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ABSTRACT

DIRECT ADAPTIVE CONTROL FOR UNDERACTUATED MECHATRONIC
SYSTEMS USING FUZZY SYSTEMS AND NEURAL NETWORKS
A PENDUBOT CASE

Murad Musa Al-Shibli

This thesis describes the implementation of a vertical motion and position control scheme
for a mechatronic system, specifically the Pendubot robot. The Pendubot is a non-linear.
underactuated and unstable two-link planar robot arm that is frequently used as a
benchmark in research studies involving nonlinear control theory and underactuated
systems. Control of the Pendubot poses two challenging tasks: (i) to swing the two links
from their stable hanging position to unstable vertical equilibrium positions. and (ii) to
balance the links about the desired equilibrium positions. PD fuzzy controller is
formulated and employed to meet challenges associated with swing-up control. Vertical
balance control employs fuzzy systems and radial Gaussian neural networks. As such. an
adaptive neural network and fuzzy controller is further analyzed. where the balance
stability depends on a controller weight that is determined using Lyapunov theory. This
approach is proven to be globally stable, with errors converging to a neighbourhood of
zero. Then. the proposed swing-up and the balancing controllers are coupled together to
achieve the motion objective in a stable manner, while resisting the external disturbances.
The simulation results show that both the swing-up and balancing control schemes can be
realized using 25 and 5 If-Then-rules, respectively. The simulation results confirm the

results attained from the theoretical analysis.
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CHAPTER 1

INTRODUCTION

1.1 Overview

A system is said to be underactuated when the number of actuators is less than the
number of degrees of freedom of the system [1-6]. This class of systems presents
challenging control problems and has recently gained an upswing in research attention.
They often exhibit feedforward nonlinearities. nonholonomic constraints and
nonminimum phase characteristics., which make them difficuit to control. They arise in
applications as underactuated marine vehicles, space robots [19]. flexible robots. in
mobile robot systems when a manipulator arm is attached to a mobile platform. walking
and gymnastic robots [7] such as the Pendubot [8-13] [22-23] and Acrobot [14-15] [20-

21].

Underactuated robots are those robots with both passive and active joints [6]. For
example, when a joint motor in a fully-actuated robot fails. that joint becomes passive. It
is important in such cases to design control techniques to still control the robot, if
possible. Another example is a hyper-redundant snake-like robot with several degrees-of-
freedom. In this case one would like to see if control is possible when not all joints are
actuated. In space applications. a space platform may also benefit from the study of

underactuated robots. The kinematics, dynamics and control of free-floating space robotic



system satellite can be found in [16-19]. In such publications. the free-floating space
robotic system can be modeled as a 6 degrees-of-freedom passive mechanism. The
overall system (satellite + manipulator) can be considered as a combination of actuated

and passive subsystems, i.e.. as an underactuated system.

Uunderactuted robotic systems have received special interest in the last decade because
of its wide range of applicability in different control research areas such as: nonlinear
control [20]. linear control [6]. sliding mode control [2]. optimal control. learning control
[25]. robust and adaptive control [1]. fuzzy logic control [22-23]. neural networks
control, reference tracking control, intelligent control [15]. hybrid and switching control.

gain scheduling. and other control paradigms.

Acrobot is one case study of underactuated two-link planar robot. It mimics the human
acrobat who hangs from a bar and tries to swing up to a perfectly balanced upside-down
position with his/her hands still on the bar. Acrobot system just has one actuator at the
elbow. Plenty of researchers worked on Acrobot and its control. Swing up controller of
Acrobot was proposed in [14]. Pseudolinearization using spline functions with
application to Acrobot was the interest of [21]. Nonlinear control of Acrobot can be

found in [20]. Intelligent and learning control is proposed in [15].

Pendubot, which is the case study of this research, has been under valuable researchers
interest [8-13] [22-23]. Pendubot. as shown in Figure 1.1 short name for pendulum

robot, is a nonlinear underactuated mechatronic system [6], consisting of unstable two

~



link planar robot arm [8-10]. One can program the Pendubot for swing up control.
balancing, regulation and tracking. system identification. disturbance rejection. and

friction compensation to name just a few of the applications [9-11].

Using the Pendubot one generally can also investigate equilibria of underactuated
mechanical systems which depend on both their kinematic and dynamic parameters. If
the Pendubot is mounted so that joint axes are perpendicular to gravity. then there will be
a continuum of equilibrium configurations. each corresponding to a constant value of the
input torque [11]. Indeed. its nonlinear dynamics have forced researchers to employ two
very different varieties of controllers. one for the swing up and another for balancing as
shown in Figure 1.2. Typically, a heuristic strategy is used for swing-up. where the goal
is to force the Pendubot to reach its vertical upright position with near zero velocity of
both links. Then. when the links are close to the inverted position. a balancing controller

is switched on and used to maintain the Pendubot in the inverted position.

Many controllers for the Pendubot have been proposed. Non-adaptive control techniques
to control Pendubot can be found in [4] [12-13]. The authors in [12] investigated how to
control the Pendubot by energy based method. A passivity based control of the Pendubot
is proposed in [13] as well. In [4] the control of underactuated systems using switching
and saturation is discussed. In [9-11] researchers focused on the development of
conventional controllers for the Pendubot. Their work serves an introduction to the
Pendubot, its dynamics. equilibrium manifold. identification and controllability. A partial

teedback linearization controller is designed to swing up the Pendubot from its free stable

I
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hanging position [10]. A linear quadratic regulator (LQR) balancing controller is

developed to catch the pendubot in the vertical position and keep it there [11].

Fuzzy Logic Controllers (FLC) use fuzzy logic as process of mapping from a given input
(crisp numerical value ) to an output (signal control u). This process has a basic structure
that involves a fuzzifier, an inference engine. a knowledge base (rule data base). and a

deffuzzifier which transforms fuzzy sets into real numbers to provide control signals.

Applying non-linear and fuzzy logic on underactuated mechatronic systems attracts many
researchers. Two relevant works [22-23] are done at Concordia University by Prof C.-Y.
Su and his students, who focused on developing of nonlinear control theory on robotic
manipulators, proposed and implemented different controllers. In [22] a simplified
Tsukamoto’s reasoning method and quasi-linear-mean aggregating fuzzy operators
proposed and implemented on Pendubot. While in [23] a reference fuzzy trajectory

control is proposed and implemented on Pendubot.

Adaptive control is well known in its ability to learn the system parameters. Because
Adaptive control of underactuated systems has proven its value in many publications. Su
and others [2] pioneered the research on the sliding model control of nonholomonic
mechanical system- underactuated manipulator case. Su et al. also proposed [1] an
adaptive variable structure set-point control of underacatauted robots. Adaptive control of

space robot systems free-floating satellite has been approached in [19].



1.2 Research Objectives

The objective of this research as well as mentioned before is to design stable controllers
for two challenging robotics control problems associated with the Pendubot: swing-up

and balancing [9-11] with only one torque input located at the shoulder.

For the swing up control. the goal is to design a controller by using proportional
derivative (PD) fuzzy controller with zero dynamics and minimum number of linguistic

rules [f-Then rules.

Then the other objective related to the balancing control is to design a stable direct
adaptive fuzzy balancing controller. A class of continuous time single-input single-output
systems (SISO) with simple neural network or fuzzy rules are used to achieve this goal.
The direct adaptive scheme allows for the inclusion of a priori knowledge about the
system in terms of exact mathematical equations or linguistics. We prove that with such
knowledge the adaptive schemes can “learn™ how to control the plant and achieve
asymptotically stable zero reference inputs. This adaptive fuzzy controller consists of
three sub-controllers: fuzzy controller, sliding mode controller. bounding mode controller

in addition to an adaptation mechanism to guarantee stable performance adaptation.



1.3 Contribution

An extensive use of fuzzy control as well as neural network has been made in this

research. Three different controllers have been proposed and implemented on the

Pendubot. One is for the swing up by using PD fuzzy controller with zero dynamics [4].

and another for balancing controller: by using adaptive neural fuzzy control .

b)

d)

This thesis research presents the first application and results. which has not been
reported to the best of author’s knowledge on the use of adaptive fuzzy control
and for the Pendubot.

The sability of the system has been proved by using Lyapunov stability.

The Pendubot was able to swing up from its free position to the vertical position
by using 25 [f-Then-Rules rules.

The adaptive fuzzy controller was able to catch the pendubot around the vertical
position and maintain this postion using only 5 If-Then-Rules.

The boundness of the states, control gain, and error is proved.

The data attained for the Pendubot is used to provide the learning of fuzzy
controller on a continuing basis, which ensures that the performance objectives

are met while uncertainties of the system are reasonably well controlled.



1.4 Thesis Organization

This theis is composed of 9 chapters. It is organized as follows. In chapter 2. a definition
of the Pendubot system, description of the Pendubot hardware and hardware setup are

explained.

Chapter 3 goes through the derivation of the mathematical model of the Pendubot.
identification of its parameters. the equilibrium manifold and controllability. The
ordinary differential equations presented in this chapter are the basis for the controller

designs to be used later.

Chapter 4 describes the aspects of the fuzzy logic and fuzzy control. fuzziness and
probability. fuzzy logic terminologies. fuzy control systems: rules-base. fuzzification.

inference mechanism. defuzzification method, and standard fuzzy system.

Chapter 5 defines neural networks. It introduces neural networks. neural network

approximations, radial basis function (RBF) network and its properties.

Chapter 6 first discusses the equivalence between the fuzzy systems and neural networks
from approximation point of view. A direct adaptive fuzzy or neural network controller is
proposed to balance the Pendubot later. This chapter covers the derivation of the control

law, bounding control. adaptation algorithm. sliding mode and stability properties.



Chapter 7 covers the control parts of the Pendubot. It describes the both swing up and
balancing controllers used to control the Pendubot. For the swing up controller a PD
fuzzy controller with zero dynamics is derived. Then an adaptive fuzzy is used to balance

the Pradubot.

In chapter 8 the simulation results of the two different controllers are recorded and

discussed.

At the end the in chapter 9 conclusions have been presented and future work is proposed.



CHAPTER 2

PENDUBOT SYSTEM

2.1 What is the Pendubeot

Def 2.1 Underactuated Robotic System

A manipulator system in which the number of actuators is less than the number of joints
or degrees of freedom.

Def 2.1 Pendubot

The Pendubot. short for PENDUIum robot [9-11]. is an unederactuated electro-
mechanical (or mechatronic) system consisting of two rigid links interconnected by

revolute joints Figure 2.1.

Bncoder 2

Link 2

Figure 2.1: Front and side perspective drawings of the Pendubot.
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This system has only one actuator at the shoulder that is why it has been called
underactauted system in which the number of actuators is less than the number of degrees
of freedom or joints. The first joint is actuated by a DC-motor and the second joint is
unactuated. Thus the second link may be thought of as a simple pendulum whose motion
can be controlled by actuation of the first link. The Pendubot is similar in spirit to the
classical inverted pendulum on a cart or the more recent rotational inverted pendulum.
However, because of the nonlinear dynamic coupling between the two links. the
Pendubot possesses some unique features and challenges for control research and

education not found in other devices.

2.2 Description of the Hardware

The Pendubot consists of two links with % inch (0.635 c¢m) thick length aluminium [10].
Link ! is 6 inches (15.24 cm) long and is directly coupled to the shaft of a 90V
permanent magnet DC motor mounted on the supporting base. Link 2 is 9 inches (22.86

cm) long and contains a coupling that attaches to the shaft of joint two (Figure 2.2).

The Pendubot is shown schematically in Figure 2.3. The actuated joint is driven by a high
torque 10VDC permanent magnet motor without gear reduction. To give joint one direct
drive control, the Pendubot was designed to hang off the side of a table coupling link one
directly to the shaft of the motor. The mount and bearings of the motor are then the

support for the entire system. Link one also includes the bearing housing which allows

11



X

Figure 2.2: Coordinate description of the Pendubot

for the motion of joint two. Needle roller bearings riding on a ground shaft were used to
construct this revolute joint for joint two. The shaft extends out both directions of the
housing allowing coupling to both link two and an optical encoder mounted on link one.
This optical encoder produces the position feedback of link two. The design gives both
links full 360° of motion. Link one, however, cannot continuously rotate due to the

encoder cable for link two. Link has no constraint on continuous revolutions.

12



Figure 2.3: Pictorial of the Pendubot’s interface with its controller

Two Dynamics Research Corporation 1250 counts/rev resolution optical encoders. one
attached at the elbow joint and the other attached to the motor. and are used as the
feedback mechanism for the joint angles. An Advanced Motion Control's 25A8 PWM
servo amplifier is used to drive the motor. In the control algorithm this amplifier can be
thought of as just a gain. In the case of the Pendubot we setup the amplifier in torque
mode and adjusted it for a gain of 1V=1.2Amps. The final component of the Pendubot's
hardware is its controller. See Figure 2.2 for a pictorial description of the interface

between the Pendubot and the controller.

In an attempt to simplify the controller for the Pendubot and minimize its cost.
Mechatronic Systems Inc. implemented control algorithm using only the microprocessor
in PC instead of purchasing an additional DSP card. A 486DX2/50 IBM compatible PC
with a D/A card and an encoder interface card are used. The CIO-DAC-02 card from

Computer Boards, Inc. is used for digital to analog conversion and a Dynamics Research



Corporation optical encoder card is used to interface with the optical encoders. Controller
timing is provided by a timer board of Computer Boards. Inc. that utilizes the 9513 timer
chip. Using the standard software library routines supplied with the interface cards
together with our own drivers we are able to program control algorithms directly in

Microsoft C 7.0.

2.3 Hardware Setup

The Pendubot system is comprised of the following hardware subsystems[10].

¢ A base unit consisting of a mounting plate, case, power supply. amplifier, and all
the necessary connectors.
e A mechanical linkage (two rigid aluminum links that are coupled through a

revolute joint that allows for 360 degrees of rotation).

e Two Dynamics Research Corporation 1250 counts/rev optical encoders (one
encoder is included in the base unit and the second encoder is attached to the
revolute joint of the mechanical linkage).

¢ A handheld amplifier inhibit switch that must be depressed for control effort to be
applied to the Pendubot.

o The Servo-To-Go STG S8 motion control board is used for data acquisition.

If the hardware is setup as indicated by the instructions given in the Pendubot user's

manual, the following connections are automatically incorporated

¢ D/A channel 0 powers the servo motor that drives the first link of the Pendubot.

14



o Encoder channel 0 reads position counts from the first link of the Pendubot,

» Encoder channel 1 reads position counts from the second link of the Pendubot.

15



CHAPTER 3

PENDUBOT SYSTEM DYNAMICS

3.1 Pendubot Model

The equation of motion for the Pendubot can be found using Lagrangian dynamics [62].
This provides a mathematical model that can be used to derive various controllers and to
simulate the response. Since our device is a two-link robot (with only one actuator). its
dynamic equations can easily be derived using the so-called Euler-Lagrange equations
and can be found in numerous robotics textbooks. In additional. the inertia parameters of

the Pendubot have been provided by the Mechatronic Systems. Inc [10-11].

For the purposes of control design. we assume that the robotic manipulator dynamics
with n revolute rigid-link serially connected direct-drive can be given by

D(g)§+C(q.9)q+8(q) =71 (3-A)
Where D(q)is the inertia matrix, C(q,q)is the Coroilis / centripetal vector. g(q) is the

gravity vector.

Equations of motion for the Pendubot can be simply written in matrix [10]:
. .y = T -
D(q)g +C(q.9) + g(q) = M (3.1

where, D(q) is symmetric and positive definite, and
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dy =ml} +my (I} +1, +201,cosq,)+ 1, + 1,
dyy =dy =my(I7, +11,, cosq,) + I,

2
dy, =m,l;, +1,

) hg, hq, +hq
C(q~q)={ : 'il

- hq, 0

h=-m,ll, sing,
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Note the 0 in the vector on the right side of equation 3.1. indicating the absence of an
actuator at the first joint wherer is the vector of torque applied to the links and q is the

vector of joint angle positions.

1o
g(q) —M

¢, =(ml, +m,l)gcosq, +ml gcos(q, +q,) (3.4)

Other,

¢, =mygl,, cos(q, +q)

m, : the total mass of link one.

[, :the length of link one (See Figure 3.1).

[, :the distance to the center of mass of link 1 (See Figure 3.1).
I, :the moment of inertia of link one about its centroid.

m, : the total mass of link two.

[, :the length of link two (See Figure 3.1).

[, : the distance to the center of mass of link 2 (See Figure 3.1).
1, :the moment of inertia of link one about its centroid.

g :the acceleration of gravity.

From the above equations it is observed that the seven dynamic parameters can be

grouped into the following five parameters equations

6 = mllfl + m21,2 +1,
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0, = ”’2[:2: +1,
0, =m,l 1, (3.5)

0, =ml_, +ml,

Substituting these parameters (3.5) into the equations (3.2)-(3.4) leaves the following

matrices
6, +6, +20,cosq, 6, +8,cosq,

D(g)=| " 7 O BEO SR, (3.6)
0, +6,cosq, o,
-8,sin(q,)q, -86,sin(q,)q. — 0, sin(qg,)q

Clai) = [ o Sin(g:)d; = 0,sin(g,)g - 6, sin(q, )4, ] a7

s sin(q, )q, 0
2(q) = {H,gcosq, +6,gcos(q, +4q,) G.8)
;g cos(q, +¢,) - .

Finally, using the invertible property of the mass matrix D(q). the state equations are

given by

[Z.' } =D(q)"'r-D(9)" C(q.9)§ - D(q) "' g(q) (3.9)

Xy =g, X =4, X374,. X, =(,

X, =X, (3.10)
X, =4,
X; =X,
Xy =4,
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3.2 Identification of Pendubot Parameters

For a control design that neglects friction, these five parameters are all needed [11].
There is no reason to go a step further and find the individual parameters since the control
equations can be written with only the five parameters. Mechatronic Systems. Inc.
performed on-line identification experiments using the Hamiltonian based energy
equation method. The first step in this approach is to write the total energy as the sum of

the kinetic energy and potential energy as
1. . -
E==4"D(g)+V(9) (3.11)

where D(q) is the inertia matrix defined in (3.1) and V' (g) represents the potential energy
due to gravity. The total energy E is linear in the inertia parameters and so may be
written as

E=W(q.4)6 (3.12)
where @ is the parametrization defined in (3.5). Using the well-known passivity or skew-
symmetry property

E=q¢'r (3.13)
we have that, between any two times t =7 and t =T +dT

T'=dT

dE = E(T +dT)-E(T) = _{q"(u)r(u)du ={W(T +dT)-W(T)}6 3.14)
:
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Equation (3.14) can be used with a standard least squares algorithm to identify the

parameter vector & by applying an open loop signal ¢ — 7(t) and recording r.q.¢ over

a given time interval. Carrying out this identification procedure using a step input to

excite the Pendubot resulted in the following parameter values.

6, =0.0308
6, =0.0106
6, = 0.0095
6, = 0.2087
6, = 0.0630

Volts.sec” .
Volts.sec” .
Volts.sec” .
Volts.sec/m .

Volts.sec®/m.
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3.3 The Equilibrium Manifold

Under-actuated mechanical systems generally have equilibria that depend on both their
kinematic and dynamic parameters: see, for example, the Pendubot [11]. If the Pendubot
is mounted so that the joint axes are perpendicular to gravity, then there will be a
continuum of equilibrium configurations, as shown in Figure 3.2. each corresponds to a
constant value, 7, of the input torque r. Examining the equation (3.1) we see the
equilibrium configurations are determined by

0,gcos(q,) +6.gcos(q, +q,) =T (3.15)
O,gcos(q, +q,)=0 (3.16)
It is easily seen that. applying a constant torque 7 . the Pendubot will be balanced at a

configuration (g,.q,) such that

g, =cos™ (—) (3.17)
0.g
q, = nZ - q; n=135... providedL <l. (3.18)
) 2 0,8
g
N
2
A SHC)
/

F o = { 3

Figure 3.2: Possible equilibrium positions
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3.4 Controllability

There are four uncontrollable positions, ¢, =0. ¢, =7/2 or —z/2 and ¢, =-x.
g, =n/2 or —x/2. However. we can also easily understand physically how the
linearized system becomes uncontrollable at ¢, = 0. + 7 as illustrated in Figure 3.3. Note
that the zero or reference position for g, is horizontal. As the Pendubot approaches these

unstable and uncontrollable configurations, the controllability matrix of the linearized

approximation becomes increasingly ill-conditioned.

Define the controllability matrix as follows:

Co=[B AB A'B 4’ B] (3.19)
where both matrices A and B are defined in Appendix A, Equations A.4 and A.9.
respectively. After substituting the system parameters and the configurations. ¢, =0.

g, =x/2or-x/2and q,=-7,q,=n/2 0or -x/2.

0 1.0000 0 0
0 0 0 0
A= (3.20)
0 0 0 1.0000
583047 0 583047 0
0
32
| 324675 G20
0
-32.4675



The controllability matrix obtained was

0 32.4675 0 0
32.4675 0 0 0
Co = . (3.22)
0 -32.4675 0 0
-32.4675 0 0 0

Since the rank of Co is 2 < 4. then the system is said to be uncontrollable at the given

configurations.

Figure. 3.3: Uncontrollable configurationsat ¢, =0. ¢, =7/2



CHAPTER 4

FUZZY LOGIC AND CONTROL

4.1. Introduction: Fuzziness versus Probability

Logical paradoxes as Crete's liars and the Heisenberg uncertainty principle led to the
development of multi valued or "fuzzy" logic [35-48] in the 1920s and 1930s. Quantum
theorists allowed for indeterminacy by including a third or middle truth value in the
bivalent logical framework. The next step allowed degrees of indeterminacy. viewing

TRUE and FALSE as the two limiting cases of the spectrum of indeterminacy.

But. is certainty the same as randomness? If we are not sure about something. is it only
up to change? Do the notions of likelihood and probability exhaust our notions of

uncertainty? Many people. trained in probability and statistics. believe so:

"Any method of inference in which we represent degrees of plausibility by real numbers,

is necessarily either equivalent to Laplace's probability, or inconsistent".

"Probability is the only sensible description of uncertainty and is adequate for all

problems involving uncertainty. All other methods are inadequate".



How important is to be exact right when a rough answer will do? Related to the

importance of imprecision some people have said:

"So far as the laws of mathematics refer to reality. they are not certain. And so far as

they are certain, they do not refer to reality". Albert Einstein

"As complexity rises, precise statements lose meaning and meaningful statements lose

precision”. Zada

In 1965. Lofti Zadeh formally developed multivalued set theory. and introduced the term
Jfuzzy into the technical literature. Nowadays. the recent emergence of fuzzy commercial
products. as well as a new theory. has generated a new interest in multivalued systems.
Yet already engineers have successfully applied fuzzy systems in many commercial
areas: intelligent subways automation. emergency breakers. cement mixers. Kanji
characters recognition. air conditioners. automatic washing machines. guide of robot-arm

manipulators. and so on [36-40].

Fuzzy systems store banks of fuzzy associations or common-sense "rules" such as "/F
traffic is heavy in this direction, THEN keep the light green longer” that might be
articulated by a human expert. Some traffic configurations are heavier than others and
some green-light duration are /onger than others. so that, the single fuzzy association
(HEAVY, LONGER) encodes all these combinations. That is to say. fuzzy systems
directly encode the structured knowledge but in a numerical framework: by entering the
fuzzy association (HEAVY. LONGER) as a single entry in a rule database to define an

input-output transformation.



Figure 4.1: Precision and significance

Fuzzy logic sometimes appears exotic or intimidating. but it seems almost surprising
when some becomes acquainted with it. In this sense. fuzzy logic is both old and new
because, although the modern and methodical science of fuzzy logic is still voung. the

concepts of fuzzy logic reach down to our bones.

Claim: Probability theory is the only correct way of dealing with uncertainty and that
anything can be done with fuzzy logic can be done equally well through the use of
probability-based methods. And so fuzzy sets are unnecessary for representing and
reasoning about uncertainty and vagueness - probability theory is all that is required.

“Close examination shows that the fuzzy approaches have exactly the same
representation as the corresponding probabilistic approach and include similar calculi.”

[Cheeseman, 1986].



Objection: Classical probability theory is not sufficient to express uncertainty
encountered in expert systems. The main limitation is that it is based on two-valued logic.
An event either occurs or does not occur; there is nothing between them. Another
limitation is that in reality events are not known with sufficient precision to be
represented as real numbers. As an example consider a case in which we have been given
an information: An urn contains 20 balls of various sizes, several of which are large.
“One cannot express this within the framework of classical theory or, if it can be

done, it cannot be done simply " (Zadeh to Cheeseman. in same book).

Fuzzy Logic has emerged as a profitable tool for the controlling of subway systems and
complex industrial processes. as well as for household and entertainment electronics. and
diagnosis systems. Fuzzy has become a keyword for marketing. Electronic articles
without Fuzzy-component gradually turn out to be dead stock. As a gag. that shows the
popularity of Fuzzy Logic, there even exists a toilet paper with "Fuzzy Logic" printed on

it.

Fuzzy Logic is basically a multivalued logic that allows intermediate values to be defined
between conventional evaluations like yes/no. true/false, black/white, etc. Notions like
rather warm or pretty cold can be formulated mathematically and processed by
computers. [n this way an attempt is made to apply a more human-like way of thinking in

the programming of computers.



4.2 Fuzzy Logic Terminologies

Let X be a space of objects and x be a generic element of Y. A classical set A.
Ac X . is defined as a collection of elements or objects x € X . such that each can either
belong or not belong to the set A. By defining a characteristic function for each element

x in X . the classical set 4 can be represented by a set of ordered pairs (x.0)or (x.1).

which indicates x ¢ 4 or xe 4. respectively.

A Classical set is a set with crisp boundaries. For example: a classical set A of real
numbers greater than 6 can be expressed as

A={x|x>6},

where there is clear unambiguous boundary 6 such that if x is greater than this number.
then x belongs to the set A : otherwise x does not belong to the set. This boundary is
called a crisp boundary. In contrast a fuzzy set. as the name implies. is a set without a
crisp boundary. That is, the transition from “belong to a set™ to "not belong to a set™ is
gradual, and this smooth transition is characterized by what is called a membership
function that gives the fuzzy sets the flexibility in modeling commonly used linguistic

expressions.

Definition 4.1 Fuzzy sets and membership functions

If X is a collection of objects denoted generically by x. then a fuzzy set 4 in is

defined as a set of ordered pairs:
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A={{x.u (x)lxe X}
where u,(x) is called the membership function ( or MF for short) for the fuzzy set A .

The MF maps each element of X' to a membership grade or membership value between

0 and I. Usually X is referred to as the universe of discourse. or simply the universe.

Definition 4.2 Support

The support of a fuzzy set A is the set of all points x in .Y such that u,(x)>0:

support (A4) = {x| M, (x)> O}

Definition 4.3 Fuzzy singleton

A fuzzy set 4 whose support is a single point in .\ with x4 (x)=1 is called a fuzzy

singleton.

Definition 4.4 Containment or subset

Fuzzy set A is contained in fuzzy set B (or equivalently. 4 is a subset of B. or A is

smaller than or equal to B) if only and if u,(x) < u,(x) forall x. In symbols

Ac B p,(x) < py(x)



Definition 4.5 Union (disjunction)

A new set generated from two given sets A and B is called unification of A and B. if the

new set contains all elements that are contained in A or in B or in both.

Then by symbols, union of two fuzzy sets 4 and B is a fuzzy set C. written as

C=A4uBor C=A40R B. whose MF is related to those of 4 and B by

pe-(x) = max(u  (x). g (x)) = 11, (x) v pr5(x)

Definition 4.6 Intersection (conjunction)

A new set generated from two given sets 4 and B is called intersection of A and B, if the
new set contains exactly those elements that are contained in 4 and in B. Then by
symbols. intersection of two fuzzy sets A and Bis a fuzzy set C. written as

C=AnBor C=AAND B, whose MF is related to those of A4 and B by

He-(x) = min(u (x). 25(2)) = p1,(x) A g (x)

Definition 4.7 Complement (negation)

A new set containing all elements which are in the universe of discourse but not in the set
A is called the negation of A. The complement of fuzzy set A . denoted by A4 (-.4.NOT

A), is defined as

p(x) = 1=, (%)
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Definition 4.8 Gaussian membership function

A MF is a curve that defines how each point in the universe of discourse is mapped to a
value between 0 and 1. This value is called membership value or degree of membership.

Then a Gausssian MF is specified by two parameters {c.c}:

gaussian (x:c.oc’) = exp{- 0.5( ¢ ) ]
o

A Gaussian MF is determined completely by ¢ and o : ¢ represents the MFs center and

o determines the membership function width.

Definition 4.9 Linguistic variables

A linguistic variable is characterized by a quintuple (x.7(x)..Y) in which x is the name
of the variable: T(x) is the term set of x-that is. the set of its linguistic values or

linguistic terms: .Y is the universe of discourse.

(9% ]
(8]



In order to clarify this. the few examples follow explain the terms which are defined

above.

Example 4.1:

Ifage x is interpreted as a linguistic variable. then its term set T (age)could be
T(age)= {voung. not young: very young. Not very young. ....
middle aged. not middle aged. ....
old. not old. very old. more or less old. not very old. ....
not very young and not very old. ...}.

where each term in T(age) is characterized by a fuzzy set of a universe of discourse

X =[0.100].

Example 4.2:

First consider a set X of all real numbers between 0 and 10, which we call the universe of

discourse. Now, let's define a subset 4 of X of all real numbers in the range between 35

and 8. 4 = [5.8]

We now show the set 4 by its characteristic function, i.e. this function assigns a number 1
or 0 to each element in X, depending on whether the element is in the subset 4 or not. The

result is shown in the following figure:



Figure 4.2: Universe of discourse between 0 and 10 and fuzzy set between 5 and 8

We can interpret the elements which have assigned the number | as The elements are in
the set A and the elements which have assigned the number 0 as The elements are not in

the set A.

This concept is sufficient for many areas of applications. But we can easily find situations
where it lacks in flexibility. In order to show this consider the following example. In this

example we want to describe a set of young people. More formally we can denote

B = [set of young people}

Since - in general - age starts at 0 the lower range of this set ought to be clear. The upper
range, on the other hand, is rather hard to define. As a first attempt we set the upper range

to, say, 20 years. Therefore we get B as a crisp interval, namely: B = [0,20]
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Now the question arises: why is somebody on his 20th birthday young and right on the
next day not young? Obviously, this is a structural problem. for if we move the upper

bound of the range from 20 to an arbitrary point we can pose the same question.

A more natural way to construct the set B would be to relax the strict separation between
young and not young. We will do this by allowing not only the (crisp) decision YES
he/she is in the set of young people or NO he/she is not in the set of young people but
more flexible phrases like Well, he/she belongs a little bit more to the set of young people

or NO., he/she belongs nearly not to the set of young people.

The next shows how a fuzzy set allows us to define such a notion as s/he is a little young.
As stated in the introduction we want to use fuzzy sets to make computers smarter, we
now have to code the above idea more formally. In our first example we coded all the
elements of the Universe of Discourse with 0 or 1. A straight way to generalize this
concept is to allow more values between 0 and 1. In fact. we even allow infinite many

alternatives between 0 and 1. namely the unit interval /={0, 1].

The interpretation of the numbers now assigned to all elements of the Universe of
Discourse is much more difficult. Of course, again the number | assigned to an element
means that the element is in the set B and 0 means that the element is definitely not in the

set B. All other values mean a gradual membership to the set B.

To be more concrete we now show the set of young people similar to our first example

graphically by its characteristic function.

(93]
w



. T 4

Figure 4.3: Fuzzy set and gradual membership for young people
This way a 25 years old would still be young to a degree of 50 percent. Now you know
what a fuzzy set is. But what can you do with it?

Example 4.3:

Let 4 be a fuzzy interval between 5 and 8 and B be a fuzzy number about 4. The

corresponding figures are shown below.

Figure 4.4: Fuzzy set between 5 and 8



Figure 4.5: Fuzzy set about 4
Example 4.5:

The following figure shows the fuzzy set between 5 and 8 AND about 4.

u'AABA

14

Figure 4.6: Fuzzy set between (5 and 8) and about 4
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Example 4.6:

The Fuzzy set between 5 and 8 OR about 4 is shown in the next figure.

V' N
lJ-AvB

1

Figure 4.7: Fuzzy set 5 and 8 or about 4

Example 4.7:

This figure gives an example for a negation. The thick line is the negation of the fuzzy set

A.

(L,

Figure 4.8: Negation of fuzzy set between 5 and 8



4.3 Fuzzy Control System

A fuzzy system is a static nonlinear mapping between its inputs and outputs. It is

assumed that the fuzzy system has inputs u, e U, where i=1.2,---.n and outputs y, €Y,
where i =1.2,---.n as shown in Figure 4.9. The inputs and outputs are crisp-that is. they
are real numbers. not fuzzy sets. The ordinary crisp sets U, and Y, are called the universe
of discourse for u,and y,. respectively (in other words. they are their domain). In

practical applications, most often the universes of discourse are simply the set of real

numbers or some intervals or subset of real numbers.

. Fuzzified Fuzzy .
Crisp inputs conclusion Crisp
inputs outputs
e N — N
u, : . Inference : Vs
- —_— Fuzzification Mechanism |_p| Defuzzification — -
— : S
— L.
: Rule-Base
u, v,
_— —_——

Figure 4.9: Fuzzy controller general structure
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The block diagram in Figure 4.9 shows the general structure of the fuzzy control system.
This fuzzy controller is composed of the following four elements: a rule-base unit. an
inference mechanism (also called inference engine or fuzzy inference) uint . a

fuzzification interface unit and finally a defuzzification interface unit.

The fuzzification block converts the crisp inputs to fuzzy sets, the rule-base contains all
[f-Then rules, the inference mechanism uses the fuzzy rules in the rule base to produce
fuzzy conclusions. and the defuzzification block converts these fuzzy sets into crisp

outputs.

To specify rules for the rule base, linguistic expressions are needed to describe the inputs
and outputs and the characteristics of the inputs and outputs. Here linguistic variables
denoted by u, are used to describe the inputs u,. Similarly. linguistic variables denoted
by ¥, are used to describe outputs y, .

Example

An input to a fuzzy system may be described as u, = position error, or u,=velocity error,

and output from the fuzzy system may be y, =voltage of the motor.
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4.3.1 Linguistic values

Just as u, and y, take on values over each universe of U, and Y. respectively. lingustic

variables u, and y, take on linguistic values that are used to describe characterstics of the

variables. Let /7," denote ;” the linguistic value of the linguistic variable u, defined over
the universe of discourse U, . Then the set of all linguistic values is given by

;i = {Z” j =1.2.... IV,}

1]

«th

And similarly, let E, denote j“ the linguistic variable y, defined over the universe of
discourse Y,. The linguistic variable takes on elements from the set of linguistic values

denoted by

B={B:j=12..N}

Linguistic values are generally descriptive terms such as positive large, zero. and
negative big. Assume that #, denotes the linguistic variable speed then we may assign

~

A'=slow, A?=medium, A4;=fast so that # has a value from 4, = {Z,'.Z,Z.Z," }

41



4.3.2 Rule-Base and Linguistic Rules

A set of If-Then rules which contains a fuzzy logic quantification of the linguistic
description of how to achieve good control. The mapping of the inputs to the outputs for
a fuzzy system is in part characterized by a set of condition — action rules. or in modus
ponens (If-Then) form. A fuzzy If-Then rule (also known as fuzzy rule. fuzzy implication
or fuzzy conditional statement) assumes the form
If premise Then consequent
or
If xis A then y B
where 4 and Bare linguistic values defined by fuzzy sets on the universe of discourse
X and Y, respectively. Often “x is 4 = is called the antecedent or premise. while
"y is B7 is called the consequence or conclusion. Examples of fuzzy If-Then rules are
widespread, such as:

e [f the pressure is high then volume is small

e [f the speed is high then apply then brake a little

Usually the inputs of the fuzy systems are associated with the premise. and the outputs
are associated with the consequent. These If-Then rules can be represented in many
forms. Two standard forms, multi-input multi-output (MIMO) and multi-input single-
output (MISO). The MISO form of a linguistic rule is

If i is A/and @, is Afand. ...,and i,is 4, then ¥, is B}

For instance, the MIMO rule with » inputs and m= 2 outputs is given by



If & is A’and 7, is A*and. ....and &, is A’ then 7, is B and 7, is B:

4.3.3 Fuzzy Quantification of Rules: Fuzzy implications

Fuzzy implication is to quantify the linguistic elements in the premise and consequent of
the linguistic If-Then rule with fuzzy sets. For example, suppose we are given If-Then

rule in MISO form, then the fuzzy sets can be defined as follows:
A= {(zll.;lA', (14, )): u e Ul}

A = {(uz.,ujg (uz)): u, € Uz}

A= {("n'/ﬁ: (u,,)): u, € U,,}

By =l )} v, €Y,
These fuzzy sets quantify the terms in the premise and consequent of the given If-Then

rule to make a fuzzy implication which is a fuzzy relation

If 4/ and 4; and, ..., and A, Then B!



4.3.4 Fuzzification

Fuzzy sets used to quantify the information in the rule-base, and the inference mechanism
operates on fuzzy sets to produce fuzzy sets, then how the fuzzy system will convert its

numeric inputs #,€ U, into fuzzy sets, this process is called fuzzification so that they can

'

be used by the fuzzy system.

Let U denote the set of all possible fuzzy sets that can be defined on U, . Given u,e U,

fuzzification transforms u,to a fuzzy set denoted by ;1,"‘: defined on the universe of

discourse U, . This transformation is produced by the fuzzification operator F defined by

F:U ->U’
where
Fu)= A%

quite often singleton fuzification is used, which produces a fuzzy set A4 e U with a

membership function defined by

1 xX=u,

0 otherwise

luj’/v (X) ={

Any fuzzy set with this form is called singleton.
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4.3.5 Inference mechanism

The inference mechanism has two tasks: first. to determine the extent to which each rule

is relevant to the current situation as characterized by the inputs «,.i =1.2.---.n which is
called matching: and second, to draw conclusions using the current inputs u, and the

information in the rule base which is called inference step.

Matching

Suppose that at some time the inputs u,.i=1.2.---.n are obtained. and fuzzification
produces

A=, Al 4

which are the fuzzy sets representing the inputs. Then there are two basic steps to do

matching

Stepl: combine inputs with rule premises

The first step in matching involves finding fuzzy sets 4/. A%, A’ with membership
functions

P ) = g, () * e ()

,u,,i (“1) = /‘_4§ (llz)*#dz/u: (uz)

lu.d' (ll") = #_"l' (ll" ) * #4’{'5 (ll" )
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for all j, £ .... [ that combine the fuzzy sets from fuzzification with fuzzy sets used in
each of the terms in the premises of the rules. If singleton fuzzification is used. then each
of these fuzy sets is a singleton that is scaled by the premise mebership function. That is.

with singleton fuification H o (u,)=1 forall i=12.---.n for the given inputs so that
#jll (ul ) = .UA( (ul )

My (y)=p, ()

:Ll‘_" (un) = #4"' (un)

Step 2: Determine which rules are on:

[n second step, the membership function values are formed for the rule’s premise that

represent the certainty that each premise holds for the given inputs. Define
#l(lll’llz"..'l‘n)z#'_ill (u|)*,u‘;§ (“z)*"'*/‘ji (u,)

Which is simply a function of the inputs «, . When singelton fuzzification is used. then
u, (g, ) = o ) * g ) *eew g, (u,)

(2, ,uy,---,u,) is used to represent the certainty that the premise of rule i that matches

the input information when singelton fuzification is used.
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Inference step

The inference step is taken by computing for the i” rule for (j.k.---./),. the implied
fuzzy set B", with membership function

My (Yy) =;l,(u,.u:.-".un)*;z‘*v, )

The implied fuzzy set B"l specifies the certainty level that the output should be specific

crisp output with in the universe of discourse [, . taking into consideration only rule /.

4.3.6 Defuzification

Defuzification converts the conclustions of the inference mechanism into actual inputs
for the process by using Center-average defuzzification: which means a crisp output is
chosen using centers of each output membership functions given by

R
q
cnsp Z,=|bl H, (ulvuz~"’.lln)
iy )

where Zilp,(u,,uz,---.un):to forall u,.
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4.4 Standard Fuzzy Logic Systems

The Sugeno fuzzy model (also known as Takagi-Sugeno-Kang fuzzy model) [44.46.48]
developed a systematic approach to generating fuzzy rules from a given input-output data

set. A typical fuzzy rule in a Sugeno fuzzy model has the form

Ifxis A andy is B then z=f(x.})

Where A and B are fuzzy sets in the antecedent. while z=f(x.)y is a crisp function in the
consequent. Usually ffx.y) is polynomial function within the input variables x and v. but it
can be any function as long as it can appropriately describe the output of the system
within the fuzzy region specified by the antecedent of the rule. When fix.}/ is a first-order
polynomial. the resulting fuzzy inference system is called a first-order Sugeno fuzzy

model. which was originally in [44.46].

[t should be pointed out that the output of a zero-order Sugeno model is a smooth
function in its variable as long as the neighboring MF's if the premise have enough
overlap. In other words, the overlap of MF’s in the consequent does not have a decisive
effect on the smoothness of the interpolation: it is the overlap of the MF’s in the premise

that determines the smoothness of the resulting input-output behavior.

A multiple-input single-output (MISO) fuzzy system is a nonlinear mapping from an

input vector X =[x,.x,.....x,]" € R" (T denotes transpose) to an output ¥ = f(X) eR
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(note that we use .Y as a general input vector to the fuzzy system: it may not be the same
as “'state” that is used in all the later sections). Using the Takagi-Sugeno model [29]. the
fuzzy system is characterized by a set of p if-then rules stored in the rule-base and
expressed as
R:If (X is F' and...and %, is F)

Then c, = g,(X)

(4.1)

R,:If (X is F¥and...and X, is F')

Then c, =g,(X).

Here. F; is the ath linguistic value associated with linguistic variable x, that describes
b g g

input x,.and ¢, = g,(X) is the consequence of the g th rule and g, : R" > R.

Using fuzzy set theory. the rule-base is expressed as
R :If (F and...and F)/)

Then ¢, = g,(X)

R,:If (F!and..and F')
Then ¢, =g, (X).
where F,’ is a fuzzy set defined by

F = {(xhw.uf:(xh)) tx, € R}
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The membership function ,th,,e[O.l] quantifies how well the linguistic variable X,

represents x, is described by the linguistic value F;. There are many ways to define

membership functions [29]. For instance. Table 4.3 specifies triangular membership

functions with “center” ¢ and “width” w. and it specifies Gaussian membership
functions with “center” ¢ and “width” o .
Table 4.1 Types of membership functions
Triangular Gaussian
| if  x<c ! if  x<c
wx) = | max(0,1 + ik otherwise wx =1 exp(—( .r; )y otherwise
113
Left
X-c . X-=C.»
) | max(0.[ + ” if x<c #(-t) _—_exp(_( - )‘)
HLX) =4 -
Centers max(0,] + <= otherwise
w
x-c X-c.,
max(0. + i x<c St SXP(—=)) o x<c
pixy={ MO == un =i P g rerise
Right | otherwise otherwise

The antecedent fuzzy set F, x F, x---x F,

(fuzzy Cartesian product). of each rule is

quantified by the **7-norm™ [30] which may be defined by, for example. the min-operator

or the product-operator
Hi g, (X700 X,)
= min{py, (X)), 1 (x,)}

or
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.url .... F, (xl-"'~x,,)
=y (X)) g (x,) (4.4)
Respectively (notice that for convenience. we have removed the superscripts from F;*).

Using singleton fuzzification, defuzzification may be defined using

e

F=f(X)="— (4.5)

du,
1=1

where u, =y, . (x.-:-.x,) is the value that the membership function [defined via
(4.2) or (4.3)] for the antecedent of the ith rule takeson at X =[x,.---.x,] . It is assumed

that the fuzzy system is defined so that all X € R", where lel 4, #0 .We may express
(4.5) equivalently as

y=c'¢ =700 (4.6)
where ¢” :=[c,---c,] and {7 = (gt -, 1D 1]

It is assumed that f the mapping produced by fuzzy system, is Lipschitz continuous
[29].
In this thesis, the output consequences for each rule are taken as linear combination of a

set of Lipschitz continuous functions 6, (X)eR.k=1.2,---.m—1 _so that

¢, =g(X)

=a,,+a, 6(X)+-+a,.,0,,(X)+a,. 06, (X) 4.7

1.m=2

i=1-,p.



Define the following

1

6.(X

= :'( ) eR" (4.8)
6,.,(X)
-al.O Ay e gy

4 = Ao Qyy o Qypy (4.9)
_ap.O ap.l ’ ap.m—l

The consequence vector associated with the fuzzy rules is now given by ¢ = A’z . so that
the output of the fuzzy system may now be expressed as
F=zldAe (4.10)

Clearly, (4.10) is a special form of Takagi-Sugino fuzzy system.

Standard fuzzy systems [29] naturally allow for the inclusion of Heuristics into controller
design. In standard fuzzy control, the output of a fuzzy system may be found using the

center of gravity operation, which for a wide class of fuzzy systems is expressed as

Yeg,

=

(4.11)

y=

[V
w

=

Where ¢, is the center of the output membership function associated with the ith rule.
and £, is the area of the implied membership function associated with ith rule (i.e. Z is

the area of the output membership function that is modified via the fuzzy implication that

represents the ith rule). This fits the form of (4.10) with z=[l].4=[c,---¢,]. and

wn
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5 =& Z";l ¢, so that this fuzzy system is a special case of the Takagi-Sugeno fuzzy

system defined by (4.10). Other standard fuzzy systems such as those that use centroid

defuzzification will also fit the form of (4.10).

w
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CHAPTER §

NEURAL NETWORKS AND ROBOTICS

5.1 Introduction

The study of neural networks [28] [47-58] was started by the publication of Mc Culloch
and Pitts [1943]. The single-layer networks. with threshold activation functions. were
introduced by Rosenblatt [48] [1962]. These types of networks were called perceptrons.
In the 1960s it was experimentally shown that perceptrons could solve many problems.
but many problems which did not seem to be more difficult could not be solved. These
limitations of one-layer perceptron were mathematically shown by Minsky and Papert in
their book Perceptron [48]. The result of this publication was the subject neural networks
lost their interest for almost two decades. In the mid-1980’s. back-propagation algorithm
was reported by Rumelhart. Hinton, and Williams [1986]. which revived the study of
neural networks. The significance of this new algorithm was that multilayer networks

which will be dicussed in the next section could be trained by using it.

Neural network makes an attempt to simulate the human brain. The simulation is based
on the present knowledge of brain function. and this knowledge is even at its best
primitive. So, it is not absolutely wrong to claim that artificial neural networks probably

have no close relationship to the operation of human brains. The operation of the brain is

54



believed to be based on simple basic elements called neurons which are connected to
each other with transmission lines called axons and receptive lines called dendrites: as
shown in Figure 5.1. The learning may be based on two mechanisms: the creation of new
connections, and the modification of connections. Each neuron has an activation level

which, in contrast to Boolean logic. ranges between some minimum and maximum value.

AVRapse

<

nucleus axon

dendrites

poOo"Ga,
o® %o,

stgiming  thredhold
1)) S

Figure 5.1: Simple illustration of biological and artificial neuron (percepton)

In artificial neural networks the inputs of the neuron are combined in a linear way with

different weights [47-58]. The result of this combination is then fed into a non-linear

|94}
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activation unit (activation function). which can in its simplest form be a threshold unit

Figure 5.1.

Neural networks offer nonlinearity, input-output mapping, adaptivity and fault tolerance.
Nonlinearity is a desired property if the generator of input signal is inherently nonlinear
[Haykin. 1994]. The high connectivity of the network ensures that the influence of errors

in a few terms will be minor. which ideally gives a high fault tolerance.

The dynamics models of robots based on the Langrange-Euler formation are very simple
in its representation but are very difficult. time consuming and error prone to obtain
except for simple cases [28]. The modeling process. in general. starts from the
assignments of the inertial reference co-ordinate system and the moving relative co-
ordinate system. formulates the transformation matrices and Lagrangrian functions. and

concludes at the derivation of the Lagrange-Euler equations.

The majority of neural network [47-58] only have a static mapping capability. However.
when they are used as controllers, they must be able to realize the dynamics. Thus.
dynamic neural networks may be needed to fully model the dynamics of the system.
Despite the fact that neural networks are powerful in learning complicated dynamics. the
size of the networks (in terms of nodes, or weights) can be very large which subsequently
leads to the need of powerful computational facilities for learning the adjustable

parameters.
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While it is true that the neural networks [28] have capability and can be used to
approximate any dynamic function to any desired accuracy as long as the size of the
networks are large enough, we should not abuse their capabilities and let them learn all
the characteristics of the systems without any discrimination. Allowing a neural network
to have many degrees of freedom (or flexibility) means that it will not only learn the
desired dynamics. but also the inevitable noise leading to poor generalization. Otherwise.
a construction algorithm can be used to minimize the number of degrees of freedom of
the network. This is particularly important if network parameters are linear such as a
Radial Basis Function (RBF) network is emploved. as it suffers from the curse of
dimensionality. It has been shown that. by fully exploiting the structural properties of a
particular system. the full dynamics of the system can be approximated by static neural
networks of predetermined structures. As a result. the size of the neural network model of
robots becomes smaller than the usual dynamical ones. This is very desirable for actual
implementation in terms of less computational power required. and accordingly. less

costly.

The dynamics of robots can be expressed in task or Cartesian space. Since the task
specifications are usually given relative to the end-effecter. it is to attempt to derive
control algonithms directly in task space rather than in joint space. Dynamic neural
networks modeling of robots controller in task space can be easily carried out without the

exact knowledge of the regressor of the dynamics parameters of the robot.



Although neural networks are well-known universal approximators if the size of the
network is sufficiently large. the underlying approximation nature of neural networks
introduces approximation errors which must be taken into account. No matter how large
the size of the neural network is, the modeling and generalization error always exists.
Furthermore. the design problems like the number of layers: the choice of network
architectures and basis functions: the number of nodes and others. may be difficult to
determine for specific systems. unless some off-line construction algorithm employing
non-linear optimization is used. Another concept of structural network modeling using
the system’s own functions known as parametric network modeling has been introduced
to eliminate the approximation nature of neural networks. where the maximum size of the

parametric networks is fixed.



5.2 Neural Network Approximations

Neural networks consist of a large number of simple processing elements called nodes.
The nodes are introduced by weighted links where weights are the network’s adjustable
parameters. The arrangement of the nodes and the interconnections define the
architecture of the neural networks [28]. However. the capabilities of different networks
vary with different kinds of applications. Thus. a careful choice in the structure of the
neural network has to be made for specific application.

In control engineering. a neural network is usually used to generate input/output maps
using the property that a multi-layer neural network can approximate any function with

any desired accuracy. The approximation problem [28] can be stated formally as follows:

Definition 5.1 (Function Approximation). If f(x):R” - R” is a continuous function
defined on a compact set Q . and y(W.x):R'xR" — R"is an approximation function
that depends continuously on weight vector /¥ and x. then. the approximation problem
is to determine the optimal weight vector I¥", for some metric ( or distance function) d .
such that

d(y(W: . x). f(x)<¢ (3.1

for an acceptable small ¢ .

As a function emulator. firstly. an approximating function y(#¥.x) for f(x) is chosen.

then, an algorithm is used to adjust the neural network weights based on the output error.

by a training set. Hence there are two distinct problems in function approximation;
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namely. the representation problem which deals with the selection of the approximation

function y(W.x) and the learning problem which is to find the training method to ensure

the optimal parameters W " for a given choice of y(¥.x) are obtained.

In the literature, quite a number of neural networks function approximation have been
used. such as the multi-layer perceptron (MLP) networks. radial basis function (RBF)

networks. and higher order neural networks (HONNS).

The MLP network is the most widely studied neural network structure. It is a feed-
forward network where the input signals propogating forward through several processing
layers before the network output is calculated. Figure 5.2 shows the schematic diagram of
a MLP network with two hidden layers. Each node of the MLP network has input
connections with the nodes of the previous layer only. and the output of each node is in
turn applied to the next layer. In other words. all the nodes of one layer are connected to
each of the nodes of the next layer, thus MLP network is a fully connected network. The
hidden nodes and output does contain an appropriate activation function or transfer
function which calculates the node’s output from the weighted input signals. Sigmoidal
and hyperbolic tangent functions are the typical choices for the activation functions in the
hidden nodes. Whereas in the output nodes. a linear function is normally emploved. It has
been established that any continuous non-linear function is uniformly approximated to
within an arbitrary accuracy by a MLP network is very flexible and can be employed in a

wide variety of modeling and control tasks.
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However. the MLP network suffers from several limitations. Firstly, the so-called back-
propogation algorithm which is commonly used for the weight adjustment. also referred
to as training in the neural network community, can not guarantee to converge and may
take an undesirable long period of time to converge. This difficulty in training is not
desirable for any type of on-line or real-time approximation. Secondly. although the MLP
network has universal approximation capabilities. no method exists to choose the network
structure necessary to achieve the desired approximation accuracy. Thirdly, the MLP
network is often referred to as a non-linearly parameterized network. which means that

network output is related to the adjustable weights in a non-linear fashion.

X

W
X,

Y2
X;

Vm

Input layer  Firsthidden Second hidden Output layer
layer layer

Figure 5.2: A multi-layer percepton (MLP) network
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This property often makes analysis of systems containing MLP network difficult or
impossible. Finally. MLP network tends to forget old information quickly. i.e. when
presented with new data. small adjustment to the weights often cause bad approximation

of data on which the network was previously trained.

A three-layer feed forward neural network of a different structure is shown schematically
in Figure 5.3, where x e R". yeR", ae N are the input. the output. and the activation
function vectors respectively, with v, as the first-to-second layer interconnection

weights, and w/, as the second-to-third layer interconnection weights. The input to the

activation function z, . and the output of the neural network are given by

= v x =120 (5.2)

Y, =Zwlkak(z).j=l,2,---,m (3.3)
7=l

Where z=[z,---z,]'. Note that the bias (threshold offset) can be incorporated easily by

augmenting the input variable by 1. Any tuning of the neural network weights would then

include the tuning of the bias as well.

The neural network equations (5.2)-(5.3) can be conveniently expressed in a matrix

format as
z(x)=V'x
y(z)=W'a(z)



where W' = [w/,‘]r.V "= [v,,]’ . Thus. the output of the network can be simply expressed
as

y(x)=W'a(V'x) (5.4)
A general function f(x)e R" can be approximated as

fx)=WTa(V"x)+¢e(x) (5.5)

Where &(x)is the neural network functional reconstruction error. If there exist integers /

X

37
Xy

Y,
x;

Vm
X

n

Figure 5.3: Three layer neural network (RBF network if V' =1)
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and m . and constants W and V. [ is the identity matrix so that £ =0. f(x) is said in the
functional range of the neural network. It is well known that any sufficiently smooth
function can be approximated by a suitably large network using various activation
functions, a(.). to any desired accuracy over a compact set based on the Stone-
Weiersrtass theorem. Typical choices include the sigmoid functions the hyperbolic
tangent,. radial basis functions (RBF), etc. whilst it is true that multi-layer neural networks
can approximate systems with fairly severe non-linearities. it is difficult and complicated
to carry out stability analysis. on-line tuning and actual implementation. In most cases.
the results are not as good as linear in the parameters networks such as the radial basis
function networks and high order networks.

The RBF network can be represented in a three-layer structure. The first layer is the input
layer which consists of the source nodes. The second layer is a hidden layer, composed of
computation nodes that are connected directly to all of the nodes in the input layer. Each
hidden node contains a parameter vector called a center. The node calculates the
Euclidean distance between the center and the network input vector, and passes the
results through a non-linear activation function. The third layer is the output layer which

performs the summation of the weighted outputs from the hidden layers.

The RBF networks have some useful properties which render them suitable for on-line
non-linear adaptive modeling and control. First, they belong to a class of linearly
parameterized networks where the network output is related to the adjustable network

weights in a linear manner, assuming that the basis function centers and variances are
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fixed a priori. Thus on-line learning rules can be used to update the weights and
convergence results can be derived. Second, the activation functions of the RBF network
are localized, thus theses networks store information locally in a transparent fashion. The
adaptation in one part of the input space does not affect knowledge stored in a different
area, i.e.. they have spatially localized learning capability. This implies that they have
better memory than MLP networks. Third. it exhibits a fast initial rate of learning
convergence, this is because the network output is linearly dependent on the adjustable

weight vector.

When V =1, the three feedward neural network in Figure 5.3 becomes a RBF network.

The output of the network can be expressed as

W= i wlkal(”x -H, “) (5.6)
j=l

where | is the number of hidden nodes. x € R" is the network input vector. || denotes
the standard Euclidean norm, a () is the activation function, u, € " is the center vector,
and w, e R is the network weight. This can be conveniently expressed in a matrix form

as
y(x)=W"a(x) 3.7
A list of function can be used as radial basis functions, such as Gaussian. Hardy's
multiquadratic and Inverse Hardy’s multiquadratic

(1) Gaussian RBFs
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— ,. —
a(x) = exp[ (=) (= )J (5.5)
o-l

(it) Harady’s multiquadratic RBFs

a,(x) =0l +(x—p) (x—u,) (5.9)
(iti) Invers Harady's multiquadratic RBFs

1 "
a(x)= (5.10)

Vo +(x=p) (x—p,)

Gaussian radial basis functions have some attractive properties: (i) they are bounded.

strictly positive and absolutely integrable on R", (ii) their Fourier transforms are their
own, and (iii) they are time-frequency localized. Because of these nice properties, it has

been widely used for the control of non-linear systems.

Gaussian radial functions do possess a localized response, they are not strictly compact.
but they are compact in the frequency domain. A major disadvantage of Gaussian for
RBFs is that the membership functions do not produce a partition of unity, and hence the
normalization of the membership function is liable to change their shape producing
unexpected results such that non-local weights. Neural fuzzy networks are not only
compact, automatically form a partition of unity, but also have a linguistic interpolation
for fuzzy rules. As with other linear in the adjustable weight networks and neurofuzzy
networks are well conditioned, have provable learning characteristics, and are temporally

stable, i.e. do not unlearn past knowledge.
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CHAPTERG6

DIRECT ADAPTIVE CONTROL USING FUZZY

SYSTEMS AND NEURAL NETWORKS

6.1 Equivalence Between the Neural Networks And Fuzzy Logic Systems

Recall a radial basis function neural network shown in Figure 6.1. There, the inputs are
x,.i=12,---,n, where n is the number of the inputs. Let x=[x,.x,.---.x,] and the
outputs is y = f(x) where f represents the processing by the entire radial basis function

neural network [35] [74]. The input to the i receptive field unit is x, and its output is

denoted with R (x). It has what is called a strength (or a weight) which we denote by ¥ .

Assume that there are M receptive field units. Hence, from Figure 6.1,
A

y=rf()=2 7R (x 6.1)
1=]

is the output of the radial basis function neural network.
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" »

M receptive field units

Figure 6.1: Radial basis function neural network model

There are several possible choices for the receptive field units R, (x):

Because of its attractive properties the Gaussian baiss function could be choosen as

discussed before in section 5.2,

{ !-r_c‘ ]
R (x)=exp| -———
i~

,l.

where ¢, =[c{,c;.--.c,], o, is scalar, and if z isa vector then |z| =
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There are also alternatives to how to compute the output of the radial basis function
neural network. For instance, rather than computing the simple sum as in Equation (6.1)

one could compute a weighted average

M _
2 IR 62)

DR -

From Equation (6.2) it seems some radial basis function neural networks are equivalent to

y=f(x)=

some standard fuzzy systems in the sense that they are functionally equivalent (i.e.. given
the same inputs, they will produce the same outputs). To show this. suppose that in
Equation (6.2) the number of receptive field units equal to the number of rules, that is

M =R. the receptive field unit strengths equal to the output membership function
centers, that is ¥, =b, and choose the receptive field units as

R,(x) = p,(x) (6.3)
(i.e., choose the receptive field units to be the same as the premise membership
functions). In this case we see that the radial basis function neural network is identical to
a certain fuzzy system that uses center-average defuzzification. This fuzzy system is then

given by

IR Y ba) (6.4)

YR Y )

it is also interesting to note that the functional fuzzy system (the more general version of

y=f(x)=

the Takagi-Sugeno fuzzy system) is equivalent to a class of two-layer neural networks.

The equivalence between this type of fuzzy system and radial basis function neural

network shows that all the techniques work in the same way for both of them. Due to the
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above relationship between fuzzy systems and neural networks. some would like to view

fuzzy systems and neural network as identical subject areas.

Regardless of the differences, it is important to note that many control methods (i.e..
when we use a neural network for the control of a system) are quite similar to those in
adaptive fuzzy control. For instance. since fuzzy system and radial basis function neural
network can be linearly parameterized. we can use them as identifier structures in direct
or indirect adaptive control schemes and use gradient or least squares methods to update

the parameters.

Since the most important advantage of neural networks is that they have the capability to
approximate nonlinear mappings as given in section 5.2. The following theorem which
has bee proved in [74] shows that the fuzzy logic system (FLS) Equation (4.5) with
Gaussian membership function in Table 4.3 is also capable of uniformly approximating
any real continuous nonlinear function over X' the universe of discourse to any degree of
accuracy if X is compact. Let ¥ be the set of all fuzzy basis function expansions

Equation 4.5) with Gaussian membership function. and

d:c (-fl M .fZ ) = Supxe.\’

filx) - fl(x)l be the sup-metric: then (Y,d_) is a metric space.

Theorem 1: (Universal Approximation Theorem [74]): For any given real continious
function f on a compact set X —R" and arbitrary £ > 0, there exists a FLS f~ in the

form of Equation (6.2) with Gaussian membership function such that

d,;,(f.s_[g) = Supxe.\'

[(xle) - filx)|<e.
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This theorem, theoretically establishes the equivalence between the fuzzy systems and
neural networks, allows us for the use of neural networks in which a single hidden layer
of radial-basis functions are used or if a special form of two hidden layers used. Figures
6.1 and 6.2 demonstrate these two cases. With a single hidden layer of the radial basis
functions the output of neural network is given by

y=c'¢ (6.5)
where ¢ € R” are (possibly normalized) radial-based functions (e.g.. squashing functions
characterized By Guassian functions [29-30]) and C is a vector of adapting weights. This
type of system may be described by (4.9) with Z=[1] and A=c". As it is well
recognized in the literature, this is exactly the same representation as used with standard

fuzzy systems.

X N
C)\ * ' ; input layer

’

\

,”*/ \»— hidden layer

1\

= a

N v

y {_J} ourtputlayer

Figure 6.2: Simple neural network
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Example 6.1: Consider a two-link robot arm where the purpose is to design a neural

contoller. If a simple neural network is considered then

a,p Gy, G, Ay,

Z=[]. A=c" = N VP A TR TR 1 S

;o Qq;; A3, 45

a,p 4y, a,, Qag,

-(x,-¢) (x,-c,)
=

!

and y,(x)=exp[ :l i=l.4wherex, is link 1 angle. x, is link 1

angular velocity, x, is link 2 angle. x, is link 2 angular velocity and ¢, is the center of

gravity of the Guassian RBF. The output is then given by ¥ = ¢’

A second type of neural network considered in this work is one in which there are two
hidden layers with the second hidden layer of a special form. The output of the first
hidden layer produces a vector of functions

F=[6,--0,]. (6.6)

Figure 6.3: Neural networks with 2 hidden layers
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The nodes which make up the first hidden layer may be normalized radial-basis function
[29-30]. Here. we allow both the output of the first hidden layer and the original: input to
be passed to the second hidden layer (Figure 6.3). The output of the ith node of the

second hidden layer is given by
£ =G XN +2b.,8,+Yb,,..x, ) 6.7)
7=l 7=1

where ¢ (Z..X)are squashing functions or radial-basis functions (which may be
normalized) and b, , is the basis for the ith node. The output of the neural network is

taken as a linear combination of the outputs of the second hidden layer. that is

4
; = chgl (6'8)
We may combine (6.7) and (6.8) to obtain

y= {,(:.X)(aLO + ia,_lﬁ, + ia,_l'mxl ) (6.9)

1=l =1

Which may be expressed in the form of (6.8) with - = [1 6 - 6,x-- x, | and

A=[a,,] with a,, =c,b, note that z may or may not include any &, or x,.

Example 6.2: For the two link robot arm if we consider two layers neuro network then

cby by, b, ;b ;
r Cybyg by, by, Cyby ;s

wecantake z=[l x x, x; x,]'. 4= .6 =1
Csbs.o ¢;bs,  c3by, ;b5

cbyy by, by, ciby;
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o’

1

—(x,—¢c,) (x,-c)| .
M=l uy /‘4]/2;/‘: .and H,(x)= exPl: 2 J i=L.4

wherex, is link 1 angle. x, is link 1 angular velocity. x, is link 2 angle. x, is link 2

angular velocity and ¢, is the center of gravity of the Guassian RBF. The output is then

4 4

givenby y =4 (=. X)(aL0 + Za,_,é’, + Za,.,,mxl ).
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6.2 Derivation of Adaptive Control Law

The objective is to design a control system which will cause the output of a relative

degree r plant. y, . to track a desired output trajectory. y,,. (a relative degree r plant is

one in which the plant input appears in the output dynamics after r differentiation of the
output) [29-34]. This controller will be used later to control the Pendubot in the vertical
position. The desired output trajectory may be a signal to the control system so that first

derivative of y, may be measured. or by a reference model. with relative degree greater
than or equal to r which characterize the desired performance as shown in Figure (6.4).
With these considerations. we make the following assumption about the signal [let }""m
denote the r th derivative of y, with respect to time).

R1) Reference Input Assumption: The desired output trajectory and its derivative

Yo+ ... W are measurable and bounded.

-

Here, we consider the SISO plant

X = f(X)+g(X)u, (6.10)
Y, =h(X) (6.11)
where XeR' is the state vector. u,€R is the input. y,€R is the output of the plant and

functions f(X). gX)eN' and AX)eR are smooth. If the system has “strong relative

degree” r then
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g;l =&, = L,h(X)

=&, = L7 h(X) (6.12)
E, =L h(X)+ L LT h(X)u,

with J =y, which may be rewritten as

v =la (0 +a(X] + B, (1) + B(X)]u, (6.13)
where LAX)is the rth Lie derivative of AX) with respect to g

1L h(X)=(0h/éX)g(X) and Lih(X)=LK[Lgh(X)]}: and it is assumed that for some
£>0 . we have |B,(1)+ B(X)|2pB, so that it is bounded away from zero ( for
convenience we assume S, (¢) + S(X) > 0). however . the following analysis may easily
be modified for systems which are defined with £, (r) + #(X) < 0). We will also assume

that o, (¢) and p,(t) are known components of the dynamics of the plant (that may

depend on the state) or known exogenous time dependent signals and which represent
nonlinear dynamics of the plant that are unknown. It is reasonable to assume that if X is

a bounded state vector. then @, and f,(¢) are bounded signals. Throughout the analysis
to follow, both «, (t) and S, (¢) may be set to zero forall r > 0.

The functions «,(r) and f,(r) shall be approximated with fuzzy systems or neural
network based on the equivalence established in section 6.1.

Y. =f,(X)=zT4¢ (6.14)
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The dynamics for a relative degree plant described by (6.12) may be written in normal

form as

£ _ £

ST 6

g;r-l =§r

g",=a(§.7r)+,5(§,7r)u,, (6.15a)

T=y(c.m)

With z e """ and y, = 3.

v, Reference | Ve
o Mode! | o

— e c—

| |
| Conmroller [ .
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l -~ : “ Plant Y, ti %
o N4 ! 2 -
i : R V) : ' :
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b x —, 2 (deatifier |
! qt) —( !
T
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Figure 6.4: Adaptive neural fuzzy control
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The zero dynamics of the system are given as
7=y (0.7). (6.15b)
Now consider the adaptive control of plants without zero dynamics. or plants which have

exponential attractively of the zero dynamics (i.e.. plants where (6.15b) is exponentially

stable when the states move outside a ball |7|> §). The two plant types are

characterized by the following assumptions.

P1) Plant Assumption: The plant is relative degree r = n (i.e.. no zero dynamics)
such that

—d—r—t i=1l.--.n-1 (6.16)
d[ i Trel N N )

d

d_tx" =[ak(’)“"a(x)]"‘[ﬂk(f)*'ﬂ(x)]",, (6.17

Where y, = x, with a,(¢) and S, (¢) known functions. Here. it is assumed that there

exists S, >0 such that g, (1) + S(X) 2 S, and that x,.---.x, are measurable.

P2) Plant Assumption: The plant is of relative degree r. 1<r<n with the zero
dynamics exponentially attractive and there exists S, >0 such that B, (1) + 8(X) = 8, .

L=l

The outputs y,.---.y'"", are measurable.
Clearly plants satisfying P1) have bounded states if the reference input y_ and its

derivatives are bounded with the error e, and its derivatives bounded. By using Lipschitz

properties of (<. ) to see the plants satisfying P2) have bounded states if the output is
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bounded in the following manner [30]. For some positive constants y,.7..7,.7, and

function B and function v, we have

rilrl svir) < .zl (6.18)
&W(O.ﬂ)s—73lﬂlz.if|7t,> B (6.19)
dr
vl o 77| (6.20)
dx

if the zero dynamics are exponentially attractive. Since reference signals are bounded. by

R1, |g'| < k, where k, is some positive constant. Using (6.20). we have

. dv,
“Ww=——v(E.m 6.21)
1 dr W (< ) (
h dl’, . .
< -rilpl + ——Hlw )y (0.7)] if s> B (6.22)
T

If W(¢.7) is Lipschitz in & then |w(&.7)-w(0.7)| <k,

Z|some positive k, . Using this.

if |7|> B | then

v, < —}/_.‘Irrl2 +

3‘—"—'][[4//(:.”) —y (0.7) (6.23)
dr

s -}’}Izlz +74kz|§"”|
<-plaf +y okl . (6.24)

Therefore v, <0. if |7| 2 max(B.ykk, / ;). This ensures the boundedness of £ and 7

therefore the system states are bounded.
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P3) Plant Assumption:

Given y ) = [a, (1) + a (X)] + [B, (1) + B(X)]u, (6.25)
It is required that g, (1) = 0.1 20 and there exists positive constants 3, and S, such that
0< B, < B(X)< B, <oand some B(X)=20 function such that
l,B(X)l =[(6ﬂ/6X)Xl <B(X) for all XeS,. Here. as earlier. a,(t)is a known time-

dependent signal.

The first part of P3) introduces a new requirement that the controller gain B(X)be
bounded from the above by a constant f,. In general. this will not pose a large restriction
upon y;,” the class of plants since situations in which finite input will cause an infinitely
large effect upon rarely occur in physical plants. The second restriction with in P3)
requires that lﬂ(X)! < B(X) for some. It is known thatlﬂ( X)i <lep(X)y/ 6Xl”|)\!] thus if
les(x)y/éX| and ”XH are bounded. then some B(X)may be found. Once again if one
considers physical plants with finite controller gain. then [[68(X)/éX| will be bounded if
y,'.i=0.---.r is bounded. then plants with no zero dynamics are ensured that ”XH is
bounded since the sates may be written in terms  of the outputs. y)'.i=0.---.r -1 Ifa
plant has zero dynamics. but S(X) is not dependent upon the zero dynamics. then once

again we have i[f(X)’ bounded.
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Using feedback linearization [29]. we know that there exists some ideal controller

u*

1
= 50 [—a(X) + v(1)] (6.26)
where v(t)is a free parameter. u* may be expressed in terms of a Takagi-Sugeno fuzzy
model , so that
wr=Z AE +u, +d, (X) (6.27)
where u, is a known part of the controller (possibly a fuzzy. proportional integral
derivative (PID). or some other type of controller). Define the ideal direct control

parameters

A e

u

A =arg min [ sup ZIAe, - -u, )'J (6.28)

4 € | Xey, veS,
so that d,(X) is an approximation error which arises when « * is represented by fuzzy
system. Assume that D, (X) 2 [du(X)l. where D,(X)is a known bound on the error in
representing the ideal controller with a fuzzy system. So if [d,(X)| is to be small. then

our fuzzy controller will require X and v to be available. either through the input

membership function or through Z; .The fuzzy approximation of the desired control is
u=Z A, +u, (6.29)
where the matrix 4, is updated online. The parameter error matrix for the direct adaptive

controller

O, ()=A, -4 (6.30)
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is used to define the difference between the parameters of the current controller and the
desire controller.

Consider the control law

U, =1+u +uy, (6.31)
The direct adaptive control law is comprised of a bounding control term. u,,. a sliding-

mode control term w«_,. and an adaptive control term. «. Here. define
v() =y +ne, +€, —a, (1) (6.32)

e, " . k=[k - k. 1]

1 9

with e, defined as e, := k'e where e:=[¢, ¢
and e,:=y,-y,€  so that e =[e e "]k, -k _]". thus. and
e =, --e "k, -k_1]". We pick the elements of & such that
L(s):=s"" +k,_,s"" +---+ ks +k, has its roots in the open left-half plane. The goal of
the adaptive algorithm is to learn how to control the plant to drive the ¢, to zero. Thus.
e, is a measure of the tracking error.
Using the control (6.31). the r th derivative of the output error becomes
e)! =y —a(X)-a, (1) - BX) it +uy, +u,,). (6.33)
Using the definition of u* (6.27) we may arrange (6.33) so that
e, =y —a(X)-a ()= B = BXWi~u") = f(X )y +ty,)

=-ne -, - B(X)a—-u)-P(X)uy, +u,,). (6.34)

Alternatively (6.34) can be expressed as

-

é, +ne, ==L(X)u—-u")- B(XNuy, +u,,) (6.35)



in the next section the bounding control term u,, for the direct adaptive controller will

be defined.
6.2.1 Bounding Control

The bounding control for the direct adaptive controller is determined by considering

by =2 (6.36)

Differentiate (6.36) and use (6.36) to obtain

Yoy = —0€7 —e [BOXV i —u") + BX )Ny +u,,)] (6.37)
< e ~le | B - oD+ BOO |- By e, (6.38)

u" is not explicitly known. however, so the bounding controller will be implemented

using @, (.X) 2 |a(x)|. Now choose

u,, =[Ok, (t)sgn(e,) (6.39)

where [](¢)is as defined as

Let £,and M, be fixed parameters such that 0 <¢,, < M,.

1. it M, <e,

+e, - M
) ={S25 2% i M, —g, <le|< M, (6.40)
) 0, otherwise
and
1, 0
sgn(x) = x> (6.41)
-1, x<O0



a,(X) +|v

(6.42)
Bo

k,, (1) = |z?| + [u‘dl +

he bounding control is continuous and defined so that it is always used when e, > V..
Where the parameter M, defines a bounded. closed subset of the error-state space within
which the error is guaranteed to stay. It is required that there are known bounds
B(X)2|B(X)| and a,(X)2|a(X)| when |e =M, with a,(X) and B,(.X)continuous
in x. Using these state dependent bounds. Using Equations (6.36) with (6.48). then we
get

vy < -ne’, ez M,.

Figure 6.5: Boundedness around manifold ¢, =¢, + k¢, =0.

[ 0l ]
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(Note that |u'| < [a, (X)+ |v|]/ B, ). With this definition of u,, . if once again guarantee

that the initial condition are such that |e (0)| < M, . Then plant assumption P1 or P2
are then required so that state boundness is guaranteed.

Thus, it is ensured that if there exists a time ¢'such that |e (¢)| > M, . then for t > 1",
will decrease exponentially until |e,|< M. .

At this point. it is convenient to define transfer functions

G(s)=m— . i=0..r—1 (6.43)
L(s)

Which each are stable since l:(s) has its poles in the open left half plane. Since

¢ =G (s)e, with e bounded. then. e ej. (/irz{:(t):sup,lz(t){<ac}. This is

. =

shown for the case e, =¢, +k,¢, in Figure 6.5 where if |e,|> M, then ¢, and e, stay

[

in the shaded region (i.e.. |e|<M,/k,and le|<2M,). This may be extended to

higher dimensional systems as

e"'”lSM{

G,(s).‘l, i=0,r=2 (6.44)

. - r-2 . . .
and since e\ =e,) "k e!" the triangular inequality may be used to show that

<1, + S k6, (645)
=0

for all time if [e,| < M, and |e""(0) < M,

e. G,(s)’ll, i=0,r=2.
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The transfer function 1-norm is defined as “C‘?,(s)”l = L ]g,(r)|dr. where g ()1s the

impulse response of é,(s) .Using for example of e =¢é, +ke we obtain

00"

G(s)= ! which has impulse response function of g,(t)=¢™ with the 1-norm

“(A;'(S)”.:”k“' using (6.44) and (6.45). then the bounds |e|< M, /k, and

lé,| <2M,as shown in Figure 6.5. Over all Equations (6.44) and (6.45) provide

explicit bounds on the output error when the bounding control is used .
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6.2.2 Adaptation Algorithm

Consider the following Lyapunov equation candidate

_ TN
V, = 25(X) e; +Etr((D"Qu(D,,) (6.46)

where O, € R™™ is positive definite and diagonal. Since 0 < 8, < f(X)< B, <.
V, is radially unbounded. The Lyapunov candidate ¥, is used to describe both the

error in tracking and the error between the desired controller and current controller if

V,— 0. then both the tracking and learning objectives have been fulfilled. Taking

the derivative of (6.46) yields

. B(X)e?
V,= o : 6.47
d ﬂ(l\, [e ]+ tr( uQu(Du) 7ﬂ2(4\,) ( )

Substituting ¢, as defined in (6.35), yields

B(X)e?

: e
V,=—= - B(X)t-u") |- B(X)u,, +u )+tr((D,,__u W) - —— (6.48)
! ﬁ(X)[ - M 26°(X)
Now consider the following fuzzy controller update law
A,0)=0,"z¢]le. ~q()] (6.49)
where g(r) is a function yet to be defined. Since &, = A,
a2 e BX)el
V, = -[z]®, ¢, -d, +uy, +u,,le, +1r(Z D& e, —q(t)] - —5—
TR o 28*(X)
(6.50)
Equation (6.50) may be equivalently be expressed as
; B(X)e! <
V, = t)z! -d,le, —e(u, +u 6.51
d ﬂ(X) q( ) ; [7ﬂ (X) u] s \( sd h(l) ( )
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Typically, we will choose ¢(r) = 0. for all ¢ > 0. however. we will later show how to
incorporate  information about the plant inverse dynamics so that

[q()] =sgn(z!d ¢,) to improve adaptation.

Using the fuzzy adaptation law defined by (6.49). we are not guaranteed that
A, €Q,. Once again we use a projection algorithm. The parameter space is defined
so that the parameters are bounded by A, e [AM™.AT]. Define to be the ith and

J th element of the parameter matrix is updated according to
A,()=0"A (6.52)

where the elements of A,,(t) are defined by

a,., = (6.53)

kg min max b <
0. if a,, e(A7" . A7 )and a, (a,, 6 —a, )>0
a. . otherwise

ut, g

with Aj e (A?™,AT™).using this modified update law will ensure that the parameter

matrices stay within the feasible parameter space and that

. no ; B(X)e.
V, = —q)zl D¢, - [
d ﬂ(X)e‘ (1() u T uu [2ﬂ_(X)

-d,Je, +e (u, +u,) (6.54)

Since the modified adaptation law guides the searching algorithm toward the optimal

parameters A..
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6.2.3 Sliding Mode Control Term

Once again define a sliding-mode control term to compensate for the approximation

error in modeling u” by a fuzzy system or neural network. If q(t)=0,forall t >0 or
sgn[q(#)] = sgn(zI®,£,) and u,, is as defined in (6.39), then

g oo N ez_[ﬂ'(X)e‘
BT

Zﬁz(X) -d,le, —e.u, (6.55)

- _rl_ez+["3(X)”e«‘

== 5 2 d ]
B(X) 20°(X)

el —euy, (6.56)

Now define the sliding-mode control term for the direct adaptive controller as

u,=k(t)sgnfe,) (6.57)
Where

B(X)je, .
k = D (X 6.58

Which ensures ¥V, < -nel/ g, that as long as we choose q(t)=0, for all t=0 or

sgn[g(1)] = sgn(z/ ®,£,).
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6.2.4 Stability Properties

The controller assumption for the direct control scheme is given as follows:

Control Assumption: The fuzzy systems (neural networks) are defined such that

D,(X)eA,. for XeS, cR"and there are some known continuous functions
a,(X)and B, (X)such that o, (X)z2|a(X)andB(X)=|B(X). The function

q(t)=0 forall >0 or sgn[q()] =sgn(z. D¢, ).

[f reference input assumption R1) holds. either plant assumption P1) or P2) holds.
plant assumption P3) holds and the plant control law is defined by Equation (6.35)
with the control assumption. Then the following holds

a) The plant output and its derivatives y,,---. y"™" are bounded.

b) The control signals are bounded. i.e., u,,,u .0 € 4.

decreases at least asymptotically to zero.

¢) The magnitude of the output error |e,

ie., lim,_mle,,| =0.

Part 1) Equation (6.34) and (6.35) guarantee that le,‘,"] €A, .i=0.---,r-1,since ‘e,‘,”’.
By definition, e}’ =y, -y .Vi=0,---,r~1, with y,and e!”bounded: therefore
y,) Vi=0.--,r -1 is bounded.

Part 2) with y,,---, ™" € 4, the plant states are bounded using plant assumption P1

and P2 .This implies that a(X).a,(¢), 5,(t) € A .the projection algorithm ensures

that g, (¢) + ,B(X ) is bounded away from zero and that @(X') is bounded. Thus.
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u, €4,. With a,(X). B,(X) e 4, establish u,,, € A, that. Since the fuzzy systems

are defined appropriately so that D,(X),D,(X)e 4, then u , € 4_.

Part 3) to show asymptotic stability of the output, we would like to find a bound on

[z e2dr using then

[z neldt<-[2Vdt (6.59)
=V,(1) =¥, () (6.60)

This establishes that e, € 4,. (4, = {:(r):I; = dt < }) since V.(t).V () e i, then

e, € A, by the definition of V,(¢). In addition, we know that e,‘,"’ €A i=0,--r-1
since e, € Ao and e!” =G,(s)e, with all the poles of G,(s).i=0,---.r -1 in the
open half-left plane. If a(X),a(X).s (X). ,B(X), Uy U, €A, . thené, e A_ from

Since ¢, € 4,,4_and ¢é, € 4, by Barbalat's lemma we have asymptotic stability of e,

=0).

(ie. lim,__le,| = 0), which implies asymptotic stability of e, (i.e., lim,__le,
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CHAPTER 7

SWING UP AND BALANCING CONTROL OF THE

PENDUBOT

7.1 Swing up Control

As stated earlier the goal of the Pendubot controller is to swing the links from their stable
hanging position to unstable equilibrium positions and then balance the links about the
equilibrium. This control is divided into two parts; swing up control. and balancing
control. Both joints must approach the inverted position with nearly zero velocity so that

they may be caught by a balancing controller [8-13].

The swing up control uses the method of partial feedback linearization [10-11]. Partial
feedback linearization needs position feedback from both link one and link two but takes
into account the nonlinear effects of the linkage.

We will now derive the partial feedback control for the pendubot. The equations of
motion of the Pendubot are given by equation (3.1). Equation (3.1) can be simplified in
the following form [10]

dG, +d,G, +c, 4, +¢c,4, + 4, =T, (7.1)
dy,g, +d,g, +cy4, +¢, =0 (7.2)

where q,, q, are the joint angles, d,,, d,,, d,,, d,,, 8,. @, are as defined above, and



h, =-myl\l, sin(q,)q; ~2m.l1_, sin(q,)q,q,

hy =myll_,sin(q,)q}

The important distinction then between the system (7.1) and (7.2) and a standard two-link
robot (3.A) is. of course, the absence of a control input torque to the second Equation
(7.2).

Based on the fact that the second link is not actuated. the dynamics of both degrees of
freedom can not linearized. "However, linearizing one of the degrees of freedom
facilitates the design of an outer loop control that will track a given trajectory for the
linearized degree of freedom. In case of the Pendubot we chose to linearize [10] about the
collocated degree of freedom g, . Equation (7.2) was solved for the angular accelaration
of link two

G, =(~dyg, —cyq, +¢,)/ dy, (7.3)

This was then substituted into equation (7.1) and written as

dg, +¢,q, +59, +¢—| =7 (7.4)
with
- d.d,
d,=d, - ; -
d? 7
Ch=¢, — ;C ! (7.5)
Ca =€y
o dl:¢:
6 =6, i
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Then just as with full linearization method the inner loop control that linearize ¢, can be
defined as

1, =d,Vv, +C,\4, + T4, + &, (7.6)
This result in the system

4, =v, (7.7)
dyg, + ¢y g, + 6, =~d,v, (7.8)
Since equation (7.7) is now linear. an outer loop control can be designed to track a given
trajectory for link one. Equation (7.8) represents internal dynamics with respect to an

output g, .

The additional control term v, may now be chosen as [10]
Vi =K,,(q|d-q|)—qu| (7.9)

where K, and K are positive gains ,so that g, tracks the reference angle g;'. with state

variables
5 =4 —qld z, =4, (7.10)
m=q, m =9, (7.11)

The closed loop system may be written as

. (7.12)
z, =-K,z - K,z,

(7.13)
m=nm (7.14)
n,=- 1 (h, +¢,) - Z'z v, (7.15)
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We see from the above that the surface = =0 in state space defines an invariant manifold

/

Ry ‘kd

for the system. Since A ={ Jis Hurwitz for the positive values of K, and K.

this invariant manifold is globally attractive. The dynamics on this manifold are given by

n, = w(0,n) (7.16)
with
7,
= 1
oOm=_ (1 (0.m. )+ 41(a2 ) .17

d|3(’7|)

It is interesting to note that the same result can be obtained by simply choosing an output
equation

y=4q (7.18)
for the original system (3.1)-(3.4), differentiating the output y until the input appears. and
then choosing the control input to linearize the resulting equation. The system therefore
has relative degree 2 with respect to output ¢, .

The above reduced order system (7.16) therefore represents the zero dynamics of the

system with respect to the output y = ¢, . The zero dynamics are computed by specifyving
that the output y identically track the referenceq’. Therefore. substituting
z; =0 =1z, into the equation yields

m=m (7.19)

1

(g’ ,q, 7.20
d:g(qz)¢-(ql q,) ( )

n,=-
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Writing the above system in the original second order form yields the expression for the

zero dynamics as a second order, autonomous nonlinear system

dy,(q,)§, +¢,=0 (7.21)

7.1.1 Swing up PD Fuzzy Controller

The goal of the outer loop control then is to track a given trajectory for link one and at the
same time excite the internal dynamics to swing link two to a balancing position. For the

swing up part a PD fuzzy controller has been used with following 5 rules [34].

There are many different types of fuzzy controllers we could examine for MISO case
[34]. Here we will constrain ourselves to the two input “proportional-derivative fuzzy
controller”. This controller is similar to SISO fuzzy controller (proportional) with
addition of the second input, ¢ rate-change of error ¢. In fact, the membership tunctions
on the universes of discourses and linguistic values NB, NS, ZE. PS, and PB for ¢ and
uare “negative big”, "negative small”, and so on. Assuming that there are seven
membership functions on each input universe of discourse, there are 25 possible rules that

can be put in the rule-base. A typical rule will take on the form

If e isNBand ¢ is NB Then « is NB
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The complete set of rules is shown in tabulated form in Table 7.1. In Table 7.1 the
premises for the input ¢ are presented by linguistic values found in the top row. the
premises for the input e are presented in the linguistic values found in the left-most
column, and the linguistic values representing the consequents for each of the 5 rules and
25 consequences can be founded the intersections of the row and column of the

appropriate premises.

Table 7.1: PD Fuzzy controller set of rules

“Output” u “Change in error” ¢
NB [ NS ZE PS PB
NB NB PS PB PB PB
NS NB | NS PS PB PB
“Error” e ZE NB | NS ZE PB PB
PS NB | NS NS PS PB
PB NB | NB | NB NS PB

where:

NB: NEGATIVE BIG
NS: NEGATIVE SMALL
ZE: ZERO

PS: POSITIVE SAMLL

PB: POSITIVE BIG

The membership functions for the premises and consequents of the rules are all are
chosen as Gaussian membership functions. The width of each membership function is
parameterized by 4, B and D, respectively. The fuzzy controller will be adjusted by

changing the values of 4, B and D. The fuzzy inference mechanism operates by using
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the product to combine the conjunctions in the premise of the rules and in the
representation of the fuzzy implication. Singleton fuzzification is used. and

defuzzification is performed using center-average method.

u g, =v q,
Y >
d.G, +c,q, +¢, =-d,v,

PD Fuzzy Controller

]

Figure 7.1 PD fuzzy controller diagram
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7.2 Balancing Controller

Balancing the Pendubot refers to maintaining the Pendubot in the inverted position when
it starts close to this position [8-13]. To balance the Pendubot in the inverted position.
one must design a controller which stabilizes the behaviour of the system in some region
about an equilibrium point. The Pendubot has a single stable equilibrium point
corresponding to both links hanging vertically beneath joint one. Rather than a single
inverted equilibrium point. however. the Pendubot dynamics result in a manifold of

inverted equilibrium positions.

Physically. the Pendubot is in an inverted equilibrium position whenever the system
center of mass is directly above joint one [10]. Each equilibrium position is associated
with a unique constant torque input [11]: thus, only the completely vertical inverted
position results in a zero torque input. Several of the infinitely many inverted equilibrium
positions along the equilibrium manifold are shown in Figure 3.1. In this section we will

design controllers to balance the Pendubot only in the completely vertical position.

The control for the balancing the Pendubot is very similar to the inverted cart-pole
inverted pendulum problem. To design the controller we linearized the Pendubot’s

nonlinear equations of motion (3.9) [11]. The Taylor series approximation

L (e ou)= f (x,.u,)+ % lew (X—Xx)+ % ly o, (W—u) (7.22)

was used to linearize the plant. xis the vector of states given in equation (3.9) u is the

single control input for the Pendubot. x,and u, are the equilibrium values of the states
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and control respectively. Since we are only interested in controlling the Pendubot at
equilibrium positions, f,(x,.u,) will always be zero.

All that is needed then to find the partial derivative matrices and evaluate them at the
equilibrium points. Studying equation (3.6) through (3.9) it is observed that the
Pendubot’s equilibrium points can be defined by

u, =6,gcos(x,) (7.23)
X, +x,=m/2 (7.24)
Differentiating equatio'n (3.9) with respect to the states leaves the A matrix in the

linearized model

0 1 0 0

df _|dx X Ne
& |0 0 0 1 (7.23)

d#, o &

| dx, dx,
The B matrix is found by the partial derivative with respect to the control input

o]

df,
g _| du (7.26)
du 0

4

L du |

Refer to Appendix A for a full derivation of these partial derivative terms.

We define the top balancing position as the upright position with x,, =7/2. x, =0 and
u =0.

r

Using these equilibrium values and parameters identified by the energy equation method
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A linear models for the top is as follows

X = AX + Bu (7.27)

0 1 0 0
Ao 51.9265 0 -13.9704 0 g
- 0 0 0 | (7.28)

-52.8402 0 68.4210 O

(7.29)
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7.2.1 Adaptive Neural Fuzzy Control (Design Using Feedback Linearization as a

Known Controller)

Now we turn our attention to the direct adaptive fuzzy control method derived in chapter
6 for the Pendubot. Here. the approach is rather to search for an unknown control law that
provides (at least) asymptotically stable tracking and is able to compensate for
disturbances and maintain stability. The direct adaptive fuzzy control methodology
allows the designer to use previous knowledge or experience with the plant in various
ways. [t Is beneficial for the Pendubot application to include the known dynamics
because it will increase the robustness of the design. Direct adaptive fuzzy control
provides the designer with a method to incorporate a best guess of what the controller

should be (below we will call this the “known controller.” denoted by u, ). The algorithm

then adaptively tunes a fuzzy controller to compensate for inaccuracies in our choice of

this known controller.

The Pendubot has a relative degree of two. The input-output equation of the Pendubot
can thus be rewritten as

4. =[a, () +a(X)]+[ B, () + f(X)]u (7.30)
where, «,(t)=0 and B,(t)=0 (a,(t)and S, (r)are known measurable parts of the
system dynamics. Substituting the numerical values of the parameters we obtain

a(X) = -52.8402q, + 68.42104, (7.31)

B(X)=-29.3596. (7.32)
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in these equations. approximately equal signs are used because the numerical parameters
of the equations are not expected to represent the Pendubot’s input-output dynamics
exactly, rather. the right-hand side of Equations (7.31) and (7.32) are simply our best
known approximations to « (X)and S(X). respectively. Note that B(X) <0. so there

exists B, <0. For instance. B, =-50 for all 120: thus. B (X)is bounded away from

zero. a condition is needed to ensure stability.

Direct adaptive fuzzy control is a somewhat more restrictive technique than its indirect
counterpart since. it is also required that the system input—output (7.30) is such
that B, (1) =0 for ¢ 2>0: further. it is assumed that A (X) is bounded by two finite

constants. #,and 8,. For the Pendubot. this assumption holds since

~wo< B, < f(X) < B <0. where. for instance. S ,=-50 and S, =0. The last plant
assumption needed in Equations 7.30 and 7.32 is that for some B (X) =0 .‘,B(X)! < B(X).

Since is expected to be a constant. we can safely set B(X) = 0. and the assumption holds.

Note that the control Equations 6.26 and 6.27 are based on the premise that £ (X)is

positive. but it is stated there that the laws can be modified to allow for the negative case.
Thus, the equations used here will be slightly modified versions of those in 7.26 and 7.27
as required by the characteristics of the Pendubot: specifically. the adaptation differential
equation and the sliding-mode control term will each have a small but crucial sign

change.



Let «” be an unknown ideal controller that derived in Equation 6.27 to be approximated.

This ideal controller is assumed to be a feedback linearizing law of the form

u' =1/ BXO[-a(X) +v,(1)] (733

J3)

In general. it is possible to express u° in terms of a Takagi~Sugeno fuzzy system. as

u =zl A;C, +u, +d,(X) where u, is some known controller term. which we will use
in this section and set equal to zero. and d,(X) is the error between the fuzzy
representation and «". It is assumed that D,(X)2[d,(X)|. where D,(X)is a known

bound for the error. In practice. it is often hard to have a
concrete idea about the magnitude of D, (X). because the relation between #° and its
fuzzy representation might be difficult to characterize: however. it is much easier to begin
with a rough. intuitive idea about this bound. and then iterate the design process and
adjust it. until the performance of the controller indicates that one is close to the right
value. These bounds are both relatively small. which indicates that the fuzzy system we
used. although a simple one. could represent the ideal controller with sufficient accuracy.
The fuzzy control approximator which is going to be used is

-

u=:"4,(0), +u, (7.34)
where ¢, e R’ is used with the fuzzy sets of Figure 7.2 The matrix A, (1) &’ is
adaptively updated on-line. and the function vector = is taken as = =[l.q,.4,.q,.¢.]. The

fuzzy system again uses only five rules each of the form

IF g, is F, then ¢, = f(2). i=1---5 (7.33)
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where f(2) is. respectively. a row of the matrix = A, (t). The fuzzy system is initialized

with 4, (1) =0°"". The input fuzzy sets F, are as described in Figure 7.2.

l R B HMH B

-0 05 0 05 10

Figure 7.2: Input membership function

The direct adaptive fuzzy control law is given by u, = +u , +u,,. It is formed by three
terms: the fuzzy approximation to the optimum controller (7.34). and sliding and
bounding control terms. To approximate a feedback linearizing controller we will define
v,as in law (7.33) as follows: take the signals e, =y, —»).e =k,e, +¢ and
v,()=y, +ne +kye,. where n=1 and k, =2. Since (as noted above) B(X)=0. the
sliding-mode term is given by u, =-D, (X)sgn(e,). Note the minus sign which is a

result of the fact that S(X) <0.

The bounding-control term needs the assumption that «(X) is bounded. with

lr(X)| < @,(X). Take a(X)=75¢, +100g,; then, Consider Figure 6.5. if e > M.



uy, = {faf +]u | +[a(X) +|v,(0|l/ B, }sgn(e,) and u,, =0 otherwise. For simulation. we

used M,=0.9.

The last part of the direct adaptive fuzzy control mechanism is the adaptation law. which
is chosen in such a way that the output error converges asymptotically to zero. and the

parameter error remains at least bounded. This law is given. in general by
A,(=0":¢][-e, -q0)] (7.36)
Again. note the minus sign for e . The parameter g(¢) can be chosen nonzero to

potentially improve adaptation mechanism given by Equation 7.33. but here we took

q(t)=0 for +>0. For simulation. Q=0.9/; is used. With these choices the algorithm

-

was able to adapt and estimate the control law u fast enough to perform well and

compensate for disturbances.

Figures 8.1-8.6 show the simulation results with this controller. It has a behavior typical
of feedback linearizing controllers on this plant: the error is effectively decreased to zero.
Again. the advantages given by the adaptive capability of this algorithm appear most
distinctively in the presence of strong disturbances: the controller is quite successful with
both. The Pendubot is kept balanced, and the control input remains within small bounds

around zero. Thus. this design proved to be robust and reliable.
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CHAPTER 8

SIMULATION RESULTS AND DISCSSION

8.1 Simulation Results

This chapter displays the simulation results found when simulating the Pendubot with
Matlab. Then a discussion of these results has been made at the end of this chapter. The

summary of the simulation parameters is as follows:

8.1.1 Adaptive Neural Fuzzy

Figures 8.1, 8.2. 8.3, 8.4. 8.5 and 8.6 show a swing up. catch and balance of the Pendubot

in the top position adaptive neural fuzzy control using the following parameters:

® Number of neural network layers: 2. (Equation 6.8)

e Number of If-Then rules: 5. (Equations 6.8)

e Number of fuzzy outputs sequences: 25 (Equation 6.8)

e Type of membership function: Centered-Gaussian (RBF). (Table 4.3)
e o0=25.(Table4.3)

e [ ,=-50and B, =0 (boundness). (Plant Assumption P3. page 78)

e ¢, (t)=0.(Equations 6.25 and 7.30)
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B, (1) = 0(Equations 6.25 and 7.30)
D, (X) =0.001. (Page 79)

k, =2.(Page 101)

n=1. (Page 101)

A, (1) €’ (Equation 6.28 and 7.36)
M, =0.9. (Page 101-102)

q(t)=0 for ¢ > 0 ( adaptation mechanism) (Equation 6.28 and 7.36)

0 l 0 0
519265 0 -13.9704 0O .
A= 0 0 0 | (Equation 7.25. 7.28)

-52.8402 0 684210 O

15.9549
B= 0 (Equation 7.26. 7.29)
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Link 2 angular pasition
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Link 2 angular velocity
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8.1.2 PD Fuzzy Controller

While figures 8.7. 8.8. 8.9, 8.10 and 8.11 show a swing up. catch and balance of the
Pendubot in the top position using PD fuzzy controller when using the following

parameters

e Number of If-Then rules: 5. (Table 7.1)

e Number of sequences: 25. (Table 7.1)

e Type of membership function: Centered-Gaussian (RBF). (Table 4.3)
o o=10.(Table 6.1)

e Effective universe of discourse [-1.1].

e k,=50. k, =8.1818 (Static normalizing gains). (Equation 7.13)
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Link 1 angular velocity
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Control input
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8.2 Discussion

The position response of the Pendubot for direct adaptive controller using fuzzy systems
and neural networks is shown in figures 8.1 and 8.2. while the angular velocity response
is shown in figures 8.3 and 8.4. The initial positions for link one was — /2. and 0 for

link two. Note that the zero or reference position for ¢, is horizontal. and the zero

reference for link two is angle measured between link two and the longitudinal axis of
link one. After the system was commanded to swing up, link one reached around the
vertical position (7 /2) within 0.5 seconds. But it is noticed that link one kept moving
around this position and slowing down its speed from the overshoot to zero at around 2
seconds. To balance link 2. as a result of the excitation of link one. link two gets close to
its set-position at around 1 second and kept slowing down the speed to zero after 2
seconds. Note that link one position response shows a larger overshoot than link 2. The
control input which was measured in volts is recorded in figure 8.5. The maximum input
was recorded at the initial time of swing up and was 10 volts. then starts decreasing to -2
volts at the maximum overshoot, then at around 2 seconds it was zero which proved the
point view of boundness. The boundness of the adaptation parameters was recorded in

figure 8.6 as well.

In the case of the PD fuzzy controller, the position response for link one and link two is
recorded in figures 8.7, and 8.8. Angular velocity response curves are recorded in figures
8.9 and 8.10. Link one has an the maximum overshoot at around 0.5 seconds then it

started to fall down, but the swing up controller brought it up at around 1 second and kept
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trying to get the vertical position and slowing down the velocity to zero at 2.5 seconds.
For link two which had been excited by link one. it started falling down at 0.5 seconds
then it moved to the vertical position after a time of 1 second by then its velocity
decreased down to zero after 2.5 seconds. The input to this controller was at its peak at
the beginning of the swing up. then went down to about -2.2 volts at the overshoot time
of the first link. when both links were at rest the input was zero volt. The control input

was bou;)ded between 10 volts and -2.2 volts.

Comparing both controllers it easily to recognize that the direct adaptive controller was

faster the PD fuzzy controller and more robust.



CHAPTERY

CONCLUSTIONS AND FUTURE WORK

9.1 Conclusions

This thesis presented the control of a two link underactuated planar revolute robot. named
the Pendubot. Its actuated joint located at the shoulder and the elbow joint is unactuated
and allowed to swing free. Two controllers were designed for the Pendubot. PD fuzzy
controller with zero dynamics and 25 [f-then fuzzy rules was used to design the control
that swung the links from their hanging stable position to unstable equilibrium position.

This controller shows the behavior of PD conventional controller.

Then to catch and balance the second link at the unstable equilibrium. a direct adaptive
control using fuzzy systems and neural networks was designed using 5 If-Then rules. In
addition to the fact that both fuzzy systems and neural networks have the capability to
approximate the dynamics of the systems, some radial basis function neural networks are
equivalent to certain standard fuzzy systems in the sense that they are functionally
equivalent. In other words, if the number of receptive field units equal to the number of
rules, the receptive field unit strengths equal to the output membership function centers.
and the receptive field units to be the same as the premise membership functions then

they will produce the same outputs.



For the direct adaptive fuzzy system or neural network controller if the the desired output
trajectory and its derivative are measurable and bounded. if the plant is strong relative
degree. and if controller gain is bounded then:

a) The asymptotic stability of the system output in the vertical position can been

proved by Layponuv.

b) The plant output and its derivatives are bounded.

¢) The control signals are bounded.

d) The magnitude of the output error decreases at least asymptotically to zero.
The results which were presented in this thesis demonstrate the performance of the

Pendubot with these controliers.

9.2 Future Work

As this thesis has dealt with control of single-input single-output underactuated
mechatronic system with two degrees of freedom. a further future research work on direct
adaptive control for nonlinear underactuated robotic system is proposed to investigate

other topics:

a) A direct adaptive contro! for underactuated robotic systems with muiti-degrees of
freedom using fuzzy control systems and neural networks.

b) A direct adaptive control using fuzzy control systems and neural networks can
also be developed for a class of continuous time multi-input multi-output

nonlinear underactuated systems with poorly understood dynamics.
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APPENDIX A

LINEARIZED EQUATIONS
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APPENDIX B

SAFETY INSTRUCTION

Section 2.3 and Section 2.4 in the Pendubot User's Manual [10] contains vital information

about safety issues associated with the system.

All users must read and understand the safety and operation guidelines in Section

2.3 and Section 2.4 of the Pendubot User's Manual prior to operating the system.

Caution: the user must hang the base plate far enough off the edge of the table
(approximately S cm) so that the encoder on link 1 does not hit the table when it

swings.

If any material is unclear, the user must contact Mechatronic Systems for clarification

before operating the system.

In the event of an emergency, the control effort should be immediately discontinued
by releasing the button found on the handheld amplifier inhibit switch, and/or

moving the toggle switch found on the back of the base unit to the off pesition.





