
HAL Id: hal-03551439
https://ut3-toulouseinp.hal.science/hal-03551439

Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Structures Used in Rotor Defect Identification of
a Squirrel Cage Induction Machine

Ahcène Bouzida, Omar Touhami, Rachid Ibtiouen, Maurice Fadel, Mohamed
Benhaddadi, Guy Olivier

To cite this version:
Ahcène Bouzida, Omar Touhami, Rachid Ibtiouen, Maurice Fadel, Mohamed Benhaddadi, et al..
Model Structures Used in Rotor Defect Identification of a Squirrel Cage Induction Machine. 2006
Canadian Conference on Electrical and Computer Engineering (CCECE), May 2006, Ottawa, Canada.
pp.1671-1676, �10.1109/CCECE.2006.277721�. �hal-03551439�

https://ut3-toulouseinp.hal.science/hal-03551439
https://hal.archives-ouvertes.fr


MODEL STRUCTURES USED IN ROTOR DEFECT IDENTIFICATION OF A
SQUIRREL CAGE INDUCTION MACHINE

Bouzida H., Touhami O., and Ibtiouen R.

Research Laboratory of Electrotechnics - Elect. Eng. Dept,
National Polytechnic College

10, av. Pasteur, El Harrach, Algiers, Algeria BP 182, 16200
E-mail:omar.touhami@enp.edu.dz

Fadel M.

LEEI - ENSEEIHT Télécoms de Toulouse.
 2, rue Camichelle,  BP 7122-31071

Toulouse Cedex
E-mail:fadel.maurice@leei.enseeiht.fr

Benhaddadi M. and G. Olivier

Ecole Polytechnique de Montréal
P.O. Box 6079, Station Centre-ville

Montréal (Québec) Canada H3C  3A7
mbenhaddadi@courriel.polymtl.ca

Abstract

In this paper a method of detection of broken bars in
squirrel cage induction machine is presented. This method is 
based on the determination of discrete parameters of the
transfer functions of the induction machine by model
structures such as ARMAX, ARX, IV and OE model structures. 
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1. Introduction

The problem of the rupture of bars in the motors of the 
stations of " offshore " pumping were at the origin of the  first 
research tasks on the diagnosis itself of the induction machines
[1].

Many works [2-4] followed in the same direction, or was 
initiated in the diagnosis of the other defects of the machine, 
like the misalignment between the machine and the load, the 
eccentricity of the rotor, the short circuits of the stator
windings or the wear of the bearings.

The defects were often studied within the framework of the 
industrial applications at constant speed and or by analysis of 
the stator currents .  Generally founded on the analysis of
Fourier, the majority of the methods suggested are not adapted 
any more to the applications at variable speed, the signals
being then strongly no stationary. New tools are necessary.
Other ways were explored, as the approach of the parameter
identification [5 ]. In this paper, the identification based on the 
analysis of discrete parameters of the transfer functions of the 
induction machine, by model structures is presented. Theses 
model structures are ARMAX (Auto Regressive Moving
Average with eXternal Input), ARX (Auto Regressive with 
eXternal Input), IV (Instrumental Variable) and OE (Output
Error). Matlab tools are used for this application of structural 
and parameter identification

2. The induction machine model

The physical model of an induction machine is based on the 
park’s model. The system which composes the squirrel cage 
induction machine is represented by linear electric equations
with constant coefficients.

The electric equations of the induction machine are presented
by:
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The currents are linked to the flux linkages by: 
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With s is the leakage coefficient . Using complex electric
variables written as:
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From these equations the state system can be written as:
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From this linear-time invariant system, we obtain the transfer 
function using the s Laplace operator:
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Where: Ts=Ls/R, Tr=Lr/Rr and  T=1/Ts+1/Tr.

This transfer function represents the model of linear
regression of the induction machine.
The discrete model corresponding is done by:
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The equations with differences are done by:
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3. Parameter identificatio n by using the model 
structures

The difference between a linear model and a non linear
model is based on the dynamic behavior, i.e., the relation 
between the dependent  time variables  and the independent 
ones . The choice is influenced by the character of the
identification problem such as: the theory in which the results 
of the identification of linear systems. Linear systems
represent the most extensively developed area in the field of 
system identification. We describe some model structures  [6]

3.1. ARX model structure

This structure is based on the equation error and is
expressed by:

e(t)m)u(tb1)u(tbn)y(ta1)y(tay(t) m1n1 +−−+−−−= ++−− …… (10)

The parameter vector can be estimated such as e(t) will a 
white noise, where
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e(t) is white noise process with zero mean and variances2

This model structure is characterized in fig.1.

   Fig.1: ARX model structure

3.2. ARMAX model structure

The disadvantage of ARX structure is to not still any free 
for the term to the perturbation. One description giving the 
most greatly flexibility consists to consider the equation error 
as the realisation of moving average. It was expressed by:
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Fig.2: ARMAX model structure.

3.3. Output Error model structure

In the approaches based on the equation error, the transfer 
functions G and H have a common denominator constituted by 
the polynomial A. one physical approach consists to compose 
the independent transfer functions G and H. we consider the 
perturbation as white noise e(t): y(t) =w(t) +e(t). The
unperturbed output ?  ( t) is modelled by:

)()(
)(
)(

)( tenktu
qF
qB

ty +−=                         (12)

This model structure is schematized in fig.3.

Fig.3: Output Error model structure
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3.4. Instrumental variable model structure

A block diagram of the basis IV estimation algorithm is 
typical of IV mechanizations: x the source of the IV’s is 
formed by passing the input signal assumed statistically
independent of the noise e(t) through an adaptive “ auxiliary 
model” of system so that it becomes highly correlated with x,
as required, provided convergence is achieved.

x] ?T.[x.s]T[x =                                  (13)

4. Experimental Tests

4.1. Data acquisition
The recording of the experimental numerical signals  input-

output:  ({v S (k) },{I  S (k) }), (k=1...,N),  is carried out using 
a  chart of acquisition GS2020 which transforms the data
(signals)  analogical worms of the data sampled with a
sampling rate of  1kHz  then these data are transferred towards 
a computer  for the exploitation and the treatment.

To note experimentation, we used induction machines of 4 
kW (See Appendix). The machines to be identified are
manufactured for the needs of the diagnosis of defects to the
rotor:

•  healthy induction machine (no defect) for the use of heir
parameters like values  of reference to detect the defects,

• Induction machine  with one  rotor broken bar,
• Induction machine  with two broken adjacent rotor bars,
• Induction machine with rupture of an end-ring portion.

4.1. Data filtering 
The significant specification relates to the filtering of the

signals input-outputs.  In the absence of filtering, the
algorithm of least squares tends to optimize the approximation 
of the model of the process in the high frequencies. We will
use a band pass filter in order to provide to the estimate of 
information relating to only the necessary frequency  band.
This numerical filter is of type 2nd order TCHEBYSCHEFF.
It has many advantages such as the flexibility of working, the 
precision and the stiffest cut of all the polynomial filters of the 
same order [7].

5. Identification results

5.1. Validation of the model structures

The transfer functions identified by using ARX, ARMAX
and OE model structures respectively are showed in table1.

Table1: Discrete transfer functions obtained by ARX, ARMAX  and IV model structures respectively
Identified
machine Transfer functions for ARX model Transfer function s for ARMAX model Transfer function for IV  model

Healthy
machine

0.0012637 0 .0015100( )
² 1.8952 0 .95926

zH z
z z

− +=
− +

0.00087589 0.0012255( )
² 1.9243 0.98832

zH z
z z

− +=
− +

0.0013170 0.0017906( )
² 1.9262 0.97811

zH z
z z

− +=
− +

Machine
with one 

broken bar

0.0025512 0.0024708
( )

² 1.8095 0.87296
zH z

z z
− +

=
− +

0.0013224 0.0015974( )
² 1.9013 0.96407

zH z
z

− +=
− +

0.0015126 0.0016432
( )

² 1.8742 0.94120
z

H z
z

− +
=

− +
Machine
with two 
broken

bars

0.00084933 0.00088496( )
² 1.8827 0.96275

zH z
z z

− +=
− +

0.00052412 0.00064107( )
² 1.9058 0.98628

zH z
z z

− +=
− +

0.00041830 0.00046648( )
² 1.8997 0.98488

zH z
z z

− +=
− +

Machine
with

rupture of 
end ring
portion

0.0013847 0.0011780( )
² 1.8226 0.90888

zH z
z z

− +=
− +

0.00048732 0.00052439( )
² 1.8925 0.97781

zH z
z z

− +=
− +

0.00059946 0.00063133( )
² 1.8874 0.97147

zH z
z z

− +=
− +

5.2. Validation of model structure OE

Also, the transfer functions obtained from OE model
structure are presented in table2.

Table2: Discrete transfer functions obtained by OE model structure

Identified machine Transfer functions for OE model

Healthy machine 0.00098337 0.0013080
( )

² 1.9178 0.98204
z

H z
z z

− +
=

− +

Machine with one
broken bar.

0.0016510 0.0018895( )
² 1.8848 0.94493

zH z
z

− +=
− +

Machine with two
broken bars.

0.00042465 0.00037956
( )

² 1.8863 0.97580
zH z

z z
− +

=
− +

Machine with rupture 
of portion of end-ring.

0.00056920 0.00058253( )
² 1.8855 0.97102

zH z
z z

− +=
− +

5.3. Comparison between the measured output 
and the simulated output

The comparison between the measured output and the
simulated ones are presented for the four model structures in 
Figs. (1, 2, 3, and 4). A close agreement is showed in these 
figures indicating that the obtained discrete transfer functions 
correspond to the induction machine models .
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Fig.1: measured (- ) and simulated (….) output by using 
ARX model structure applied to the four machines.
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Fig.2.b
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Fig.2.d

Fig.2: measured (- ) and simulated (….) output by using 
ARMAX model structure applied to the four machines.
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Fig.3.a
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Fig.3.c
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Fig.3: measured (- ) and simulated (….) output by using 
IV model structure applied to the four machines.
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Fig.4.a
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Fig.4: measured (- ) and simulated (….) output by using 
OE model structure applied to the four machines.
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APPENDIX

The name plate data of a squirrel cage induction machine 
are [8]:
Pn = 4kW, In = 15,2 /8,8 A,  Vn=220/380V, P=2, Power 
factor  cosΦn= 0,83  
 

6. Conclusion   

A conversational program has been validated under the
Software Matlab permitted us to get some results for every 
model structure. After the determination of the discreet
parameters of the model structures one conducts validation. 
The parameters of the discreet transfer function are direct 
pictures of the parameters of the continuous transfer function 
(real parameters of the machine i.e ., inductance and
resistance); they can inform us on the defect and no on the 
nature of the defects . The quality of the results gotten is
valued by the coefficients of Akaïke that are very small (in our 
case: FPE Akaïke's <10-5).

The results gotten in discreet mode confirmed the objective 
that remains the detection of the defects at the time of these 
apparitions. What comes back to say that identification gives a 
picture realistic of the rotor defect in the machine.

Our identification is organized on a rigid procedure, i.e.,
Data acquisition, choice of the sampling period, model of
knowledge, filtering, model structures .

It is trivial to determine the physical parameters of the
machine from the continuous transfer functions obtained by a
bilinear transformation discrete to continuous. However it is 
not our objective, since the goal of work only concerns the 
determination of the rotor defects obtained only from the 
transfer functions gotten by the model structures.
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