete mea-
sured space. An element

1A) = Y |o)|b) @ AL e VI @ CBl @ £(C?)
v,b

is a fractional quantum strategfpr G if for everyv, b the matrixAZ is positive semidefinite and,, :=
Y, AL < 1d for everyo. Avector quantum strategy an element

1A) = ¥ |w)|Ao) € C¥ecV & Clfl g £(C)

we)

such that eachA,,) is a fractional quantum strategy. Tm®rmof a vector quantum strategy is defined as
A = (max | EAwo ® Awol| )2 (12)

With these definitions in place we prove Lemfa 6 relating tiigase norm of a product of games to
VALY .

Proof of Lemmal6Let |B) be a strategy in the square game associatés ¢oH. It follows immediately
from our observations above that) = IQ H® Id | B) is a vector quantum strategy far (where the space
Q = Uy x Apy, and the measure is the cartesian product of the probabilgsurey; on Uy and the
counting measure ad ) whose normig||A)||+ < ||H|[z. This means that

IGeH|g = IGeH®1d|B)|z = |Gl d|A)| < vaLL(G) - [|H]l5,

where the last inequality comes by observing ﬁh%f |A) is a vector strategy with norrh ||, at mostl, so
3]
its value is at mosvAL” (G). This proves the claim. O

4In order for the extended inner produt-), to remain well-defined, we also need to eqQivith a measure — here, it would
be the cartesian product of the probability measyren {;; and the counting measure oty;.

13



4 Relating vAL* (G) to the square norm

In this section we prove Lemnha 5, which states that? (G) is a good relaxation of the square nofi@ ||z

of a projection game and establishes the last step in ouf pfdloe parallel repetition theorem, Theoréin 1.
We will also show that ifG is an expanding projection game then one can take 4 in the definition of
p(x) =1—-C(1—x)".

To prove the lemma, we need to show that the existence of a geddr strategy for the players in
the square gamé&' G implies that||G||? is large, i.e. there also exists a good (standard) quantrategy
for the players. We will establish this by describing an @ipftounding procedure mapping the former to
the latter. The rounding argument is simpler in césbas the additional property of being expanding (see
Section 2. for the definition), and we give the proof in thasecin Section 411. In Section ¥.2 we treat
the case of general projection games. In that case the mgirdgument is more involved and relies on a
“quantum correlated sampling” lemma which is stated andguntion Sectiof b.

In both cases, the starting point for the rounding proceditiee existence of a vector strate@@z) and
entangled staté¥) satisfying inequality[(113) in the following claim, which &ssentially a restatement of
the inequality VAL® (G) > 1 —7".

Claim 10. Let G be a projection game ang > 0 such thatvAL® (G) > 1 —#. Then there exists a
discrete measured spa€®, an integerd, a bipartite state|¥) € C? ® C? and a vector strategyA) €
Ccl? @ clVl @ ClBl @ £(C?) such that for every andv, b, A’ > 0and A, = ¥, A?, < 1d, and

EE Y (VAL @ AL %) > (1— 1) max{ E(¥[Au0® Awl¥) }, (13)

/
wo
W ooy S

where formallyE, .y ;. is shorthand foly_, p(u) Yp Yoo o p(0|u) (0" [10) Y by —sa-

Proof. By definition of vAL?, , there exists a discrete measured sgacand a vector strateg’y4) such that
||A)|ly = 1 and||ldq ®G ®1d |A)||2 > 1 — 5. Recalling the definition off-||.- (see Definitioi ) and of
||-|l= (see Definitio]7), we may reformulate this statement asrtéguality

- > (1_77)m§1XHEAwU®va

w p~o! )

H E E Z A—IZ)U ® Acb;v’
berb!
Letting [¥) be a state which optimizes the left-hand side gies (13). O

In the following sections we show how any vector stratédy and statd'¥) such that[(I8) holds can
be rounded to a good strategy for the square g&i@, first in case the gamé is expanding and then in
the case of an arbitrary projection game.

4.1 The expanding case

Let|A) be a vector strategy an¥’) a state such thaf {(I.3) holds, and assume @at is expanding. Our
goal is to identify a quantum strateggl) such thaf|G ® Id | A)[|2 > 1 — O(n'/¢), which by Clain{ZD will
suffice to prove Lemmia 5 for the case of expanding projectames.

Ouir first step consists in fixing a “good” value € () and restricting our attention to the fractional
strategy| A, ) := ({(w| ® I ® 1d)| A) specified by the operatord!,, obtained from thatv. Using that the
max is larger than the average, Hq.|(13) implies

E(E Y (AL e ALI9) > (1-y) E(E¥Aw e Ault) ). (14)

w o~
b« b’
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For the remainder of this section fix ansuch that[(14) holds for that. The only property we will need
of the {Aﬁ’w} in order to construct a good strategy @i G is that they are positive semidefinite operators
which satisfy that inequality. (In contrast, for the norparding case, Ed. (1L4) by itself turns out to be too
weak an inequality, and we must work with113).)

The definition of|A) almost imposes itself: the only “defect” 0fi,,) is that it is only a fractional
strategy, meaning that for any questiothe sumA,,,, = ¥, A’ may not equal the identity, but due to the
“conditioning” on w could in general be much smaller. It is natural to define aoreralized strategy as
follows. First, for every pair of questions v’ € V and a choice of unitariel,, U, to be made later we
introduce the post-measurement state

= 1/2 ~ N
¥ou) = UpAupo @ Uy AV2|9). (15)

wv'

The statg¥,,) is the post-measurement state that corresponds to “piitomng” ¥) by applying the

binary measurement§A ., Id — A, } for the first player,{ A, Id — A} for the second, and condi-
tioning on both of them obtaining the first outcome. In geh#ra post-measurement state is only defined
up to a local unitary, and this freedom is represented in thiamesU, andU,. Next for every question

v € V and answeb € B we define the measurement operator

Ay = WAy AL, AU, (16)
where hered;1/2 denotes the square root of the pseudo-inversé.of = Y, AL . Again, there is always a
unitary degree of freedom in the choice of the square roaottlemunitariedl,, the same as ih (15), represent
that degree of freedom. With this definition it is easy to fyetfiat eachA? is positive semidefinite and that
Y, Ab < 1d; since we may always add a “dummy” outcome in order for thesuesment operators to sum
to identity, { A%}, is a well-defined measurement ajpl) := Y-, , |0, b) ® AY a valid quantum strategy in
G'G.

Now suppose that, upon receiving their respective questioand«’, players inG'G were to mea-
sure their respective share of the (re-normalized) $tte) using the measurements given by théb},,
{Agi}b/ respectively. The probability that they obtain the pair ofaomes(b, V') is given, up to normaliza-
tion by ||[¥oor) | 2, by

~ ~1.) A A—1/2_+ A ~N_ ~ ~N_
(Your |AS @ AV ¥ o) = (¥|(Awe  Up @ AL2UY) (UpAgh/2 A, Ags/?U}

wv'
1/

2 ~ s
® Uy AV2)[¥)

wv'

® Uy A Y2AY  AZY UL (U A

wv' wv'

= (¥|Ab @ AY|¥), (17)

perfectly reproducing the correlations induced by thetfoaal strategy| A, ) together with[¥). Thus
if it were the case that for allv,?’), |¥Y,) = |¥), a vector independent dfv, '), then the players
could usel'Y) as their initial shared entangled state and perfectly eimul?ﬁu} using the quantum strategy
|A). Noticing that the term on the right-hand side [ofl(14), for ohoice ofw, is exactly|||¥,.)||?, the
equality [1T) when combined with (14) would immediately whithat the quantum strategy we have just
defined would achieve a value at least 7 in GG, implying |G ® Id||2 > 1 — 5 and proving LemmA]5.

While it may unfortunately not be the case that e, ) are independent dfv, v’), the main claim in
the proof of Lemmals will establish that they are close, onaye. Introduce the density matrix

vav’ |Tm}’> <‘va”

o= , 18
EU”NU’” || ’TU”U”’> ||2 ( )
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which is simply the normalized mixture over a random pair eighborsv ~ v’ (sampled as irG'G) of
the vectorg'¥,,/). We will prove thato is close, on average, to any of the (re-normalized) stdtgs) by
proceeding in two steps. First, in Lemind 12 we will show thatunitariedl, can be chosen in such a way
that the states?,,») and|¥,,~) are close to each other, for arbitraryy but on average over neighboring
v ~ v'. (The proof of this claim will highlight the role played byetfl,.) Second, in Clairiil4 we will use
our assumption thaf is an expanding game in order to obtain closeness for angeldv, v andv”. The
result is the following:

Claim 11. LetG be an expanding projection game antl), |¥) a fractional strategy and state such th@#)

holds. Then there exists a choice of unitariéssuch that, if{'¥,,/) ando are as defined iffl5) and (18)
respectively, then

E

v~/

|Tvv’ vv’ H 1/4
Ev//Nv/// H "YU”U’” H

Before giving the details of the proof of Claim]11 we first shbaw it lets us conclude the proof of
Lemmd5 for the case of expanding games.

Proof of Lemma&l5, expanding caseet A be the measurement operators define@ih (16) frdinand the
unitariesU, as promised in Clairn11. Let be the density matrix defined from the same unitarie§ ih (18).
We evaluate the value achieved by this strateg@iG. First note that

Ell¥er)|* = E (¥]A;® Ay[¥)
< E(VIA, @ A 9) 2 (¥]Ay © Ay )12

< Elll¥0)? (19)

where the second line follows from Clalm]20 and the third @s#s< a2 + b%. We can then evaluate

= Y /]ﬁ@)flbi]‘l’ /> ’1{[ /
E Tr Ah®A/0' > E < o0 v L% ol E o v’ vv H
v~v! h;h’ ( ¢ v ) v~/ bsb! EU”N‘()/”H |Tv//v///>|‘2 v~/ E-UHN-UH/H |Tv//v/// H
> E <1FUU/ ’A‘Z(J) ® A?Ji ’TUU/> _ 0(771/4)
oSk T Bl
_ (¥ At @ AV |¥) o
v~ bob! EU” || ’TU”U”> Hz
>1—n-0('*, (20)

where the first inequality uses thiak) is a strategy to bound £, Y., i A~_2 ® AZ < Id, the second line
uses[(1DB) for the first term and the bound from Clairh 11 for #e®ed, the third follows froni(17) and the
last is [14), for the particulaw that we fixed. To conclude, note that by definition

IGeId|A)|g=sup E ) (¥|AL @ AY|¥)
) Y b

> E Y Tr((A e AY) o),

o~/
b1’

which is1 — O(5'/*) by (20). O
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In order for the proof of Lemmia 5 to be complete it only remamshow Claini1ll. As outlined above,
we do this in two steps. The first step is stated as the follgugeneral lemma, which does not use the
expansion condition (we will re-use the lemma in the prodf@ihmd for the non-expanding case treated
in the next section).

Lemma 12. Let|®) be a permutation-invariant state, < A, < Id, andv a distribution on) x V that is
symmetric under permutation of the two coordinates, suah th

E (B[, @ Ay|®) > (1- 1) E(B[A, @ A,|®). (21)

Then there exists unitaridg, such that, letting
’q)m}’> = UUA_vl/z ® uv’Azl;/Zlq)>/
we have that for any” € V,

1/2
UNE.U/ H|q)vv//> - |q)ylvu> ‘2 _ O(nl/Z)(UEH|q)UU>H2) H’q)v,,v,,> /

and , ,
E [[1900) = [@u) | = O('?) E[|@00)]".

Proof. Let p be the reduced density gP) on either subsystem. Léf, be a unitary such that
U, AY 20N = pM4 AL2UY = (pM4 A0 /4) (22)

is Hermitian positive semidefinite; such a unitary can beioletd from the singular value decomposition of
Al/2p1/% et X, be defined as

X, = U, AY?p'* = pl/*AY2U. (23)
By (22), X, is positive semidefinite. With this notation we have thedafing useful identities.
Claim 13. For everyv, v’ € V we have
TH(X5) = Tr((XoX;)?) = (@A ® Ag|®) = [[|®or) || (24)

and o
Tr(X3X3) = (DA, ® Ay|D). (25)

Proof. For (24) we use the definition &, to write
Tr(Xs) = Tr((XoX$)?) = Tr(Agp'?Aup'?) = (@A, © Ao|®),

where the last equality follows from Ando’s identity, Clatfl, together with our assumption ¢&) being
permutation-invariant. To show (R5), expand using the @&fm(23)

Tr(X2X2) = Tr(U,AY 202 AY2utu, AL/2 el 2 Al2Ul)
= Tr(Ayp'/? Ayp'/?)
= (@4, ® Ay|®),

where the second equality follows from {22) and the last f@iam[19. O
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Now for any threev, v/, 0",

[ @) — ’q)v/v”>H2 = (<q>vv”| - <q>v/v”’) (|<I)vv“> - ’q)v/v“»

= (@[ (AY2U} - AL2UL) (UpAY? — Uy AY?) @ AYPUL U AL @)
= Tr((Xo — Xo) ' (X0 — Xo) X3 Xor)
< (Tr((Xo = Xo)*) 2 (Tr(x8)) %, (26)

where the last inequality follows from Cauchy-Schwarz amelfact that theX,, are positive semidefinite.
The first term on the right-hand side 6f{26) can be bounded as
Tr((Xo — Xor)*) < Tr((X2 - X2)?)
= (O[7, @ Ao|®) + (P|Ay @ Ay|®) —2(D[A, © Ay|D),

where the first inequality can be found as e.g. Corollary ZKin86] and the equality follows from (24)
and [25). Going back t¢_(26), we obtain

» ’ 1/2 » 1/2
CE Il = [@ur) |2 < (20 ENl@uo) ) (o))

where the first inequality uses the assumption made in theketo bound the first term if_(26) arid {24) to
rewrite the second. This proves the first inequality clainmeithe lemma. The second is obtained by taking
v"” = vin (26), and then the expectation over- v’ as in the above. O

In caseG is expanding, we can extend the bound from Lenima 12 to appnyotriple (v, v’,v"),
instead of only to neighbors ~ v'.

Claim 14. Let0 < A, < Id, v and |®) satisfy the assumptions of Lemma 12, and in partic@l). Let
H=1Y,,v(v,v)[v)(v| be the “adjacency matrix” associated 19 D = Y, v(v)|v) (v| (wherev(v) is

the marginal) andL = Id —D~1/2HD~1/2 the normalized Laplacian. Suppose that the second smallest
eigenvalue\, of L is positive. Then for any”,

1/2
UE’ H|<I)vv//> - ’q)v/y//>H2 _ 0(771/2)\2_1) ( _UEH|<I)U'0>H2> H ’q)v//U”>H'

Proof. Fix av” and let|¢p) = Y, \/v(v)|v)|Pyyr). Then

1
(PIL@Id[p) = 5 E [[[®oor) — [Porer)* 27)
Decomposé¢) = |v1)|¢1) + [02)[¢2), where|vr) = Y2, \/v(0)[0), [§1) = L, v(0)|Poor) and|oy) is
orthogonal tdv; ). Since(vy|L|v1) = 0 we get from [(2F) that

1
5, E lll®oor) — | @yn) [|> = (02 {$a2|L @ 1d [02)|d2) > Ao,

whereA; is the second smallest eigenvalueldfith A; = 0). Applying the bound from Lemniall2 we get

7

1/2
g2l = 007223 ") ( Efl|@on)|*) [ uror)
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hence

_ 2\1/2
l19) = loa)lg) 2 = Elll®ows) = Eldgun) [ = 00225 ( El[I9w) |*) ™[ |@uror) .
The claimed bound follows by applying the triangle inedwyali O
The proof of Claini 11 follows easily from Lemmal12 and Clainh 14

Proof of Clain{I1.Applying Claim[13, forv taken as the distribution of questions@iG and|®), Ab as
|¥), AL, we obtain that there exists unitaries such that the st¥gs) defined from these unitaries as
in (I5) satisfy that, for any”,

)~ [Fe) | = 00223 (e F) ) e (28)
In addition, from the second inequality in Lemind 12 we get
o) = [¥ood |* = 00" E||[¥e)||", (29)
from which it also follows that
E M)l = ElI¥a) 2| < B lM¥oor) = [¥ao) ([ ¥Eood || + ¥ || [ ¥} |2)
1/2 1/2
<2 E 1) - ) P) (B f1]?)”
=o(r"?)(E| y‘yw>|\2>l/2, (30)

where the first inequality usds®> — b?| < |a — b||a + b| and the Cauchy-Schwarz inequality to bound
1o ) | < |[¥oo) [IM2]|[Torer ) ||1/2, the second uses Cauchy-Schwarz, and the(Takt (29).
We now evaluate the overlap

2
‘ <TUU/ |TU”U”/>
E (Y Yoo ) =
UNU’< oo’ ’0'| UU,> v~ !~ E/H ’TUU/> ||2
o~

2 2
(& ¥l = 002 (Bl P)
>
- E/H|Tm}’>”2
V~T

> (1-0(y"?) E|[¥e0 %, (31)

where the second line follows frorm (28) and the last usek (8Pplying the Fuchs-van-de-Graaf inequal-
ity [FvdG99],

Ello— |Tvv’ vv/ H < ( Eonv (Fovr ’U|Tvv’2> ) 172
o~ EZJ”NU’” H |Tv//v/// || ZJ”NU”’ H |Tv//v///> H
=o',
where the second inequality uskes|(30) (31). O
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4.2 Non-expanding games

SupposeG is an arbitrary (not necessarily expanding) projection gaim the gameG*G the players are
always sent neighboring ~ ©’. To mimic the proof strategy from the previous section, weulddike

to enable the players to take advantage of the possibilitysofg an arbitrary entangled state in order to
initialize themselves in a state that is closdq,/). The difficulty is that this must be done “on the fly”,
as|¥,,) depends on the questionsv’; indeed sincés is not expanding there is no single state close to alll
|'¥..) that they could have agreed upon before the start of the gasneds the role of in the previous
section).

At this point it is natural to attempt to resort to the use obecalled family of “universal embezzling
states”|T,;) € C¥ ® C“. These states, introduced in [vH03], have the propertyftitaany given statey)
there exists @ and unitaried], V such thatl @ V|T;) =~ |)|T ;) for somed’. Hence ifbothplayers have
a description of the target staf€.,./) they can easily generate it locally from the universal sfBjé.

The difficulty, however, is that only the first player knowsand the second knows: how to make
them agree on which state to embezzle? Lemma 12 suggesisgtiarsoApplied to the present setting, the
lemma implies that

2

4

E [[[¥or) — [Yoo)|* = O01"/2) E[[¥oo)
VD! v

that is, all three state®¥,), |¥,,) and|¥,) are close for neighboring ~ v’. Hence the first player,
knowing her questiorv, can compute a classical description of the stg,); the second player can
compute a classical description |8, /). These two states are close to each other as well to the tiaget
are these conditions sufficient for the two players to sigfolg embezzle a joint state close to either of the
three?

It turns out that, if one naively applies the embezzlingcpraure described in [vHO3] to this setting, it
can fail completely even when the states are arbitrarilgei®ee Sectidd 5 for an example). Nevertheless,
in the next section we state and prove a “quantum correlasgpkng lemma”, which extends the results
in [vHO3] to this “approximate” scenario. Based on that leminis not hard to adapt the proof from the
previous section, as follows.

Proof of Lemmé&l5Let | A) be a vector strategy, an) a state such thdt{1L3) holds. Our goal is to identify
a quantum strateghA) such that|G @ Id |A) |2 > 1 — O(»'/¢), which by Clain{I0 will suffice to prove
Lemmd.

We define a “re-normalized” vector stratefg§) € CI% @ €IVl @ I8l @ £(C?), from which we will
later obtain a quantum strategyl,,) by making a good choice @b € Q. As in the previous section, for
everyw we may define states

) P
Yooo) = UwoAwo @ UuwALZIY), (32)
where thel,,, are the unitaries given by Lemrhal12: as a consequende lofrg@@ac¢ing the max on the
right-hand-side by an average) the assumption of the lersrsatisfied, on average over € ), for the
stateg¥ 7). The lemma gives us the following bound:

E E,|HTWW> - ’vav’>|‘2 = 0(771/2) E E||’vav>||2- (33)
U~D w v

In addition, for everyv and questiow € V let V,,, andW,,, be the unitaries that are defined in Lenimh 15,
for the (re-normalized) stat®,,,,) and a choice o = 7. By convexity the lemma gives us that

_ Y > ’T / ,> 2/6
E E||V,o W, /| Ta0) — |||¥ Ty A2 =0 H | wvY wv'v H 3
wvwv’” wv wv ’ dd> |H wvv>|| ’ wvv>’ d >H = ( |Hlfwvy>|| — H| wU/U/>H ) ( 4)
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For any questio € V and answeb € B, define measurement operators
Agw = Vutv (UWUA;;/ZAZUA;;/ZULU ®1dy ) Vo, BZ}U = W:w (UWUA\;};/ZAZUA;;/ZULU @ 1dy ) Wawo-

It is easy to verify that eacA?,, andB? , is positive semidefinite, and that, A2, Y, BY, < Id. Since
we may always add a “dummy” outcome in order for the measunemigerators to sum to identity, both
{AL,}, and {BY,,}, are well-defined measurements, and for everylA,) := ¥, |v,b) ® AY, and
|Bo) == L |v,b) ® BY, valid strategies for the players "G (we will soon show that at least one of
these strategies must be a good strategy for the square.game)

We can first bound

E E [Viow ® War[Taa) = ¥ aomo) I [ ¥oor ) T |1
< EvE]’HV_W@ Wwv”rdd’> - H!‘wa>!|*1!‘1’m>lrd/>!|2 + EUE)/H"FWWHVZ‘HTWH - |vav’>H2

|vav> ’va’v’> 2/6 1/2
=0 E E — +0
(&E ey — eyl ) + o0
= O(E_E ¥awo) |20 ¥ |/ ¥as) — ) [5) +O(72)
— O(U1/6)’ (35)

where in the second line we uséd](33) and the Cauchy-Schwegrality to bound the last term, and{(34)
for the first; in the third line we used thd{¥,,)|| < 1, and in the last we again applied{33) and the
Cauchy-Schwarz inequality. Note that

£ Y Fodl,

oo‘ w y~p! bob!

E||G@1d|A,)|sllG ©1d|Bu) s = | E E Y- AL, AL,
R P
— < |2
> H EE Y Ab,®B,

7
w p~p! 00
O by

where the last inequality follows from Claim]20. Hence
IGIE > ElIG®1d|Aw) sl G ®1d |Bo) s

> EE Z<rdd”Achuv®Egv’|rdd/>

oy S

> EE Z H|vav>H72<vav"uZwA;zlz/zAgwA;zlz/zuwv

oW T

X uwv’A_l/zAZv’A_l/zqu"vav’> - 0(771/12)

wv’ wv'

= EE ) IMu)|"(¥4b, ® A7, %) — O/, (36)

~U hesb

where the second line uses the definitionAdf, and [3%) and the third is by definition ¢¥,,./). To
conclude, note that applying Markov’s inequality fol(13) get that a fraction at leagt— 7'/3 of v ~ v’

are such that
E Y (¥|AL, @ AV, [¥) > (1-7#*7) EHI‘FWH\Z,

Y s
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where here we crucially used tieax on the right-hand side of (13) to allow ourselves use the same
the right-hand side as on the left-hand side. For any susho’, a fractionl — ;71/3 of w € O will be such

that

Y, (FIAL, © ALy ) = (1= 7" I[¥woo) I>

b
For thesev ~ v’ andw the right-hand side of (36) is at leakt- #/3 — O(5'/12), and their total weight
constitutes at least afl — 21'/3) fraction of the total. O

5 The correlated sampling lemma

In this section we prove our quantum correlated samplingriam

Lemma 15. Letd be an integer and > 0. There exists an integet, and for every statéy) € C? ® C*
unitaries V,, Wy, acting onC%’, such that the following holds for any two states, |¢) € C? ® C*:

1V @ Wy |Taar) — [$)|Tar) || = O(max {612, ||[y) — |@)]|*/°}),

where herdl) o Y1;<4i1/2|i)]i) is the (properly normalizedj-dimensional embezzlement state.

A variant of the lemma holding for the special case|®f = |¢) was shown in[[vHO3], where the
“embezzlement state|T ;) was first introduced. It is not hard to see however that thestcoction of
the unitariesVy, W, given in that paper does not satisfy the conclusion of LernBiaHor instance, if

=/([1+e/ |00 )+ /(1 —¢)/2|11) and|@) = /(1 — &) /2|00) + /(1 + ) /2|11)) then one can
check that for any > 0 the unitaries from [vHO3] will be such thgt, © W, ]de,) )| Ta) || > 1/4.
This is due to the near-degeneracy in the spectrum of theceeddensity matrlces dfp), |¢); our proof
of Lemma1b shows that this is essentially the only obstdwzerieeds to be overcome in order to obtain a
robust correlated sampling procedure.

Lemmal1b can be seen as a quantum analogue of Holensteindated sampling lemma [Hol09],
which played an important role in his proof of the classicailgtiel repetition theorem. There the players
receive as inputs a description of a distributiong respectively such thatp — g||; = é. Their goal is to
sample an element ~ p for the first playerp ~ g for the second player, such that= v with probability
1—0(d). This task can be reproduced in our setting by giving theestgt) = Y, \/p(u)|u)|u) to the
first player and¢) = Y, v/q(v)|v)|v) to the second. If the players run our procedure and then measu
their joint state in the computatlonal baS|s they will obtaamples with a distribution close foandg, and
moreover these samples will be identical with high probighitthough our proof would require them to use
entanglement in order to do so!

We note that we have not tried to optimize the parametersaaipein the lemma. In particular, from
our proof one can verify that taking = 2°0((4/6)*) in the lemma is sufficient, but this is probably far from
optimal. Indeed, the method in [vHO3] givés= d°(1/9): it may be possible to achieve such a polynomial
dependence here as well.

Proof of Lemma15We define the unitarie?lp, W, implicitly through the following procedure, in which
two players Alice, Bob receive classical descriptions o tvipartite state$y), |¢) respectively, each of
local dimensioni, as well as a precision parameter- 0. The unitaries\7¢ andW,, correspond to their re-
spective local quantum operations as described in the guoeeThe players’ initial state consists of a clas-
sical description of the statés), |¢) respectively (where each coefficient is specified with pogy(s,d 1)
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bits of precision), a large supply of private qubits iniad in the|0) state, a large supply of shared EPR
pairs that they will use as classical shared randomnessamminbezzlement stai€;;) for some large
enoughd’.

1. Letd be the local dimension dfy) and|¢), é the precision parameter given as part of the input, and
n > 0 a small parameter to be specified later.

2. Using shared randomness, the players jointly computgueseer, . . ., Tx 1, whereK = [llggg((fﬁ?))},
as follows. They sety = 1, tx+1 = 0, and fork = 1,..., K they jointly samplet; uniformly at

random in the interval(1 +7) %, (1 +7) 1),
3. Both players individually compute a classical desanipif the same (normalized) state

K

o) o Y wlk, k) ap|Pa) an,
=0

where|®;) is the un-normalized maximally entangled state®nz C?. LetN = [(26d ¥ t2) 2].
Alice and Bob jointly generaté&V copies of|¢), which they can achieve using the universal ambez-
zling procedure from [vHO3] provided is large enough.

4. Alice (resp. Bob) computes the Schmidt decomposition= Y_; A;|u;)|u}) (resp.|@) = ¥_; uilvi)|v})).
She setsS; (resp. Ty) as the set of those indicésuch that\; € [1;.1, ) (resp. u; € [Ter1, T)),
sk = |Sk| (resp. ty = |Tk|), and Py (resp. Q) the projector on the the span of the) for i € Sy
(resp.|v;) fori € Ty).

5. Alice measures her share of the first copyda using the two-outcome measureméiy, Id —P4 }
whereP, := Y |k) (k| ® P;. Bob proceeds similarly witlPg := Y |k) (k| ® Q. If either of them
obtains the first outcome they proceed to the next step. ®tberthey repeat this step with the next
copy of |&y) (assuming, but not knowing, that the other party also stmgs). If all copies have been
used they abort the protocol.

6. Alice (resp. Bob) controls on the second registefa} to eraselk) in the first register. (This is
possible since thé&, (resp. Qi) are orthogonal projections.) The players discard all gubut the
remaining register ofto).

Throughout the analysis we assume without loss of gengthbits > |||¢) — |@)||?. We will show that
with probability at least — O(6'/12) the procedure described above results in a shared statedrefice
and Bob that is within trace distan€(5'/1?) of both |¢) and |¢). Our first claim shows that, based on
the 7, the players can each compute a discretized version ofitipits that both have (a slightly re-scaled
version of) ther, as Schmidt coefficients.

Claim 16. Define

Y) = C;Tk Z 1) |ul) and |®) := C’;Tk Z [0;)|0%),

1€5k i€Ty

where thet;, S, and T are as defined in the protocol ard C’ are appropriate normalization constants.
Then
1+ t<cc <y, (37)
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and

max {[[[y) — V)1 [llg) — [®)[*} = O(n). (38)

Proof. We haveC~2 =y, Tk s which by definition ofS; satisfies
=Y A7 < Y gise < ) (L+)%A7 < (L+9)%
i k i

A similar calculation holds foc”’, proving [37). Next we bound the first term {0 {38), the secbrihg
similar. Using the definition of¥) and [37) we have

) = ) <32 ) (A — w)* + O(y)

k i€Sy

O

Our next claim shows that the subspad®sQ, computed by the players are close, in the following
sense.

Claim 17. The following holds with probability at leagt— O(61/6~1/3) over the choice of the:

Y 7 Tr(PQr) = 1—0(8"6y71/3). (39)
k

Proof. Using Claim[I6 and||y) — |¢)||* < & we deduce thal{®[¥)[|*> = CC' Y v 4 Tr(PQx) =
1 —0O(#). To prove the claim we bound the contribution of those teronsvhichk # k’:

Y nmeTr(PQu) = Y wwe Y, Y [{uilo))?

kK kZK! i€5, jETy
< (1+77)2< Y. il (uilo) > + Y. )\iﬂj|<”ilvj>!2>/
k;«ék’,iesk,jeTk/ k;ék’,z,iesk,jeTk/
I/Ail =1/ AP =8 IAil =/l AP <G

(40)

whereé > 0 is a parameter to be fixed later. We bound each of the two terside the brackets ifn_(#0)
separately. The first term is at most

A —
)» MpllwilopP < 0 == Kuilopl?
ij i,j
IN/Ail =/ A P> E [Ai—pi P> Ain;
<Z ZM V]’ 1 ”z’v]H
<& ( —2(yl9))
<ogt



To bound the second term in_(40), note first that provigiéslat most a small constant timgsmecessarily
k' = k+1ork’ =k —1; our choice ofZ will satisfy this condition. Suppos€ = k — 1, the other case
being similar. Fixi, j such thatl\/A;/u; — \/uj/Ai|* < &. This condition impliegA; — p|* < &pjA; <
&(1+ ) 372, Sincety is chosen uniformly in an interval of lengtia; (1 4+ 7)1, the expected fraction of
pairs (i, j) such that such that /A;/u; — \/u;j/Ai|* < ¢ andA; < 1 < pjis at mostO(+/Z/7). Hence,
on expectation over the choice of tihewe have

Y Aipj | (uilo) 2 < O(/En™) ZA wil(uilo 2 = O(vEn ™).

k#K ,i€Sy,jeTy

I/Ai/ =i/ AP <E

Choosing; = ((5;7)2/3, we obtain thatf (39) holds, on expectation over the choidhef,, with a right-hand
side of1 — O(6'/34=2/3). (The condition thaf < 7 is equivalent toJ < #'/3, which we may assume
holds without loss of generality, as otherwise the boundhéndaim is trivial.) The left-hand side is at most
1, and applying Markov’s inequality proves the claim. O

Our last claim analyzes the outcome of the sampling proeggwoving the lemma.

Claim 18. Let [¢), |@) be such that||y) — |@)||> < 4, and sety = 6'/4. With probability at least
1 — O(s6'/12), the sampling procedure described above terminates witte Ahd Bob in a shared staté)
such that][¢) — [¢) > = O(6"/*2).

Proof. Suppose first that (39) holds and that Alice and Bob both ga¢e the third step synchronously. In
that case, at the end of the procedure their joint state is

C”ZT Y (uilop)|ui)lvj),

ZGSkJGTk
where the normalization constat satisfies
(")~ ZTk Yo [(uilop) [P = YT Tr(PQk) = 1—O(n + 63 72/3)
lESk,jETk k

by Claim[d17. We can thus evaluate the overlapiofwith |®) as
@€e) =Y. % Y, Nuilop> =05y 727%)
k ieSyieTy
—1— 0(51/6]7—1/3),
where for the first equality we used orthogonality of thg, and the last again follows from Claim]17.
Next we compute the probability that in the second step Adicg Bob both obtain the first outcome of

their respective POVM in the same iteration. The probahiliat Alice alone obtains a successful outcome
isY . sk /(A ) = (1+O(n))(d L t7) ! by (37). The same holds for Bob. With probability at least

1 — 42, both of them obtain a successful outcome before the nuilErcopies of|&y) runs out. Moreover,
the probability that they simultaneously obtain the firdicome is

(dZTkz)_llegTr(Pka) > (1-0(8"6y71/3)) dZT
k k

by Claim[17. Hence the probability that they simultaneoyslyceed to the third step of the protocol is at
leastl — O(6'/65~1/3). Choosingy = 5'/* proves the lemma. O

O
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A Auxiliary claims

Claim 19. Let X € L£(C%), Y € £(C") be two operators and¥) € C? ® C* a bipartite state with
Schmidt decompositioi¥') = Y, A;|u;)|v;), where the\; are non-negative reals. Then

(¥|X®Y|¥) = Tr(XKYTK"), (41)

whereK = Y, A;|u;) (v;| and the transpose is taken in the bases specified by:thand |v;). In particular,
if |u;) = |v;) for everyi, K is positive semidefinite ar@l]) evaluates tar(XKYTK).

Proof. The proof follows by direct calculation, expanding the HJeéind side of[(41) using the Schmidt
decomposition of¥) and the right-hand side using the definitionkof O

Claim 20. For anyd and operatorsA; € £(C%), B; € £L(C%),
HZE‘@)Bi ‘ZE@)Bi
i i

Proof. Let |¥) € C® C“ be a unit vector with Schmidt decompositi¢) = Y; A;|u;)|v;) andK =
Y.i Ai|ui) (v;]. Using cyclicity of the trace,

<[ Fea
i

. .

Tr(AKBIK') = Tr(((K*K)—1/4I<+Ai(1<1<+)1/4)((KK*)—U‘*KBJ(K*K)V‘*)),
and the Cauchy-Schwarz inequality for the trace innerqcbdives
| Tr(AKBIKY|* < Tr(AVKKT AIVKK) Tr(BIVKTKBVKK). (42)
Using ClainI9 we may then write
(¥ ( LA B) [¥)| = | L Tr(AKBIKY)|
i i

<) \/ Tr(A;VKKAFVKK?) \/ Tr(Bf VK'KB;VK'K)

< (ZTr(Ai\/1<1<+Al.+\/1<I<+))1/2 ( ZTr(Bjx/K+I<Bi\/K+K))1/2

N

1/2
@

= ‘(‘ﬂ’(ZE@Ai) ¥L) <‘YR’<ZE®31‘> [¥r)
i i

where for the first inequality we usdd (42), the second fallérem the Cauchy-Schwarz inequality, and for

the last we introduce@¥ ) = Y ; Aiu;) |u;), |¥r) = Y; Ailvi)|vi), and we used Claiin 19 to re-write the

expressions. SincE (43) holds for i), the claim is proved. O

We next prove Clairhl3, introduced in Sectlon]2.2.
Claim B There exists a polynomial-time computable transformatimapping any two-player one-round
gameG to a projection gamé&;’ such that the following hold:

1—2(1-VvAL(G")) < VvAL(G) < VAL(G).
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In particular, VAL (G’) = 1 if and only ifvAL (G) = 1, and1 — VAL (G’) = ©(1 — VAL (G)). Moreover,
for the entangled value we have the weaker bound

VAL*(G,) < H%L(G),

which impliesl — vAL*(G’) = Q(1 — vAL*(G)).

Proof. Let G be a game with (without loss of generality disjoint) questsetsl/, V', answer sets, B,
distribution on questiong and acceptance predicate Let G’ be the projection game corresponding to
the following scenario. The referee selects a pair of qaesiju, v) at random fronmy, which it sends to
the second player, and then sends either v to the first player, each with probability/2. Formally, G’

is defined by question set¢ = L/ UV, V' = U x V, answer setsd’ = AUB, B’ = Ax B, and a
distributiony’ given by’ (u, (u,v)) = u'(u,v)/2, u'(v, (u,v)) = u'(u,v)/2, and0 otherwise. For any
(u,v) and(a,b) letr, (, ) be such thatr, (, ,)(a,b) = a andm, (, ,y(a,b) = bif V(a,b,u,v) =1, and
there is no valid answer for the first player if the second @tayanswers are such thé{a, b, u, v) = 0.

Then clearlyG’ is a projection game. Leff), |g) be classical strategies for the players such that
VAL (G, |f),|g)) = VAL(G). Consider the strateg{{f’), |¢’)) for G’ in which |f") answers asf) to
questions: € U and agg) to questiony € V, and|g’) answers a$|f), |g)). Then whenever the strategy
(1), |g)) provides answers to a pair of questigqns v) that satisfy the predicat® the strategy(|f), |<))
gives answers to botty, (1, v)) and(v, (4, v)) that are accepted i@’, hence

VAL(G) = VAL (G|, 1g')) = VAL (G, |f), [g)) = VAL (G).

Conversely, le{|f"), |g’)) be a strategy foG’ such thatvaL (G') = vaL (G, |f'),|¢’)). Decomposef’)
into a pair of strategie$f), |g) in G, depending on whether the questioruis= ¢/ orv € V. The pair
(1), |g)) will give a rejected answer to a pair of questiqmsv) only if (| '), |¢’)) gave a rejected answer
to at least one of the questiofws, (1, v)) and(v, (1,v)) in G'. In the worst case the — VAL (G, |f),|g)))
probability that(|f’),|g’)) provides rejected answers @& is, say, fully concentrated on questions of the
form (u, (u,v)). Hence

VAL(G) = VAL(G,|f),Ig)) =1 =2(1 = VvAL(G'|f'),18"))) =1—2(1 - VAL (G)).

Finally, let (|A’), |B’)) be a pair of quantum strategies such twat*(G’') = vaL*(G/,|A’),|B’)). To
|A) are unambiguously associated measurement operatdrs, for everyu € U, and{ A%}, forv € V.
Hence

1 __ _
(@) =|E5 Y AjeBi+AleBy
(a,b):V(a,bu,v)=1 o
1 a b a NS hab ab||V?
<|,E; L (a+Ahe@i+a)| | E Y  BloBl
(a,b):V(abu,v)=1 *© (a,b):V(a,bu,v)=1 *©
1 1 _ 1/2
= <§ + E quv Z ALLI‘ ® Ag) > 4
(a,b):V(a,bu,)=1 o

where the last inequality uses the triangle inequalitylierdperator norm and the fact thigt'; X; ® Yi||e =
| XY ® Xi|| for any X;, Y;. Hence the pair of strategi€sA|;,), |Ay)) for G achieves a value at least

VAL*(G) > VAL*(G,|Ap), |Ay)) > 2vAaL*(G')* -1,

as claimed. O
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