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Abstract—Quick-return mechanisms are usually controlled by
joint-space controllers to avoid instability in the transition be-
tween cutting and return phases. These controllers cannot exploit
the mechanical advantage associated to the natural mechanism’s
movement in the task space. It is crucial to guarantee mechanical
advantage exploitation to reduce operation time and high-quality
cutting finishes. In view of the above, this paper reports the
design of a mechanical advantage assurance controller based
on: i) a slider physics model that captures all the information
associated to the main mechanism’s task, and ii) a Jacobian
compensator that avoids the controllability problems from the
transition between the cutting and return phases. Simulation
studies are carried out to verify each component of the proposed
controller. A constant cutting velocity task is used as a case of
study to demonstrate the mechanical advantage exploitation.

I. INTRODUCTION

Quick-return mechanisms are a class of mechanic devices
mainly applied in manufacturing sectors for cutting processes.
They are characterized by having a rotational input crank and
a linear output link associated to the cutting tool or slider.
Particularly, the output linear velocity of the slider is enhanced
by the high-mechanical advantage that these mechanisms
exhibit at the beginning and at the end of the slider workspace.
Here, the mechanical advantage refers to a measure of force
amplification that generates a momentum in a short period of
time [1] and, in consequence, an increase of the linear velocity
which is essential to reduce operation time and high-quality
cutting finishes.

Classic approaches use joint space controllers [2], [3] to
ensure mechanical advantage exploitation by indirectly con-
trolling the output link. There exist different methodologies
to establish a desired performance in the output link, whilst
maintaining the mechanical properties, e.g., the reciprocating
and mechanism synthesis methods where the geometry of
the mechanism is optimized [4] to guarantee a desired linear
velocity profile for a constant input angular velocity. However,
it has been demonstrated that this approach is not flexible
and robust for similar mechanisms with different kinematic
parameters [5].

Task space controllers [6] are implemented as alternative
tools to inject a desired linear velocity profile in the slider
without applying the reciprocating or synthesis methods. How-

ever, these controllers fail to exploit the mechanical advantage
due to controllability loss when the Jacobian becomes singular.
In addition, access to the input position measurement is not
usually available for task-space control applications. Thus, it
is crucial to ensure mechanical advantage exploitation whilst
guaranteeing a desired performance in the slider to guarantee
manufacturing standards [7].

In view of the above, this paper reports a mechanical
advantage assurance control that combine the merits of joint
and task space controllers. The proposed approach is based
on a family of task space controllers constructed from a
slider physics model. A Jacobian compensator is designed for
mechanical advantage assurance based on geometric properties
of quick return mechanisms. Simulation studies are carried out
to test each element of the proposed technique under a constant
cutting velocity case of study. The contributions of this paper
are:

1) The mechanical advantage is exploited without using
joint space controllers under reciprocating and mech-
anism’s synthesis methods.

2) A general methodology for task-space control design of
any quick-return mechanism is given.

3) A Jacobian compensator that overcomes the controlla-
bility problem of standard task space controllers.

II. PROBLEM STATEMENT

Fig. 1 shows a standard phase diagram of a quick-return
mechanism controlled in joint space. The points xmax and
xmin denote the maximum and minimum points of the slider
workspace and equivalently, they define the singularity points.
In these points the transition between the two natural phases of
the mechanism movement is performed: the cutting and return
phases. Whilst the cutting phase is slow and is associated to the
main task of the mechanism, the return phase is fast and it is
where the mechanism’s mechanical advantage [8] is exploited.
However, classical control approaches [5] do not exploit the
mechanical advantage of this type of mechanisms. In joint
space, both the cutting and return phases are controlled (see
Fig. 1) and hence, the return phase does not exhibit its fast
return movement. On the other hand, task space controllers
cannot be applied because they lose controllability at the
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singularity points [9] of the slider tool. In this paper, the
mechanical advantage of quick-return mechanisms is exploited
using task space controllers without compromising the control-
lability and stability of the closed-loop trajectories.
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Fig. 1. General phase diagram of a Quick-return mechanism controlled in
joint space

III. QUICK-RETURN MECHANISMS PHYSICS

The joint space physics of a 1-degree of freedom (DOF)
quick-return mechanism [10] is given by

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (1)

where M(q) ∈ R denotes the inertia, C(q, q̇) ∈ R defines the
Coriolis and centripetal forces term, G(q) ∈ R stands to the
gravitational terms, τ ∈ R is the input torque applied to the
crank, and q ∈ R is the angular position of the mechanism’s
crank. The model (1) is high non-linear and it is difficult to
extract useful properties associated to the mechanism physics.
For this purpose, the extended dynamic model formulation
[11] is used to decompose the high-nonlinear physics (1)
into a relatively low-nonlinear physics model in terms of
the generalized coordinate q and all the secondary variables
s ∈ Rs within the mechanism structure as

M′(q′)q̈′ +C′(q′, q̇′)q̇′ +G′(q′) = ρ−>(q′)τ (2)

where M′ ∈ RN×N ,C′ ∈ RN×N , and G ∈ RN define the
matrices of the extended model, and q′ ∈ RN is the extended
coordinate vector with N = s + 1. The functions σ(·) and
ρ(q′) ∈ RN define the mappings between the generalized
coordinate to the extended coordinates, i.e.,

q̇′ = ρ(q′)q̇
q′ = σ(q)

. (3)

Is evident that σ(·) defines the solution of the forward
kinematics of each secondary variable in q′. This formulation
is extremely useful because one of the secondary variables in
q′ is the slider position x which is directly related to the return
and cutting phases of the mechanism’s natural movement.

One interesting finding [12] of the model (2) is that we can
extract the slider physics without applying any mapping from

joint space to task space. In other words, we have that the
extended physics can be expressed as

M′(q′) =

[
Ms×s 0s
01×s m

]
∈ RN×N

C′(q′, q̇′) =

[
Cs×s 0s
01×s 0

]
∈ RN×N

G′(q′) =

[
Gs

gx

]
∈ RN

ρ(q′) =

[
ρs(q

′)
ρx(q

′)

]
∈ RN (4)

where m is the slider mass, gx is the slider’s gravity force
component, and ρx(q′) is the slider’s Jacobian. Therefore, the
slider physics can be extracted and is governed by

mẍ+ gx =

(
N∑
i=1

ρ2i (q
′)

)−1
ρx(q

′)τ = u. (5)

The inverse of the summation within (5) never is zero due
to the mechanism configuration. The slider´s model (5) only
needs knowledge of the slider’s mass instead of the complete
mechanism physics. The above model can be expressed as a
perturbed second-order linear system

ẋ(t) =

[
ẋ1
ẋ2

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

A

x(t) +

[
0
b

]
︸︷︷︸
B

(u(t) + d(t)) (6)

where b = 1/m and d = −gx. One of the major advantages
of this formulation is that we are able to design any linear
or discontinuous controller with a predefined closed-loop
performance. In the next section, we will prove this statement
in simulation studies.

A. Simulations

We compare different controllers to test the reliability of
the slider model. The controllers are designed for both the
slider model and a linearised version [13] of the mechanism’s
physics in task space [14]. The controllers used for comparison
are: i) feedback-feedforward control (FFC), ii) linear quadratic
tracking (LQT), iii) sliding mode control (SMC), iv) optimal
sliding mode control (OSMC), and v) PID control. The Whit-
worth mechanism [15] of Fig. 2 is used as case of study.

The slider physics model is given by

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1
m6

]
u(t)

where m6 is the slider mass and the slider’s Jacobian is
ρx(q

′) = − r2r4r3
cos(q − θ4) sin(θ4 − θ5) sec(θ5). The linear

dynamics of the Whitworth mechanism in task space is

ẋ(t) =

[
0 1

−0.412 0

]
x(t) +

[
0

0.434

]
u(t).

The main control objective is to track the following time-
varying reference

xd(t) = −0.2− 0.2 sin(πt).



Fig. 2. Whitworth mechanism diagram

The slider mass is set to m6 = 1 kg. The Ackerman formula
[16] is used for the FFC design with ω2

n = 40 and ξ = 1. The
weights of the Ricatti equation of the LQT control [14] are
proposed as: Q = I and R = 0.1. The Ackermann-Utkin
formula [17] is used for the SMC’s hyperplane design with
a desired pole of λ = −10. The OSMC uses the following
weight matrix Q = diag{1, 0.1}. The control gains for each
physic model are summarized in Table I.

The PID control gains are tuned with the Matlab/Simulinkr

control toolbox. The gains for the linearised physic model
are set to: Kp = 928.044, Ki = 2023.674, Kv = 104.506
and N = 254.040. For the slider physics, the gains are:
Kp = 26.56, Ki = 14.54, Kv = 9.4745 and N = 27.065.
In addition, the PID gains are designed to satisfy

y(s)

yd(s)
=

C(s)G(s)

1 + C(s)G(s)
= 1

where G(s) is the transfer function of the slider physics and
C(s) is the transfer function of the PID controller.

Fig. 3 shows the tracking results of each control law using
the linearised and slider physics models. The FFC results
of Fig. 3(a) shows acceptable tracking results with a small
tracking error due to the oversimplified model that have the
linear and slider models. This problem is evident in the LQT
tracking results of Fig. 3(b) where more tracking error is
presented due to the feedforward control; in addition, this
controller is sensitive to the time derivative of the desired
reference xd. On the other hand, both SMC and OSMC have
good tracking results despite having an oversimplified model.
The PID control results show good tracking results with small
tracking error due to the tuning procedure [18] using the
oversimplified models, nevertheless the controller is reliable.

The mean-squared error (MSE)

e(t) =
1

n

n∑
i=1

(Lei)
2,

is used as performance metric to numerically evaluate the
performance of each controller under different physics models.
Here, L is a scaling factor. The MSE results are summarized
in Table II with L = 100. We can observe that the controllers

based on the sliders physics have small MSE in comparison
to the linearised model results. Worth noting that PID gains
of the linear model are very large in comparison to the PID
gains of the slider model, this difference is reflected in the
MSE results. In addition, the MSE results are affected by the
error of the first 0.5 seconds of the transient time.

IV. JACOBIAN COMPENSATOR

In the previous section, the slider physics model is used to
design any linear task space controller that can be effectively
applied in the cutting phase. However, the previous controllers
lose controllability at the singularity points and hence, the
mechanism is not able to exploit the high mechanical advan-
tage of the return phase. To overcome this issue, we exploit an
interesting property of quick-return mechanisms that allows to
compensate the Jacobian term [19].

The main purpose of the Jacobian ρx(q) is to map from
joint velocities q̇ to task velocities ẋ [20]. This mapping is
defined by two terms: a change of sign and a state-dependent
gain factor. The sign of the Jacobian is proportional to the
sign of the input crank and output slider velocities, that is,
sign(ẋq̇). The gain factor of the Jacobian is determined by the
mechanism velocity kinematics [21].

In view of the above, we can estimate the Jacobian using
a constant compensator gain Kρ > 0 which can be set
as the magnitude of the real Jacobian’s maximum value or
any positive scalar. The modelling error of the Jacobian can
be attenuated by the controller gains. Then, the Jacobian
compensator has the following structure

ρ̂x = Kρs (ẋq̇) , (7)

where

s(ẋq̇) =
{

sgn(ẋq̇) in the cutting phase,
−sgn(ẋq̇) otherwise. (8)

The sign function is obtained off-line by observing the
directions of the input crank and the slider in the cutting
phase. By incorporating the Jacobian compensator, we are able
to exploit the mechanism mechanical advantage without any
controllability issue.

A. Simulations
Consider the Whitworth mechanism of Fig. 1. Assume

that we do not have measurements of the crank angular
position q. Here, we want to verify the reliability of the
Jacobian compensator in comparison to the real one in a simple
regulation task. The FFC control law of Table I using the slider
physics is used in this case of study. The FFC under known q
is given by (9).

τ = ρ−1x (q)(Ke(t)−B†Axd). (9)

The FFC in terms of the Jacobian compensator is given by

τ = ρ̂−1x (Ke(t)−B†Axd). (10)

The other controllers can also be used to test the Jacobian
compensator by using the space transformation mapping [22]

τ = ρ̂−1x u(t) (11)



TABLE I
CONTROLLER GAINS

Dynamics FFC LQT SMC Optimal SMC

ẋ(t) =

[
0 1

−0.412 0

]
x(t) +

[
0

0.434

]
u(t)

K =

[
91.22

29.1454

]>
K =

[
2.3524
4.5651

]> C =

[
23.0415
2.3041

]>
,

K = 4

C =

[
3.1623

1

]>
,

K = 1

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t)

K =

[
40

12.6491

]>
K =

[
3.1623
4.0404

]> C =

[
10
1

]>
,

K = 2

C =

[
3.1623

1

]>
,

K = 1
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Fig. 3. Tracking results

TABLE II
MEAN SQUARED ERROR RESULTS.

Model FFC LQT SMC OSMC PID
Linear model 5.3528 42.1356 0.0978 0.0082 1.2786×10−4

Slider model 5.2106 1.0335 0.0191 0.0089 0.0771

where u is any task space control law. The desired position
is proposed to be within the cutting phase and is given by
xd = −0.4 m. Fig. 4 shows the slider’s Jacobian time-
evolution which will be used to extract the Jacobian upper
bound for the compensator’s gain.

V. CONCLUSIONS

This paper reports a mechanical advantage assurance control
of quick-return mechanisms. The controller exploits some
unique properties of quick-return mechanisms associated to
their geometric configuration. The task space controllers are
designed in terms of a slider physics model that captures
all the relevant information of the task that the mechanism
performs naturally. A Jacobian compensator is designed to
ensure full controllability and mechanical advantage exploita-
tion at the return phase. The overall approach solves the
controllability issue of task space controllers applied to quick
return mechanisms and guarantee the mechanical advantage
exploitation at the singularity points. Simulation studies are
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Fig. 4. Whitworth mechanism Jacobian ρx(q)

carried out to verify the reliability of: i) the slider physics
model, ii) the Jacobian compensator and iii) the mechanical
advantage exploitation in a constant cutting velocity case of
study. Further work will focus on seeking useful properties for
other class of mechanisms that can improve the closed-loop
performance by exploiting their hidden properties.
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