
ar
X

iv
:1

21
0.

12
80

v1
  [

cs
.C

C
] 

 4
 O

ct
 2

01
2

A Pseudorandom Generator for Polynomial Threshold Functions of

Gaussian with Subpolynomial Seed Length

Daniel M. Kane

March 4, 2018

Abstract

1 Introduction

We say that a function f : Rn → {+1,−1} is a degree-d polynomial threshold function (PTF) if it is of the
form f(x) = sgn(p(x)) for p some (degree-d) polynomial in n variables. Polynomial threshold functions make
up a natural class of Boolean functions and have applications to a number of fields of computer science such
as circuit complexity [1], communication complexity [11] and learning theory [8].

In this paper we study the question of pseudorandom generators for polynomial threshold functions of
Gaussians. In particular, we wish to find explicit functions F : {0, 1}s → R

n so that for any degree-d
polynomial threshold function f

∣

∣Ex∼u{0,1}s [f(F (x))] − EX∼Gn [f(X)]
∣

∣ < ǫ.

We say that such an F is a pseudorandom generator of seed length s that fools degree-d polynomial threshold
functions with respect to the Gaussian distribution to within ǫ. In this paper, we develop a new such generator
whose seed length is O(ǫ−o(1)) for any fixed d, n.

1.1 Previous Work

There have been a number of previous papers dealing with the question of finding pseudorandom generators
for polynomial threshold functions with respect the the Gaussian distribution or the Bernoulli distribution
(i.e. uniform over {−1, 1}n). Several early works in this area showed that polynomial threshold functions of
various degrees could be fooled by arbitrary k-wise independent families of Gaussian or Bernoulli random
variables. It should be noted that a k-wise independent family of Bernoulli random variables can be generated
from a seed of length O(k log(n)). Although, any k-wise independent family of Gaussians will necessarily
have infinite entropy, it is not hard to show that a simple discretization of these random variables leads
to a generator of comparable seed length. These results on fooling polynomial threshold functions with k-
independence are summarized in Table 1.1 below. Unfortunately, it is not hard to exhibit k-wise independent

Paper Bernoulli/Gaussian d k

Diakonikolas, Gopalan, Jaiswal, Servedio, Viola [3] Bernoulli 1 O(ǫ−2 log2(ǫ−1))
Diakonikolas, Kane, Nelson [4] Gaussian 1 O(ǫ−2)
Diakonikolas, Kane, Nelson [4] Both 2 O(ǫ−8)1

Kane [6] Both d Od

(

ǫ−2O(d)
)

1The bound in [4] for the Bernoulli case is actually Õ(ǫ−9), but this can be easily improved to O(ǫ−8) using technology from
[7].
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families of Bernoulli or Gaussian random variables that fail to ǫ-fool the class of degree-d polynomial threshold
functions for k = Ω(d2ǫ−2), putting a limit on what can be obtained through mere k-independence.

There have also been a number of attempts to produce pseudorandom generators by using more structure
than limited independence. In [9], Meka and Zuckerman develop a couple of such generators in the Bernoulli
case. Firstly, they make use of pseudorandom generators against space bounded computation to produce
a generator of seed length O(log(n) + log2(ǫ−1)) in the special case where d = 1. By piecing together
several k-wise independent families, they produce a generator for arbitrary degree PTFs of seed length
2O(d) log(n)ǫ−8d−3. In [7], the author develops an improved analysis of this generator allowing for a seed
length as small as Oc,d(log(n)ǫ

−11−c).
For the Gaussian case, the author developed a generator of seed length 2Oc(d) log(n)ǫ−4−c in [5]. This

generator was given essentially as an average several random variables each picked independently from a
k-wise independent family of Gaussians. The analysis of this generator was also improved in [7], obtaining a
seed length of Oc,d(log(n)ǫ

−2−c). In this paper, we improve on this bound further. We make use of a slight
modification of the above generator, by using unequal weights in our averaging process and obtain a seed
length of Oc,d(log(n)ǫ

−c).

1.2 Outline of Paper

In Section 2, we will introduce some conventions that we will use throughout the paper, and review some
basic results on polynomials of Gaussians.

The key idea in our analysis is that for p an approximately linear polynomial that E[p(X)] is a smooth
function in the coefficients of p, and thus can be well approximated by a polynomial in these coefficients. A
precise statement of this idea is presented in Proposition 4, whose proof takes up most of Section 3.

Hence, by the above claim, if p is an approximately linear polynomial, then for f = sgn ◦ p, and Y a
random variable whose low-degree moments are correct, we will have that E[f(ǫY +

√
1− ǫ2X)] for X a

random Gaussian will be approximately correct. This is because p can be thought of as a nearly linear
polynomial in X whose coefficients are given by polynomials in Y . Proposition 4 will therefore imply that
this expectation is approximated by the expectation of some polynomial in Y .

Unfortunately, a generic polynomially will not necessarily be approximately linear. We fix this by eval-
uating the polynomial near a random input. In particular, if we consider p(ǫX1 +

√
1− ǫ2X2) for a fixed

random Gaussian X2, the resulting polynomial in X1 is likely to be approximately linear. Such an anal-
ysis will work for a sufficiently non-singular polynomial (i.e. a polynomial whose derivative is unlikely to
be small). Not all polynomials are non-singular, but as we will show in Section 4, any polynomial can be
written in terms of non-singular polynomials.

In Section 5, we use this theory to develop a sequence of iteratively more detailed generators eventually
leading to one that satisfies our requirements. Using the ideas above, we show in Proposition 8 that for X a
true n-dimensional Gaussian and Y a k-wise independent family of Gaussians that ǫY +

√
1− ǫ2X produces

a PRG that fools degree-d PTFs to within Od,k(ǫ
k). Iteratively replacing the X involved by such a generator,

we obtain a PRG (see Proposition 9) given by

ℓ−1
∑

i=0

ǫ(1− ǫ2)i/2Yi + (1 − ǫ2)ℓ/2X.

It is easy to see that for ℓ large, that the X term may safely be removed introducing at most a small error
(see Proposition 10). Finally, in Theorem 11, we put these results together to produce a PRG of seed length
Oc,d(log(n)ǫ

−c).

2 Background

2.1 Notation

We will use the notation Oa(N) to denote a quantity whose absolute value is bounded above by N times
some constant depending only on a. Throughout this paper, the variables X,X1, . . . will be used to denote
multidimensional Gaussian random variables unless stated otherwise.
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We recall here the definition of a polynomial threshold function:

Definition. A function f : Rn → {±1} is a (degree-d) polynomial threshold function (or PTF) if it is of
the form f(x) = sgn(p(x)) for some (degree-d) polynomial p.

Another important definition will be the following:

Definition. We say that a random variable Y taking values in R
n is a k-design, if all of the moments of Y

of order at most k agree with the corresponding moments of a standard n-dimensional Gaussian.

Note that any k-wise independent family of Gaussians is a k-design. Also note that applying any orthog-
onal transformation to a k-design yields another k-design. Throughout this paper we will use the variables
Y, Y1, Yi, . . . to denote k-designs for some k unless otherwise specified.

2.2 Polynomials of Gaussians

We recall some basic facts about polynomials of Gaussians. We begin by recalling the Lt-norm of a function.

Definition. For a function p : Rn → R, we let

|p|t =
(

EX [|p(X)|t]
)1/t

.

We now recall some basic distributional results about polynomials evaluated at random Gaussians.

Lemma 1 (Carbery and Wright). If p is a degree-d polynomial then

Pr(|p(X)| ≤ ǫ|p|2) = O(dǫ1/d).

Where the probability is over X, a standard n-dimensional Gaussian.

We will make use of the hypercontractive inequality. The proof follows from Theorem 2 of [10].

Lemma 2. If p is a degree-d polynomial and t > 2, then

|p|t ≤
√
t− 1

d|p|2.
In particular this implies the following concentration bound:

Corollary 3. If p is a degree-d polynomial and N > 0, then

PrX(|p(X)| > N |p|2) = O
(

2−(N/2)2/d
)

.

Proof. Apply the Markov inequality and Lemma 2 with t = (N/2)2/d.

2.3 Orthogonal Polynomials

We recall that the orthogonal polynomials form an orthonormal basis of the set of polynomials with respect
to the Gaussian inner product. Thus any polynomial can be written uniquely as a linear combination of
orthogonal polynomials

p(x) =
∑

a∈Z
n
≥0

ca(p)ha(x).

We let
p[k](x) :=

∑

|a|1=k

ca(p)ha(x)

be the sum of the terms in the above decomposition consisting of orthogonal polynomials of degree exactly
k. Furthermore, we let

p[≥k] :=
∑

m≥k

p[m].

We recall from [7] that

E

[

|∂X1 · · · ∂Xℓ
p(X)|2

]

=
∑

k

k(k − 1) · · · (k − ℓ+ 1)
∣

∣

∣p[k]
∣

∣

∣

2

2
.

Where ∂Xi above denotes the directional derivative in the Xi direction for Xi a random Gaussian.
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3 Polynomial Approximation of Expectations

In this Section, we prove the following Proposition, which says that the expectation of a threshold function
of a polynomial p, that is approximately linear can be approximated by a polynomial in the coefficients of p.

Proposition 4. Let d,m and k be positive integers. Let p : Rm → R
m be a degree-d polynomial given by

p(x) = x+ q(x). Let ǫ,N > 0 be real numbers and let f : Rm → [−1, 1] be any function. Then there exists a
polynomial R in the coefficients of q of degree less than k, dependent only on d,m, k, ǫ and f so that for all q

E[f(p(X))] = R(q) +Od,m,k,N (ǫN + ǫ−1|q|k).

Where above |q| denotes the largest absolute value of a coefficient of q. Furthermore, using the same notation,
|R| ≤ log(ǫ−1)Od,m,k(1).

In order to expand upon the intuition behind Proposition 4, we begin by sketching the proof in the case
that m = d = 1. In this case we may write q(x) = ax+ b. It is then the case that

E[f(p(X))] = E[f((1 + a)X + b)] =
1√
2π

∫ ∞

−∞

f((1 + a)x+ b)e−x2/2dx.

The key idea is to evaluate the above by making the change of variables y = (1+ a)x+ b. The above is then
equal to

1√
2π

∫ ∞

−∞

f(y)e−((y−b)/(1+a))2/2(1 + a)−1dy.

For small a and b, we may approximate the integrand above by a degree k − 1 Taylor polynomial in a and
b introducing an error on the order of |q|k in the process. Integrating then yields a polynomial in a and b
plus a small error. The proof of Proposition 4 is a straightforward generalization of this idea, though we
will see some technical difficulties arising from the more complicated change of variables, and the necessity
of keeping better track of errors.

Proof. Note that |E[f(p(X))]| ≤ 1, therefore we may assume that ǫ ≪ 1, or there is nothing to prove.
Similarly, we may assume that |q| ≪ ǫ1/(2k) or else ǫ−1|q|k ≫ |R(q)| + 1 and there is again nothing to
prove. In particular, we may assume that for c(d,m) a sufficiently small constant (in terms of d and m) that
ǫ < c(d,m), and |q| < c(d,m)ǫ1/(2k).

Note that

E[f(p(X))] =

∫

Rm

f(p(x))φ(x)dx

where φ(x) = (2π)−m/2e−
|x|22
2 . Up to an error of Om,N (ǫN ), we may ignore the integral outside of the range

where |x|2 ≤ log(ǫ−1). Note furthermore, that in this range, for ǫ and |q| sufficiently small, we have

|p(x)| ≤ |x|+ |q(x)| ≤ log(ǫ−1) +Od,m(|q| log(ǫ−1)d) ≤ 2 log(ǫ−1).

We claim that in this range of inputs and outputs that p has a nice inverse. In particular, if y ∈ R
m with

|y|2 ≤ 2 log(ǫ−1), we claim that there is a unique x with |x|2 ≤ 3 log(ǫ−1) so that p(x) = y. To show this,
we consider the map M from the ball of radius 3 log(ǫ−1) to R

m given by

M(x) = y − q(x).

Again, if ǫ and |q| are sufficiently small, then

|M(x)| ≤ |y|+ |q(x)| ≤ 2 log(ǫ−1) +Od,m(|q| log(ǫ−1)d) ≤ 3 log(ǫ−1),

and thus M maps the ball of radius 3 log(ǫ−1) to itself. For |x| ≤ 3 log(ǫ−1), we have that |q′(x)| is bounded
by Od,m(|q||x|d−1). For |q| a sufficiently small multiple of ǫ1/(2k), this is strictly less than 1/2. Thus M
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is a contraction mapping and thus has a unique fixed point. On the other hand, M(x) = x if and only if
p(x) = y. Therefore, for such y, we have a unique inverse. We may now write our expectation as

E[f(p(X))] =

∫

|x|2≤3 log(ǫ−1)

|p(x)|2≤2 log(ǫ−1)

f(p(x))φ(x)dx +Om,N(ǫN ).

Our plan is now to compute this integral by making the change of variables y = p(x). We know from
the above that in the domain of interest there is a function p−1, which by the Inverse Function Theorem is
necessarily smooth. Thus,

E[f(p(X))] =

∫

|y|2≤2 log(ǫ−1)

f(y)

(

φ(p−1(y))

|Jac(p(x))|x=p−1(y)

)

dy +Om,N (ǫN).

The fundamental idea of our proof will be to approximate
(

φ(p−1(y))
|Jac(p(x))|x=p−1(y)

)

by a polynomial in q with

coefficients depending on y. Integrating the above formula for E[f(p(X))], will then yield our result. We
recall that M was a contraction mapping with constant Od,m(|q| log(ǫ−1)d−1) < 1/2, and that p−1(y) is the
fixed point of M . Since |M(y) − y| = Od,m(|q| log(ǫ−1)d), we have that |p−1(y) − y| = Od,m(|q| log(ǫ−1)d).
Let M ℓ be the ℓth iterate of M . Since M is a contraction mapping with constant Od,m(|q| log(ǫ−1)d−1) and
fixed point p−1(y), we have that

|M ℓ(y)− p−1(y)| = Od,m,ℓ(|q|ℓ+1 log(ǫ−1)d+dℓ).

Notice that for fixed y that M ℓ(y) is a polynomial in q of degree at most dℓ, whose coefficients have size at

most Od,m,ℓ((1 + |y|2)d
ℓ

).
We may Taylor expand φ(x) about x = y to obtain an expression

φ(x) = Tk,y((x− y)) +Om,k(|x− y|k2),

where Tk,y is a polynomial of degree less than k with coefficients of size Om,k(1). Similarly, we may write
|Jac(p(x))| as a polynomial in x and q that is equal to 1+Od,m(|q|(1 + |x|)d(d−1)). We may therefore Taylor
expand its inverse as

1

|Jac(p(x))| = Sk(x, q) +Od,m,k(|q|k(1 + |x|)kd(d−1)),

where Sk is a polynomial of degree at most k(d+ 1) and coefficients of size Od,m,k(1).
Putting the above together, we have that:

(

φ(p−1(y))

|Jac(p(x))|x=p−1(y)

)

=
(

Tk,y(p
−1(y)− y) +Om,k(|q|k log(ǫ−1)kd)

)

(

Sk(p
−1(y), q) +Od,m,k(|q|k log(ǫ−1)kd(d−1))

)

=Tk,y(M
k(y)− y)Sk(M

k(y), q) +Od,m,k

(

|q|k log(ǫ−1)Od,m,k(1)
)

=Ry(q) +Od,m,k

(

|q|k log(ǫ−1)Od,m,k(1)
)

.

Where above Ry(q) is some polynomial in q of degree Od,m,k(1) with coefficients dependent on y and of size
at most log(ǫ−1)Od,m,k(1). By absorbing the terms of Ry of degree at least k into the error, we may assume
that R has degree strictly less than k. Therefore, we have that

E[f(p(X))] =

∫

|y|≤2 log(ǫ−1)

f(y)(Ry(q) +Od,m,k(log(ǫ
−1)Od,m,k(1)|q|k))dy +Om,N (ǫN ). (1)

Letting,

R(q) :=

∫

|y|≤2 log(ǫ−1)

f(y)Ry(q)dy,

5



we have by Equation (1) that (noting that the domain of integration has volume at most (4 log(ǫ−1))m)

E[f(p(X))] = R(q) +Od,m,k,N (ǫ−1|q|k + ǫN ).

Thus completing our proof.

We can use Proposition 4 to analyze a simple form of our generator.

Proposition 5. Let p be a degree-d polynomial that can be written in the form p(x) = h(q1(x), . . . , qm(x))
for some function h and some polynomials qi of degree at most d. Let f(x) = sgn(p(x)) be the corresponding
polynomial threshold function. Suppose that for each i that qi(x) = xi + ri(x) for some polynomial ri. Let
ǫ > 0 be a real number and k be an even integer. Let X be a random Gaussian and Y a kd-design that is
independent of X. Then

∣

∣

∣E[f(X)]− E

[

f
(

ǫY +
√

1− ǫ2X
)]∣

∣

∣ = Od,m,k

(

ǫk−1 + ǫ−1
m
∑

i=1

|ri|k2

)

.

Proof. Note that X can be written as the sum ǫX1 +
√
1− ǫ2X2 for X1 and X2 independent Gaussians.

Hence it suffices to show that E
[

f
(

ǫY +
√
1− ǫ2X

)]

is determined to within Od,m,k

(

ǫk−1 + ǫ−1
∑m

i=1 |ri|k2
)

simply be the low degree moments of Y .
We may rewrite X as (X0, X1), where X0 is the Gaussian given by the first m coordinates of X and X1

consists of the remaining coordinates. We let Q(x0, x1, y) be the vector-valued polynomial given by

Q(X0, X1, Y )i =
qi
(

ǫY +
√
1− ǫ2(X0, X1)

)

√
1− ǫ2

= (X0)i +

(

ǫYi + ri
(

ǫY +
√
1− ǫ2(X0, X1)

)

√
1− ǫ2

)

.

Upon fixing values for Y and X1 we let qY,X1(X0) be the vector valued polynomial given by

qX1,Y
i (X0) :=

(

ǫYi + ri
(

ǫY +
√
1− ǫ2(X0, X1)

)

√
1− ǫ2

)

.

We have that
Q(X0, X1, Y ) = X0 + qX1,Y (X0).

We have that

E

[

f
(

ǫY +
√

1− ǫ2X
)]

= E

[

sgn
(

h
(

√

1− ǫ2Q(X0, X1, Y )
))]

= E [g(Q(X0, X1, Y ))]

= EX1,Y [EX0 [g(Q(X0, X1, Y ))]]

= EX1,Y [R(qX1,Y ) +Od,m,k(ǫ
−1|qX1,Y |k + ǫk)].

Where g above is given by g(x) = sgn(h(
√
1− ǫ2x)), and R is the appropriate polynomial given by Proposi-

tion 4. Since the expectation of R(qX1,Y ) is determined the moments Y up to degree kd, this expectation is
determined up to an error of

Od,m,k

(

ǫk + ǫ−1
E[|qX1,Y |k]

)

.
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We note that |qX1,Y | = Od,m(|qX1,Y |2) = Od,m,k(|qX1,Y |k). Therefore the error above is

Od,m,k

(

ǫk + ǫ−1
E[|qX1,Y (X0)|k]

)

=Od,m,k

(

ǫk + ǫ−1
m
∑

i=1

E[|ǫYi + ri

(

ǫY +
√

1− ǫ2(X0, X1)
)

|k]
)

=Od,m,k

(

ǫk + ǫ−1

(

ǫk +

m
∑

i=1

|ri|k2

))

=Od,m,k

(

ǫk−1 + ǫ−1
m
∑

i=1

|ri|k2

)

.

Where the second to last line above is by Lemma 2 and the fact that Y is a kd-design.

4 Non-Singular Sets

Our basic plan will be to use Proposition 5 to show that the generator ǫY +
√
1− ǫ2X fools all polynomial

threshold functions. The idea will be to let
√
1− ǫ2X =

√
ǫX1 +

√
1− ǫ − ǫ2X2 for X1 and X2 independent

Gaussians. Upon fixing a random value for X2, it is not hard to show that the resulting polynomial of
ǫY +

√
ǫX1 will likely have its quadratic terms of size Õ(ǫ). Were it the case that the linear term of this

polynomial were Θ(
√
ǫ), (as seems likely) we could apply Proposition 5 almost immediately. Unfortunately,

if this polynomial has essentially no linear terms, this technique may fail. The possibility of this failure
is closely related to our original polynomial having small derivatives near X2. We will want to consider
polynomials for which this does not happen with non-negligible probability.

Definition. Given a sequence of polynomials (q1, . . . , qm), we say that they form an (ǫ, c,N)-non-singular
set if

PrX





∣

∣

∣

∣

∣

∣

∧

j

∂qj(X)

∣

∣

∣

∣

∣

∣

2

< ǫc



 < ǫN .

We recall the definition from [7] that for a degree-d polynomial p : R
n → R, we say that a set of

polynomials (h, q1, . . . , qm) is a decomposition of p of size m if qi : R
n → R, and h : Rm → R are polynomials

so that

• p(x) = h(q1(x), . . . , qm(x))

• For every monomial
∏

xai

i appearing in h, we have that
∑

a1 deg(qi) ≤ d

Furthermore, we say that a polynomial p has an (ǫ, c,N)-non-singular decomposition of size m if p has a
decomposition (h, q1, . . . , qm) with |qi|2 ≤ 1 for all i and so that (q1, . . . , qm) is an (ǫ, c,N)-non-singular set.

The key fact about these decompositions that we will need is the following structure theorem.

Theorem 6. Let p be a degree-d polynomial, and let ǫ, c,N > 0. Then there exists a degree-d polynomial p0
with |p− p0|2 = Oc,d,N(ǫN )|p|2 so that p0 has an (ǫ, c,N)-non-singular decomposition of size Oc,d,N(1).

Proof. This follows from the proof of the Diffuse Decomposition Theorem of [7].

5 The PRG

In this Section, we will prove a sequence of increasingly more powerful results for PRGs. We begin by
showing that if our polynomial has a non-singular decomposition that ǫY +

√
1− ǫ2X is an appropriate

generator.

7



Proposition 7. Let d, k be integers and ǫ > 0. Let p be a degree-d polynomial with an (ǫ, 1/10, k)-non-
singular decomposition of size m. Let f be the corresponding polynomial threshold function. Let X be a
Gaussian, and Y a 10kd-design independent of X. Then

∣

∣

∣E[f(X)]− E

[

f
(

ǫY +
√

1− ǫ2X
)]∣

∣

∣ = Od,m,k(ǫ
k).

Proof. First we assume that ǫ is sufficiently small given d,m and k, for otherwise there is nothing to prove.
It suffices to show that the expectation of f

(

ǫY +
√
1− ǫ2X

)

is determined to within Od,m,k(ǫ
k) by the

low order moments of Y .
Let p have the (ǫ, 1/10, k)-non-singular decomposition (h, q1, . . . , qm). Write

√
1− ǫ2X as

√
ǫX1 +√

1− ǫ− ǫ2X2 for X1 and X2 independent Gaussians. Let ǫX0 +
√
ǫX1 =

√
ǫ+ ǫ2Z for X0 an indepen-

dent Gaussian, and W = ǫX0 +
√
1− ǫ2X . Consider each of the qi as functions of Z and X2. Thinking of

X2 as fixed let qX2

i (Z) = qi(X2, Z). Notice that

EX2

[

∣

∣

∣

∣

(

qX
2

i

)[≥2]
∣

∣

∣

∣

2

2

]

≤ EX2,Z,X3,X4 [|∂Z
X3

∂Z
X4

qi(X2, Z)|22]

= (ǫ + ǫ2)2E[|∂W
X3

∂W
X4

qi(W )|22]
= O(d2ǫ2|qi|22)
= O(d2ǫ2).

Where ∂Z
Xi

above denotes the directional derivative of with respect to Z in the direction of Xi. Thus, since
∣

∣

∣

∣

(

qX2

i

)[≥2]
∣

∣

∣

∣

2

2

is given by a polynomial in X2, we have by Corollary 3 that with probability 1 − Od,m,k(ǫ
k)

that

∣

∣

∣

∣

(

qX2

i

)[≥2]
∣

∣

∣

∣

2

≤ ǫ log(ǫ−1)d for all i. Similarly, we may show that with this same probability that
∣

∣

∣

∣

(

qX2

i

)[1]
∣

∣

∣

∣

2

≤ √
ǫ log(ǫ−1)d for all i. For X2 fixed, let Li :=

(

qX2

i

)[1]

.

Note that with high probability

∂Zqi(Z,X2) = ∂ZLi(Z) +O(ǫ log(ǫ−1)d).

on the other hand, we have that

∂Zqi(Z,X2) =
√

ǫ+ ǫ2∂W qi(W ).

By non-singularity this means that with probability 1−Od,m,k(ǫ
k) we have

∣

∣

∣

∣

∣

∧

i

(

∂Li(Z) +O(ǫ log(ǫ−1)d)
)

∣

∣

∣

∣

∣

2

2

> ǫm+1/5.

On the other hand, the left hand side of the above is

∣

∣

∣

∣

∣

∧

i

(∂Li(Z))

∣

∣

∣

∣

∣

2

2

+Od,m(ǫm+1/2 log(ǫ−1)2dm).

Thus for ǫ sufficiently small, we have with probability at least 1−Od,m,k(ǫ
k) over the choice of X2 that

∣

∣

∣

∣

∣

∧

i

(∂Li(Z))

∣

∣

∣

∣

∣

2

2

>
ǫm+1/5

2
.

If this is the case, then the product of the singular values of the matrix with rows given by the gradients
of the Li is at least ǫm/2+1/10. Since none of the singular values can be larger than Om(ǫ1/2 log(ǫ−1)d),
this implies that all of the singular values of this matrix are at least ǫ1/4. Thus if the qi are replaced by
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a appropriate linear combinations of their old values (with coefficients at most ǫ−3/4) we can ensure that
the ∂Li(Z) are orthonormal. By making an appropriate change of variables for Z, we may assume that

Li(Z) = Zi. Removing the degree-0 harmonic part of qX
2

i , we may assume that qX2

i (Z) = Zi + ri(Z) with
|ri|2 = Om(ǫ1/4 log(ǫ−1)d).

To summarize, with probability at least 1 − Od,m,k(ǫ
k) over the choice of X2, there is an orthogonal

change of variables for Z, and a sequence of polynomials q′i, ri with q′i(Z) = Zi + ri(Z) and |ri(Z)|2 =
Om(ǫ1/4 log(ǫ−1)d) so that p(Z,X2) has a decomposition into the q′i. Applying Proposition 5, we find that
with probability 1−Od,m,k(ǫ

k) over X2 we have that:
∣

∣

∣EZ

[

f
(
√

ǫ+ ǫ2Z +
√

1− ǫ− ǫ2X2

)]

− EY,X1

[

f
(

ǫY +
√
ǫX1 +

√

1− ǫ− ǫ2X2

)]∣

∣

∣

= Od,k,m(ǫ5k−1 + (ǫ1/4 log(ǫ−1)d)10k) = Od,k,m(ǫk).

Taking an expectation over X2 completes our proof.

Next we use Theorem 6 to extend Proposition 7 to arbitrary polynomial threshold functions.

Proposition 8. Let f be a degree-d polynomial threshold function. Let ǫ > 0 and k be an integer. Let X be
a random Gaussian and Y a 10kd-design independent of X. It is the case that

∣

∣

∣
E[f(X)]− E

[

f
(

ǫY +
√

1− ǫ2X
)]∣

∣

∣
= Od,k(ǫ

k).

Proof. Let f = sgn(p(x)) for some degree-d polynomial p with |p|2 = 1. By Theorem 6, there exists a degree-
d polynomial p0 so that |p− p0|2 = Od,k(ǫ

2kd+k) so that p0 has an (ǫ, 1/10, k)-non-singular decomposition of
size m = Od,k(1). Since ǫY +

√
1− ǫ2X is a 2d-design, we have by the Markov bound that with probability

1−Od,k(ǫ
k) that

∣

∣

∣p
(

ǫY +
√

1− ǫ2X
)

− p0

(

ǫY +
√

1− ǫ2X
)∣

∣

∣ ≤ ǫkd.

Note that the polynomials p0 ± ǫkd also have (ǫ, 1/10, k)-non-singular decompositions of size m. Therefore,
we have by the above, Proposition 7 and Lemma 1 that

E

[

f
(

ǫY +
√

1− ǫ2X
)]

= E

[

sgn
(

p
(

ǫY +
√

1− ǫ2X
))]

≤ E

[

sgn
(

p0

(

ǫY +
√

1− ǫ2X
)

+ ǫkd
)]

+Od,k(ǫ
k)

= E[sgn(p0(X) + ǫkd)] +Od,k(ǫ
k)

= E[sgn(p0(X)− ǫkd)] +Od,k(ǫ
k)

≤ E[sgn(p(X))] +Od,k(ǫ
k)

= E[f(X)] +Od,k(ǫ
k).

And the other direction of the inequality follows analogously.

Iterating applying Proposition 8 yields the following:

Proposition 9. Let f be a degree-d polynomial threshold function and ǫ > 0. Let k and ℓ be integers. For
1 ≤ i ≤ ℓ let Yi 10kd-designs and X a Gaussian so that X and the Yi are independent. Then

∣

∣

∣

∣

∣

E[f(X)]− E

[

f

(

ℓ
∑

i=1

ǫ
(

√

1− ǫ2
)i−1

Yi +
(

√

1− ǫ2
)ℓ

X

)]∣

∣

∣

∣

∣

= Od,k(ℓǫ
k).

Proof. The proof is by induction on ℓ and noting that by fixing the values of Y1, . . . , Yℓ−1 Proposition 8
implies that
∣

∣

∣

∣

∣

E

[

f

(

ℓ−1
∑

i=1

ǫ
(
√

1− ǫ2
)i−1

Yi +
(
√

1− ǫ2
)ℓ−1

X

)]

− E

[

f

(

ℓ
∑

i=1

ǫ
(
√

1− ǫ2
)i−1

Yi +
(
√

1− ǫ2
)ℓ

X

)]∣

∣

∣

∣

∣

= Od,k(ǫ
k).
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It is not hard to get rid of the X in the above generator

Proposition 10. Let f be a degree-d polynomial threshold function and ǫ > 0. Let k and ℓ be integers. For
1 ≤ i ≤ ℓ let Yi be independent 10kd-designs and X a Gaussian. Then

∣

∣

∣

∣

∣

∣

E[f(X)]− E



f





∑ℓ
i=1

(√
1− ǫ2

)i−1
Yi

√

∑ℓ
i=1(1− ǫ2)i









∣

∣

∣

∣

∣

∣

= Od,k

(

ℓǫk + (1− ǫ2)
ℓ

2d+1

)

.

Proof. Let f(x) = sgn(p(x)) for p a degree-d polynomial with |p|2 = 1.
Let

Y :=

∑ℓ
i=1

(√
1− ǫ2

)i−1
Yi

√

∑ℓ
i=1(1− ǫ2)i

.

Assume that X and Y are independent and let

Z :=
√

1− (1− ǫ2)ℓY +
(

√

1− ǫ2
)ℓ

X.

It is not hard to show that since Y is a 2d-design that

E[|p(Y )− p(Z)|2] = Od((1 − ǫ2)ℓ).

Thus by the Markov inequality, with probability at least 1−Od

(

(1− ǫ2)
ℓ

2d+1

)

, we have that

|p(Y )− p(Z)| ≤ (1 − ǫ2)
dℓ

2d+1 .

Therefore, we have that

E[f(Y )] = E[sgn(p(Y ))]

≤ E

[

sgn
(

p(Z) + (1− ǫ2)
dℓ

2d+1

)]

+Od

(

(1− ǫ2)
ℓ

2d+1

)

≤ E

[

sgn
(

p(X) + (1− ǫ2)
dℓ

2d+1

)]

+Od,k

(

ℓǫk + (1− ǫ2)
ℓ

2d+1

)

≤ E [sgn(p(X))] +Od,k

(

ℓǫk + (1− ǫ2)
ℓ

2d+1

)

≤ E [f(X)] +Od,k

(

ℓǫk + (1− ǫ2)
ℓ

2d+1

)

.

The other direction of the inequality holds analogously.

We can finally prove our main result:

Theorem 11. For d, k positive integers and ǫ > 0, there exists an explicit pseudorandom generator, Y
of seed length Od,k(log(n)ǫ

−1) so that for X an n-dimensional Gaussian, and f any degree-d polynomial
threshold function in n variables, then

|E[f(X)]− E[f(Y )]| = Od,k(ǫ
k).

Proof. Let δ = ǫ1/3. Let ℓ = δ−2 log(ǫ−k(2d+1)). Let Z1, . . . , Zℓ be independent 10d(3k + 3)-designs. Let

Z :=

∑ℓ
i=1

(√
1− δ2

)i−1
Zi

√

∑ℓ
i=1(1− δ2)i

.

By Proposition 10 we have that

|E[f(X)]− E[f(Z)]| = Od,k

(

ℓδ3k+3 + (1− δ2)
ℓ

2d+1

)

= Od,k(ǫ
k).
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By Gauss-Jacobi quadrature, there is a 1-dimensional 10d(3k + 3)-design supported on a set of size
10d(3k+ 3). Therefore there is an explicit random variable with seed Od,k(log(n/ǫ)) which differs from this
by at most ǫkn−1ℓ−1 in statistical distance. A 10d(3k + 3)-wise-independent family of n of these variables,
has seed length Od,k(log(n/ǫ)) and is within a statistical distance of Od,k(ǫ

kℓ−1) of some 10d(3k+3)-design.
If we take ℓ independent copies of such random variables, calling them Yi and let

Y :=

∑ℓ
i=1

(√
1− δ2

)i−1
Yi

√

∑ℓ
i=1(1− δ2)i

.

then Y can be generated from seed length

Od,k(log(n/ǫ)ℓ) = Od,k(log(n)ǫ
−1),

and has statistical distance at most O(ǫk) from Z. Thus

E[f(Y )] = E[f(Z)] +O(ǫk) = E[f(X)] +Od,k(ǫ
k).

Changing the value of ǫ appropriately, we have that

Corollary 12. Let d be a positive integer and c, ǫ > 0. There exists an explicit pseudorandom generator Y
with seed length Oc,d(log(n)ǫ

−c) so that for any degree-d polynomial threshold function in n variables, and
X an n-dimensional Gaussian,

|E[f(X)]− E[f(Y )]| ≤ ǫ.
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