
Estimating camera motion through a 3D cluttered scene

Richard Mann Michael S. Langer
School of Computer Science School of Computer Science

University of Waterloo McGill University
Waterloo, Ontario, Canada Montreal, Quebec, Canada

Abstract

Previous methods for estimating the motion of an ob-
server through a static scene require that image velocities
can be measured. For the case of motion through a cluttered
3D scene, however, measuring optical flow is problematic
because of the high density of depth discontinuities. This
paper introduces a method for estimating motion through a
cluttered 3D scene that does not measure velocities at in-
dividual points. Instead the method measures a distribution
of velocities over local image regions. We show that motion
through a cluttered scene produces a bowtie pattern in the
power spectra of local image regions. We show how to es-
timate the parameters of the bowtie for different image re-
gions and how to use these parameters to estimate observer
motion. We demonstrate our method on synthetic and real
data sequences.

1. Introduction

Many computer vision methods have been developed for
analyzing image motion. These methods have addressed a
diverse set of natural motion categories including smooth
optical flow, discontinuous optical flow across an occlusion
boundary, and motion transparency. Recently we introduced
a new natural motion category that is related to optical flow,
occlusion and transparency but that had not been identi-
fied previously. We called the motionoptical snow. Optical
snow arises when an observer moves relative to a densely
cluttered 3-D scene.

Optical snow produces dense motion parallax. A canon-
ical example of optical snow is falling snow seen by a
static observer. Although snowflakes fall vertically, the im-
age speed of each snowflake depends inversely on its dis-
tance from the camera. Since any image region is likely to
contain snowflakes at a range of depths, a range of speeds
will be present. A similar example is the motion seen by an
observer moving past a cluttered 3D object such as a bush.
Any image region will contain leaves and branches at mul-

tiple depths. But because of parallax, multiple speeds will
be present in the region.

Earlier work on optical snow[8] considered only lateral
motion of the observer. In the present paper, we consider
general observer motion, including both a forward transla-
tion component as well as camera roll component.

There are three contributions in the paper. The first is a
model of motion parallax in a cluttered 3D scene. In Sec. 2,
we show that the set of image velocities in a region lie on
a line in velocity space, called themotion parallax linefor
that region.

The second contribution of this paper is a method for
measuring the motion parallax line for an image region. The
method is based on the power spectrum of the image in the
region. This method generalizes that of [8] which applied to
the case of lateral observer motion only. The new method
is presented in Sec. 3 and experimental results are given in
Sec. 3.3.

The third contribution is to use the motion parallax lines
in different regions to estimate camera motion and certain
properties of scene structure. The new method is similar to
that of Rieger and Lawton [13] and others, but differs in
that it does not rely on pre-computed image velocities. In-
stead, the method relies only on the estimated motion paral-
lax lines in regions. The method is presented in Sec. 4 along
with experimental results.

2. Models of Motion Parallax

Longuet-Higgins and Prazdny [9] described the instan-
taneous retinal image velocities of an arbitrary scene point,
as seen by an observer moving through a static scene. Let
the observer’s translation velocity beT = (Tx, Ty, Tz) and
angular velocity beΩ = (Ωx,Ωy,Ωz). The scene is pro-
jected to the origin of the camera coordinate frame.Z(x, y)
is the depth of the surface point visible at image position
(x, y). The image plane is at depthZ = f . The image ve-



locity at (x, y) can be written:[
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The first term is the translation field. It depends on inverse
depth. The second term is the rotation field. It does not de-
pend on depth. The special image positions

(xT , yT ) =
f

Tz
(Tx, Ty) (xΩ, yΩ) =

1
Ωz

(Ωx,Ωy)

are called theaxis of translation(AOT) andaxis of rotation
(AOR), respectively.

There are three standard observations about the transla-
tion and rotation fields. First, because the translation field
depends on the ratio ofTz to Z(x, y), there is a scale ambi-
guity. The moving observer cannot distinguish slow trans-
lation through a small scene from fast translation through
a large scene. Second, each vector in the translation field
points away from the AOT. Third, the speed of a transla-
tion vector depends on inverse depth. If there is a disconti-
nuity in depth then there is a discontinuity in the magnitude
of the translation field.

2.1. The motion parallax line

Our motion parallax model is based on further observa-
tions which concern the smoothness properties of Eq. (1).
First, thedirectionof the translation field is smooth. Hence
it is locally constant. The only exception is near the AOT
where the direction-of-translation has a singularity. Second,
the rotation field is smooth. Hence it is also locally con-
stant. Here there are no exceptions. Although the direction
of the rotation field is discontinuous at the AOR, the mag-
nitude of the rotation field vanishes smoothly at the AOR.
Hence the rotation field is smooth even at the AOR. These
smoothness properties were used implicitly in [13].

Fig. 1 illustrates the two smoothness properties. Two
sampled direction-of-translation fields and two sampled ro-
tation fields are shown. Each covers a60◦ field of view
(FOV), centered at the optical axis. The central square
shows a30◦ degree FOV, which is typical for a video cam-
era. Each plot shows a sampling of the respective field.
Neighboring samples differ only slightly, with the excep-
tion of the direction-of-translation fields near the AOT.

From here on, the termimage regionrefers to aN × N
subimage over which the direction-of-translation and rota-
tion fields can be treated as locally constant. Fig. 1 suggests
that for a typical video camera (say320× 240 pixels cover-
ing a 30 degree FOV), one can safely takeN = 64. These

T = (−1, 0, 0) T = (−0.13,−0.17, 1)
Direction-of-translation fields (unit vectors)

Ω = (0,−1, 0) Ω = (−0.13, 0, 1)
Rotation fields

Figure 1. Examples of sampled direction-of-
translation (normalized) fields and rotation
fields. The field of view (FOV) is 60◦. Distance
between samples is 4◦ at center of image and
3◦ at boundary. The interior square marks a
30◦ FOV, corresponding the FOV of a typical
video camera. By inspection, the fields may
be thus treated as locally constant over a re-
gion represented by a few samples, except at
AOT.

are the dimensions used in the experiments later in the pa-
per

Because the direction-of-translation field and the rota-
tion field are constant in an image region, it follows thatthe
set of image velocities in a region lies on a line in veloc-
ity space.We refer to this line as themotion parallax line
for that region. The line is parameterized as follows. (See
Fig.2 (a).)[

vx

vy

]
= α

[
τx

τy

]
+

[
ωx

ωy

]
= α ~τ + ~ω (2)

~τ is the direction-of-translation vector. It is of unit length
and its direction is defined up to a sign change.~ω is the
component of the rotation vector that is perpendicular to~τ .
Its length is the perpendicular distance from the origin to
the motion parallax line. If the motion parallax line hap-
pens to pass through the origin, then~ω is the zero vector.
This was the case addressed in [8]. Finally,α is a free pa-
rameter which indicates the~τ component of the various im-
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Figure 2. (a) Motion parallax line (dotted). ~τ is
a unit vector in the direction-of-translation. ~ω
is the component of the rotation vector that
is perpendicular to ~τ . α is a set of component
speeds in the direction-of-translation. ~m is
mean velocity vector, which is used in Sec. 3.
(b) Bowtie. Motion parallax in frequency do-
main.

age velocity vectors present in the region.
In Sec. 3, we present a method for estimating the~τ and

~ω vectors for an image region, along with an estimate of the
α values in the region.

2.2. Motion parallax in the frequency domain

Our method for measuring the motion parallax line of an
image region is based on the power spectrum. Power spec-
trum models have a long history in motion analysis. The
simplest of these models is an image translating with veloc-
ity (vx, vy). In this case, power is confined to a 2D plane in
the 3D frequency domain [16]:

vxfx + vyfy + ft = 0 . (3)

where(fx, fy) are the spatial frequencies andft is the tem-
poral frequency. The(vx, vy) parameters of this motion
plane can be estimated from the power spectrum. Computa-
tional methods have been proposed for the case of a single
translation [5] as well as for a small number of superim-
posed translations [14, 12]. These methods find the motion
plane(s) that best fit the 3D power spectrum.

In the case that velocities in a region lie on a line in ve-
locity space as in Fig. 2a, Eq. (2) can be substituted into
Eq. (3) yielding a family of planes in the 3D frequency do-
main:

(ωx + α τx) fx + (ωy + α τy) fy + ft = 0 . (4)

As shown in [8], this family of motion planes intersects at
a common line that passes through the origin in the fre-
quency domain. (See Fig. 2b.) The family of planes has a
bowtiepattern and the line of intersection of the planes is
called theaxis of the bowtie. The axis of the bowtie is in di-

rection(−τy, τx,
√

ω2
x + ω2

y) .

In the next section, we show how to estimate the parame-
ters of the bowtie for an image region, namely the axis of the
bowtie and a distribution of power over the motion planes
which define the bowtie. These parameters are used later in
the paper to estimate the camera motion.

3. Estimating motion parallax

To estimate the motion parallax in an image region, we
compute the 3D power spectrum and estimate the parame-
ters of the bowtie. There are three steps:

1. Shift the motion parallax line in(vx, vy) space so this
line passes through the origin.

2. Estimate~τ and~ω.

3. Estimate a histogram of speedsα.

Most of our discussion concerns Step 1, which is new. Step
1 subtracts off the mean velocity in the region, bringing the
motion parallax line so that it passes through the origin. This
simplifies the problem of estimatingτ in Step 2 since now
we can apply the method of [8].

3.1. Step 1: Motion compensation

To shift the motion parallax line, we perform an oper-
ation on the power spectrum that is equivalent tomotion
compensation[10]. We compute a mean velocity vector
(mx,my) that minimizes the sum of squared intensity dif-
ferences,∑
(x,y,t)∈N×N×M

{ I(x−mx t, y−my t, t+1)−I(x, y, t)}2



where the sum is over the region which is of sizeN ×
N pixels×M frames. Using Parseval’s theorem, this mini-
mization can be restated in the frequency domain [15]: find
the vector(mx,my) that minimizes∑

(fx,fy,ft)∈N×N×M

f2
t | Î(fx, fy, (ft−mxfx−myfy) mod M ) | 2 .

(5)
This is a least squares fit of a plane in(fx, fy, ft), where the
error is measured in theft direction.

Motion compensation effectively shifts the velocities on
the motion parallax line of Eq. 2 so that the mean is moved
to the origin of(vx, vy) space. In the frequency domain,
the power spectrum is sheared in theft direction until the
bowtie axis lies in the(fx, fy) plane and the power is dis-
tributed roughly evenly above and below the(fx, fy) plane.

Three signal processing issues arise and we deal with
them as follows:

3.1.1. Windowing We apply a triangular window (in
space and in time) to theN × N × M region prior to tak-
ing the Fourier transform. For our examples, we take
N = 64 pixels andM = 64 frames.

3.1.2. Aliasing Because of spatial and temporal sampling,
the Fourier transform of the image region is a periodic func-
tion, Î(fx mod N, fy mod N, ft mod M) . Any spatial
or temporal power in the pre-sampled image irradiance that
is above the Nyquist frequency (N

2 in space,M2 in time) is
aliased.

For real cameras, spatial aliasing effects are typically
small because of optical blur and thus can be ignored. Tem-
poral aliasing may still occur, however, especially when
large image velocities are present. When a high image ve-
locity is present, the motion plane of that velocity wraps
around at the Nyquist frequency,ft = ±M

2 . High positive
speeds are aliased to high negative speeds. This corrupts the
estimate of(mx,my). Thus, temporal aliasing cannot be ig-
nored.

To address temporal aliasing, weiterativelyestimate the
(mx,my) vector. In each step of the iteration, the power
spectrum is sheared with wraparound at theft = M

2 . The
range of speeds after the shearing is related to the range of
α. An example of the iterative shearing is shown in Fig. 3.

3.1.3. OcclusionsMotion parallax does not give rise to
a perfect bowtie in the power spectrum, but rather to a
smeared bowtie. This smearing is due to the image win-
dow as well as to occlusions [4, 2, 8], i.e. multiplication
in space-time produces a convolution in the frequency do-
main.

In minimizing Eq. 5, we try to avoid frequencies where
the smearing is most problematic. The smearing kernel is
small in the frequency domain. However, near the origin,
even a small kernel smears power between motion planes

of very different image velocities. This is problematic be-
cause natural images have power spectra that fall off as
1/(f2

x + f2
y ) [3] and hence have large power near the ori-

gin. For this reason, we do not include low spatial frequen-
cies in the summation of Eq. (5).

3.2. Steps 2 & 3: Estimate~τ , ~ω, α

Once the bowtie has been sheared, the bowtie axis lies
in the(fx, fy) plane. This is precisely the situation that was
addressed in [8]. Hence, Step 1 reduces the more general
model of motion parallax of Eq. (2) to the specific model
of parallel motion parallax in which~ω = 0. The basic idea
is to project the 3D power spectrum in various directions
~τ on the unit circle in the(fx, fy) plane, and find the di-
rection in which the projected spectrum most resembles a
bowtie.

To estimate~ω for a region, we take the estimatedm =
(mx,my) and subtract the component that is in the direc-
tion of ~τ .

~ω := m− (m · ~τ)~τ .

Finally we estimate the range of speedsα by computing
a histogram of power vs. slope in the 2D projected power
spectrum,i.e.projected in direction~τ .

3.3. Experiments

3.3.1. Synthetic Image sequencesSynthetic sequences
were rendered using OpenGL. The scenes consisted of
squares of constant size and random orientation, positioned
randomly with uniform density in a 3D view volume. Each
square was texture-mapped with a checkerboard pattern.
The squares had width of 0.5 units and were at depths rang-
ing from Z = 5 to 40. Each scene was viewed in perspec-
tive with a field of view of 30 degrees. Ambient lighting was
used.

Two sets of image sequences were created. In the first set
(Synthetic 1), the camera moved withT = (-0.026, 0, 0.2)
units/frame andΩ = (0,0,0). This yielded a linear trajec-
tory: forward and to the left by 7.5◦ off the optical axis. In
the second set (Synthetic 2), the camera moved withT =
(0.026,- 0.034, 0.2) units/frame which is 7.5◦ to the right
and 10◦ down from optical axis, andΩ = (-0.13, 0, 0.99)
which is a roll of of 1 degree per frame. This defined a he-
lical camera trajectory. TheT andΩ of Synthetic 2 cor-
respond to the 2nd and 4th sampled fields in Fig. 1. The
only other difference between Synthetic 1 and 2 sequences
is that the density of squares in the latter was much greater
than that of the former.

3.3.2. Real video sequenceWe also carried out experi-
ments on several real motion sequences. Data for one typi-
cal example is reported. A video camera (Canon Optura Pi)
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(mx,my) = (0,0) (-1.6, 0.3) (-2.9, 0.7) (-3.0, 0.7)

Figure 3. Example of motion compensation by iterative shearing. Power spectrum is projected to
(fy, ft) plane. Log-brightness is plotted. For this example, ~τ is near the x direction and so bowtie is
visible.

was mounted on a wheeled robot (AmigoBot). The robot
drove on a circular path, moving forward to the left. The
camera was pointing just over 20◦ to right ofT, so the AOT
was just over 20◦ to the left of the image center. The cam-
era field of view was approximately 30 degrees; hence AOT
is outside FOV. The standard 4:3 image was cropped to a
240 × 240 square. The image was tiled with 49 (7 × 7) re-
gions, eachN × N = 64 × 64 pixels. The camera cap-
tured 30 frames per second, non-interlaced. Approximately
two seconds of video were used (M = 64).

3.3.3. ResultsData are shown in Fig. 4. Row 4 shows the
absolute errors in degrees in the~τ estimates. Error is de-
fined by the difference in angle between the estimated~τ
and the correct~τ as defined by Eq. (1) where(x, y) is the
central pixel in the region. For the synthetic sequences, the
errors are larger near the AOT. This is expected since the
model of Eq. (2) breaks down at the AOT. Errors will also
be larger in any image region in which there is an insuffi-
cient image contrast or an insufficient range of depths, such
as the regions in the lower left regions of the real video.

Row 5 shows the range ofα. Regardless of the esti-
mate of~τ , the range ofα is expected to be small near AOT.
The reason is that the translation field vanishes at AOT and
hence all image velocity near AOT is due to the rotation
field (which is locally constant). In all examples, the range
of α was indeed small at AOT. In the real sequence, the
range ofα was also small in the lower left regions, for the
same reasons mentioned above.

4. Estimating Camera Motion

We next show how to apply the estimates of~τ and~ω to
the problem of estimating camera motion. Our method gen-
eralizes the differential motion idea, first described in [9]
and summarized as follows. At a depth boundary, two ve-
locity vectors coexist – one for the near surface and one for
the far surface. The two rotation components are identical at
this common point, as are the direction-of-translation vec-

tors. However, the magnitudes of the two translation vectors
differ because the magnitude depends on depth. If the ob-
server could compute the two velocity vectors and take their
difference, the difference would be in the direction of trans-
lation which points toward the AOT. The AOT may be found
by intersecting lines defined by difference vectors. The ba-
sic differential motion idea was extended in [13] who used
multiple velocity vectors within a region containing local
depth variation, and further extended by [6] who canceled
the rotation component of the velocity vectors, prior to com-
puting AOT.

The above computational methods as well as other meth-
ods based on [9] all assume that image velocities have been
pre-computed. These are very strong assumptions in the
case of densely cluttered 3D scenes.

In this section, we describe a method for estimating the
camera motion that relies only on the estimated~τ and~ω vec-
tors in image regions. This method thus bypasses entirely
the computation of point-wise image velocities.

4.1. Axis of translation (AOT)

Our method follows Heeger and Jepson [6]. For any im-
age region, letp = [x, y, f ] be the center of the region and
let t = [τx, τy, 0] be the (3D) vector pointing in the esti-
mated direction~τ . Since~τ points toward the AOT, it fol-
lows that AOT must lie in the plane spanned byp and t.
Thus, each region supplies a single constraint on the cam-
era translationT:

(t× p) ·T = 0

Because the estimates of~τ for each region may be noisy,
we find the AOT by computing the (unit) vectorT that min-
imizes the expression:

argmin T

∑
i

‖ unit (ti × pi) ·T‖2

wherei is the sum over regions, andunit() takes the unit
vector.



Synthetic 1 Synthetic 2 Real

4 5 3 3 4 3 4
9 8 5 5 4 2 2
9 15 5 8 4 3 4

18 44 26 15 4 1 2
5 17 4 9 8 7 5
10 8 10 5 3 4 3
5 6 5 5 3 3 5

6 4 3 3 3 1 4
7 4 5 3 3 5 6
3 4 4 3 7 8 8
5 4 3 5 10 9 8
5 7 5 7 10 29 13

4 5 7 10 12 56 15
11 5 6 11 29 35 28

12 2 2 5 2 8 10
11 2 8 0 2 3 6
17 5 6 7 8 3 5
20 16 12 3 0 0 0
51 44 13 11 2 3 7
78 9 3 21 3 4 4
12 20 85 1 4 2 2

Figure 4. (row 1) Single frame from video. (row 2) Bowties found for each image region for one exam-
ple of each type of sequence. (row 3) Line elements indicate estimated motion parallax line. (True ~τ
points toward AOT.) Small circles are estimated (mx,my). (row 4) Numbers indicate absolute angu-
lar error in direction ~τ . For Synthetic 1 and 2, numbers are means over ten runs each. The region con-
taining the AOT is indicated by a square. For the real video, AOT is to the left of image (hence not
shown). (bottom row) Histograms of α. The speed range is -4 to 4 pixels/frame.



Scene (Tx/Tz, Ty/Tz) (Ωx, Ωy, Ωz)
Synthetic 1 ground truth (-0.13, 0) (0, 0, 0)

mean (-0.123, 0.002) ( -0.001, 0.004, -0.002)
std.dev. (0.004, 0.005) (0.003, 0.003, 0.005)

Synthetic 2 ground truth (0.13, -0.17) (0.13, 0, 0.99)
mean (0.11, -0.16) (0.12, -0.013, 0.98)

std.dev. (0.01, 0.06) (0.005, 0.007, 0.007)
Real “ground truth” (-0.41, 0) (0, 1, 0)

estimated (-0.35, 0.017) (0.017, 0.063, -0.0001)

Table 1. Estimation of camera motion for the sequences shown in Fig. 4. For the synthetic sequences
averages were computed over ten runs.

4.2. Angular velocityΩ

From the estimated~τ and~ω in each region, we can es-
timateΩ. Let (xi, yi) denote the center point of theith re-
gion. LetBi be the rotation matrix from Eq. (1) for theith

sample point,

Bi =
[

xi yi/f − f − x2
i /f yi

f + y2
i /f − xi yi/f − xi

]
.

We estimateΩ to be a vector such thatBiΩ lies close to the
estimated motion parallax line. We compute:

argmin Ω

∑
i

( ‖~ωi‖ − unit(~ωi) ·BiΩ )2

whereunit(~ωi) is the unit vector perpendicular the estimate
of ~τi.

4.3. Results

Table 1 presents the estimated AOT andΩ values for ten
runs of Synthetic 1 and 2, and for the real sequence. For the
synthetic data the results for the AOT are near exact with
mean angular errors of less than one half degree for Syn-
thetic 1 and approximately one degree for Synthetic 2. The
estimates for rotation,Ω, are also very close. Synthetic 1
has a magnitude near 0 (no rotation) which is correct. Syn-
thetic 2 has the correct magnitude (near 1 degree/frame) and
an angular error of less than one degree.

For the real sequence, the “ground truth” of AOT and
AOR was not determined using precise instrumentation, and
is accurate to no better than a few degrees. Given this mar-
gin of error, the AOT estimation is acceptable.

5. Discussion

There are several final points worth mentioning. First, al-
though we have developed an algorithm that is motivated by

dense motion parallax, there is nothing inherent in the al-
gorithm which restricts its use to cluttered 3D scenes. The
method only assumes an observer moving through a rigid
scene. If the scene happens to contain a ground plane, trans-
parent surfaces, or smooth surfaces, in addition to or instead
of 3D clutter does not affect the validity of the motion paral-
lax model. In future work, we will present results on scenes
with other types of motion parallax such as just mentioned.

Second, with regard to motion measurement, we remind
the reader that the parameters (~τ , ~ω, α) are not a complete
description of the motion in an image region in that they
do not specify point-wise velocities. The parameters could,
however, be used to constrain methods that do estimate
point-wise velocities. Current methods for estimating mo-
tion for transparency, planar deformations, occlusion, could
benefit by having pre-computed estimates of (~τ , ~ω, α).

Finally, we note that our method – like any method based
on [9] – cannot resolve the many inherent ambiguities in
the structure from motion problem that have been articu-
lated over the past few years, such as the bas relief ambigu-
ity [1, 7, 11]. In particular, understanding how these ambi-
guities are manifested in the estimates of (~τ , ~ω, α) is a topic
of future work.
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