
SHORTEST PATHS IN SYNCHRONIZED TRAFFIC-LIGHT NETWORKS

Mohammad Khanjary *,1, Karim Faez **,2, Mohammad Reza Meybodi **,3, Masoud Sabaei **,4

* Science and Research Branch, Islamic Azad University, Tehran, Iran
** Amirkabir University of Technology, Tehran, Iran

1 khanjary@srbiau.ac.ir 2 kfaez@aut.ac.ir 3 mmeybodi@aut.ac.ir 4 sabaei@aut.ac.ir

ABSTRACT

The time-constrained shortest path problem is an important
generalization of the shortest path problem. The basic
feature in time-constrained shortest path problem is
considering when a node in the network can be visited under
some time constraints. In this paper, a label-setting shortest
path algorithm will be proposed to use in the synchronized
traffic-light networks which uses the waiting times for green
light (node costs) as well as the required times to pass the
streets (link costs) to calculate the optimal routes.

Index Terms—Time Constrained shortest path
problem, traffic light networks, waiting time for green light,
time window

1. INTRODUCTION

For a long time, finding shortest paths in graphs under
different criteria and limitations has been one of the
important problems which engaged many researchers both
in academia and industry. Basically, the shortest path
problem is concerned to find the path with minimum
distance, time, or cost from an origin to a destination (or all
other nodes) in a connected network e.g. [1]-[4]. Shortest
path problem is an important and classic problem in the
combinatorial optimization field due to its numerous
applications especially in transportation and data
communication. Some useful reviews on shortest path
algorithms could be found in [5]-[6].

Recently, working on network problems with time
constraints has been increased especially in different
transportation applications such as shortest path problem
(e.g. [7]), traveling salesman problem (e.g. [8]), vehicle
routing problem (e.g. [9]), traffic network (e.g. [10]), and
pickup and delivery problem (e.g. [11]). The time-
constrained shortest path problem (TCSPP) is an especial
generalization of the ordinary shortest path problem. The
basic feature in TCSPP is considering when a node in the
network can be visited under some time constraints. Time
window is a common form of time constraints which defines
the earliest and the latest time that a node is available (e.g.
[12]).

In general, there are two types of time windows. The
first is called hard time window where if one or more time
window constraints are not satisfied, the route becomes
infeasible (e.g. [13]). The second is called soft time window
where a cost penalty is incurred if the arrival to a node is
outside of its time window (e.g. [14]). When the hard time
window is used, the goal is finding the least-cost path from
the source node to the destination node while all
intermediate nodes must be visited within their relevant time
windows. When the soft time window is considered, the
minimization of total cost is a goal too. In soft time window,
the intermediate nodes may be visited outside their relevant
time windows and the penalty of time window violation is
an additional cost which will be considered in calculations
[15]-[16].

In this paper, we are going to present a shortest path
algorithm for synchronized traffic-light networks. Although,
traditional soft time window appears to be a promising
alternative for our research, two characteristics of traffic-
light networks cannot be completely described by using the
traditional soft time window: 1) The traffic light timings
usually contain a repetitive ordered sequence of time
windows with designated durations but common soft time
windows only contain single time window. In other word, in
traffic-light networks, every cycle of timing may contains
several red, yellow and green light durations not only one
duration. 2) In traditional soft time windows, one can pass
the node if its arrival time falls into the range of time
windows but in the traffic-light networks, each time window
only allows vehicles in some particular directions to pass the
intersection [15]. Therefore, another type of time windows
must be used for traffic-light networks.

There are only two algorithms for considering the
waiting times for green light (WTGL) in calculation of
optimal routes in traffic-light networks. In first one, Chen
and Yang [15] proposed an algorithm with time complexity
of O(m log m + mn log r + rn3) ≈ O(rn3) and space
complexity of O(n2 + rn3) ≈ O(rn3), where m denotes the
number of arcs in the network, n denotes the number of
nodes in the network and r denotes the maximum number of
time windows in a node. In this paper, firstly a suitable data
structure has been designed to find the WTGL in different
time windows and then an algorithm has been proposed

IEEE CCECE 2011 - 000882

�������������������	
�
�
�
������
�
�

�����������������������������������

Fig. 1. Possible routes at a 4-way intersection.

based on it. If the time windows of all nodes (intersections)
are available as well as costs of links (streets), the algorithm
will find the shortest path from source node to destination
node. Afterwards, the authors of this paper expanded their
algorithm to solve the same problem with other limitations
and criteria [16]-[20].

In second algorithm [21], Miller-Hooks and Yang
proposed a label-correcting algorithm to consider WTGL in
calculation of optimal routes when both street travel times
and traffic lights timings vary over time and are known only
probabilistically (by using some probability functions). It
has been proved that the algorithm has time complexity of
O(n4T2K) where n is the number of nodes, T is the number
of departure time intervals and K is the number of possible
travel times for each departure time. This algorithm is based
on probability functions and does not use the time windows,
therefore, when link costs and node timings are available it
does not work. Since, we are going to present a general
shortest path algorithm for synchronized traffic-light
networks based on time windows, the Chen and Yang
algorithm [15] will be considered to compare with our
algorithm.

Our algorithm is a label-setting shortest path algorithm
to be used in synchronized traffic-light networks. We model
the different traffic light timings as repetitive ordered
sequence of time windows and classify them into limited
number of classes. Then, we assume that all traffic lights
with similar class of timing are synchronized and we will
use the timers to simulate each class. By knowing the class
of timing of different routes in each intersection, the current
time of timers will be used to determine the WTGL for the
time when a vehicle reaches to an intersection. We will
prove the algorithm and show that the proposed algorithm
has lower time and space complexity as compared to Chen
and Yang algorithm.

The rest of this paper is organized as follows. Section 2
presents the proposed algorithm and section 4 concludes the
paper.

2. THE ALGORITHM

Let N = (V, A, TLT, class, time, s, d) denotes a synchronized
traffic-light network, where V denotes the nodes
(intersections) set, A denotes the arcs (streets) set without
multiple arcs and self-loops, TLT denotes the set of classes
of different traffic light timings which are used in the
network, class[i][j][k] denotes the assigned class of TLT for
when a vehicle arrives to node j from node i and the next
node is k, time(u, v) denotes the required time to pass the
arc(u, v) ∈ A and the goal is finding the shortest path from
node s to node d.

In fact, every TLT includes a repetitive ordered
sequence of time windows which will be used to control the
traffic lights. Therefore class i of TLT is defined as follows:
TLT[i] = {GLD[1], RLD[1], GLD[2], RLD[2], …, GLD[r],
RLD[r], TD, ST, CT} where GLD[k] represents the kth

green light duration (the time length of kth green light),
RLD[k] represents the kth red light duration (the time length
of kth red light), TD represents the total duration of a cycle
(TLT[i].TD == TLT[i].GLD[1] + TLT[i].RLD[1]+
TLT[i].GLD[2] + TLT[i].RLD[2] + … + TLT[i].GLD[r]+
TLT[i].RLD[r]), ST represents the start time of this class
and CT represents the current time of timer which has been
assigned to this class. In this definition, r is the maximum
number of green and red light time windows in a single
cycle among all traffic light timings which are used in the
traffic network. Notice that 1) when total duration of a class
is passed (after TLT[i].RLD[r]), the sequence of time
windows will be restarted from first time window
(TLT[i].GLD[1]), 2) if number of used green and red
durations was less than r in a timing, the unused durations
will be set to zero.

All different traffic light timings of all over the traffic
network must be distinguished and classified into limited
number of classes. Afterward, a relevant class of TLT will
be assigned to every possible route in intersections. To see
what means “every possible route in intersections”, consider
Fig. 1 which shows a 4-way intersection.

According to Fig. 1, when a vehicle comes to node I
from node S can go to node N, node E, node W and also can
return to the node S. Notice that if the traffic rules forbids
turning to some directions in an intersection, the red light
duration of those routes will be set to infinity. Therefore,
when a one vehicle comes to node I from node S, if we
assume that turning back to the node S is forbidden, the
possible routes will be <S, I, W>, <S, I, N> and <S, I, E>.
Similarly, this could be considered for when a vehicle
comes from N, E or W to node I. As an example, according
to definition of the routes class[S][I][N] = j means the
ordered sequence of times windows according to TLT[j] will
be used for traffic light timing when a vehicle comes to
node I from node S and next node is N.
Notice that since these time windows are repetitive, by
assuming GLD[0] == GLD[r] and RLD[0] == RLD[r], we
have the relationship that GLD[(k × r) + i] == GLD[i] and
RLD[(k × r) + i] == RLD[i] for any nonnegative integers k
and i, where i ≤ r. According to the definition of TLT, r is
the maximum number of time windows.

IEEE CCECE 2011 - 000883

Fig. 2. State transition diagram for TLT[i].

2.1. Timers and State Transition Diagram

To execute the algorithm in a distributed manner, every
class of TLT will be simulated by a timer (CT) and a state
transition diagram. In the first running, the timer will be
started according to the start time (ST) of the class which
belongs to and will be increased one-by-one every second.
The maximum value of a timer is the total duration (TD) of
the class and timer restarts from zero when it arrives to its
TD. To process a timer for finding the waiting times, a state
transition diagram will be used. The state transition diagram
for class i of TLT has been shown in Fig. 2.
According to Fig. 2, when the current time of the system is
equal to start time of class i of TLTs (SystemTime ==
TLT[i].ST), the state transition diagram will be started with
first green light duration. The timer will be stayed in first
green light for TLT[i].GLD[1] seconds and then moves to
the first red light duration. Again, it will be stayed in this
state for TLT[i].RLD[i] seconds and then moves to the
second green light. This movement will be continued till
when timer enters to the last red light duration. It will stay in
that state for TLT[i].RLD[r] seconds and afterward returns
to the first state (first green light) and, this cycle will be
repeated. Notice that for those classes of timing which do
not need to use all r states e.g. 2-states timings which use
only one green light duration and one red light duration,
duration of unused green and red light states will be set to 0.

2.2. Pseudo Code

In ordinary shortest path algorithms which only arcs have
cost, in every step the node with smallest value of path
length will be selected, removed from unvisited (temporary)
nodes and labeled as a visited (permanent) node and then,
this node will be used to extract the current found optimal
paths. But when nodes have cost too, such approach does
not work. Because in different times, nodes have different
costs and all possible combination of arcs must be
considered to find the real shortest path from source node to
other nodes.

Therefore, we assign the length (cost) of paths to the
arcs instead of nodes. In our algorithm, path_length[v][w]
means the length of path from source node to the node w
through the arc(u, w). This means that it is possible to reach

a node with different length when last arcs are different. In
every step, the TEMPORARY arc with minimum
path_length will be selected and labeled PERMANENT.
Then, the algorithm will extend this arc if the paths which
will be created based on this arc are shorter than previous
ones. This will be continued till the selected TEMPORARY
arc with minimum path length ends to the destination node.
The TCSPP function has been defined between line 1 and 17
of the following algorithm.

 1 function TCSPP(Graph G, Vertex source, Vertex destination)
 2 for each vertex i and j in Graph G
 3 path_length[i][j] = INFINITY
 4 predecessor[i][j] = UNDEFINED
 5 label[i][j] = TENTATIVE
 6 path_length[0][source] = 0
 7 while any arc with TENTATIVE label exists in G
 8 choose arc(v,w) with minimum path_length
 and TENTATIVE label
 9 label[v][w] = PERMANENT
10 if (w == destination)
11 return predecessor[v][w]
12 for each arc[w][x]
13 temp = path_length[v][w]
 + WTGL(v, w, x, path_length[v][w]) + time[w][x]
14 if temp < path_length[w][x]
15 path_length[w][x] = temp
16 predecessors[w][x] = (v,w)
17 return "There is no route from source to destination"
18
19 function WTGL(Vertex i, Vertex j, Vertex k, Time delay)
20 index = class[i][j][k]
21 marker = (delay + TLT[index].CT) MOD TLT[index].TD
22 sum = 0
23 for (k from 1 to r)
24 if marker <= (sum + TLT[index].GLD[k])
25 return 0
26 else
27 if marker <= (sum + TLT[index].GLD[k] +
 TLT[index].RLD[k])
28 return (sum + TLT[index].GLD[k] +
 TLT[index].RLD[k]) - marker
29 sum = sum + TLT[index].GLD[k] + TLT[index].RLD[k]

IEEE CCECE 2011 - 000884

As seen in line 13, the waiting time for green lights will
be considered to calculate the path lengths by using WTGL
function and then the comparison between current path and
pervious path will be done. Indeed, the WTGL function
processes the state transition diagram of Fig. 2. In WTGL
function, i, j and k parameters represent the pervious, current
and next node respectively and delay parameter is the time
that the vehicle will reach to node j. In other word, delay is
total time which is expected to take from the source node to
the current node (j).

To find the waiting times for green light when a vehicle
comes to node j from node i and next node is k in time equal
to delay, firstly the cycle times of timings must be
eliminated from delay. To do that, the delay parameter will
be divided to total duration of relevant class of TLT
(TLT[index].TD) as seen in line 21 and the modulus
(remainder) of this division will be assigned to marker.
Then, in a loop with r iterations, the state transition diagram
will be processed. If the marker is in green light state, zero
second otherwise the remaining time to move from red light
state to green light state will be returned. The WTGL()
function has been defined between lines 19 and 29 of the
algorithm.

2.3. Proof

Let N = (V, A, TLT, class, time, s, d) denotes a traffic-light
network, where V denotes the node set (with time windows
constraints), A denotes the arc set (without multiple arcs and
self loops), TLT denotes set of traffic light timings classes
where maximum number of them is c and maximum number
of time windows in each TLT is r, class denotes the assigned
class of TLT to different routes in intersections, time(v, u)
denotes the required time to pass the arc(v, u) ∈ A, s denotes
the source node and d denotes the destination node. Also, let
assume that arc(v, u) is the link from node v to u and
path_length(v, u) is the total time of the shortest path from
source node to node u through the arc(v, u). Then, our goal
is finding a shortest path from node s to node d in N where
the nodes are constrained by synchronized and classified
traffic lights.

We prove the algorithm by induction. At each iteration,
the algorithm partitions all arcs into two sets, called O and
Ō, where Ō = A – O. Set Ō includes the arcs which have
been labeled PERMANENT and consequently set O
includes the arcs with label TENTATIVE. The induction
hypotheses are found on two premises: 1) the path_length(v,
u) of each arc(v, u) in Ō is optimal and 2) the path_length(v,
u) of each arc(v, u) in O is the total time of the shortest path
from s to u through arc(v, u) provided that each intermediate
arc in the path lies in Ō [15].

To prove hypothesis 1, remind that at the beginning of
iterations, the algorithm moves an arc(v, u) with the
smallest path_length from set O to set Ō. We must show
that path_length(v, u) of arc(v, u) is optimum. Notice that
by our induction hypothesis, path_length(v, u) is the total

time of a shortest path to node u thought arc(v, u) among all
paths that does not contain any intermediate arc in O. We
now show that the total time of any path from node s to
node u through arc(v, u) that contains some arcs in O as an
intermediate arcs will be at least path_length(v, u).

Consider any path P from the source node to node u
through arc(v, u) which contains at least one arc in O as an
intermediate arc. The path P can be decomposed into two
segments P1 and P2, where P1 does not contain any arc in O
as an intermediate arc but the last arc, say arc(h, k).
According to the induction hypotheses, the total time of P1
is at least path_length(h, k). Moreover, since arc(v, u) has
the smallest path_length in O, path_length(h, k) �
path_length(v, u). Therefore, the path segment P1 has total
time equal to at least path_length(v, u). Furthermore, since
all arc times are nonnegative, the total time of the path
segment P2 is nonnegative. Consequently, the total time of
path P is no less than path_length(v, u). This result confirms
that path_length(v, u) is the shortest path from the source
node to the node u through the arc(v, u). Therefore, the
hypothesis 1 has been proved.

To prove the hypothesis 2, notice that after labeling an
arc(v, u) PERMANENT, the path_length of some arcs in O
– {arc(v, u)} may decrease since arc(v, u) could become an
intermediate arc in the temporary shortest paths to these
arcs. After labeling an arc(v, u) PERMANENT, the
algorithm examines all emanating arc(u, w) from node u as
follows:

path_length(u, w) = path_length(v, u)
 + WTGL(v, u, w, path_length(v, u)) + time(u, w)

if
path_length(v, u) + WTGL(v, u, w, path_length(v, u))
 + time(u, w) < path_length(u, w)

Therefore, after the update operation, the path_length(u,

w) of each arc(u, w) in O – {arc(v, u)} is the total time of a
shortest path from node s to node w through arc(u, w) with
this restriction that each intermediate arc in the path belongs
to Ō ∪ arc(v, u). □

2.4. Time and Space Complexity of the Algorithm

As it was explained in section i, there are two proposed
algorithms in this field. The first one is based on probability
functions and the second one is based on time windows.
Since our algorithm is based on time windows too, we
compare our algorithm with chen and yang algorithm [15].

In proposed algorithm, there are two key operations: In
line 8, we need to find the arc with minimum path length
and TENTATIVE label and, label it as a PERMANENT arc
which will be called EXTRACT-MIN. In line 15, we need
to update the value of arcs which smaller values have been
found for them in the recent iteration which will be called
DECREASE-KEY. If as Yang and Chen [15] Fibonacci
heap [22] is used, the time complexity of each EXTRACT-
MIN operation will be O(log m) and the time complexity of

IEEE CCECE 2011 - 000885

each DECREASE-KEY operation will be O(1).
Therefore, the time complexity of EXTRACT-MIN

operation in line 8 is O(m log m) and the time complexity of
DECREASE-KEY operation in line 13 is O(mnr) where r
denotes the maximum number of time windows in a TLT, m
denotes the number of arcs and n denotes the number of
vertex in the network. Consequently, the total time
complexity of the algorithm is O(m log m + mnr) ≈ O(mnr).
To calculate the space complexity of the algorithm, consider
that every node needs space of order O(n2) for storing
routes, labels, arc lengths and path lengths, O(n3) for storing
classes and O(rc) for storing the timings of different classes
(TLT). Notice that c denotes the maximum number of
classes. Consequently, the final space complexity of the
algorithm is O(n2 + n3 + rc) ≈ O(n3). Table 1 compares the
time and space complexities of proposed algorithm with
Yang and Chen Algorithm. As seen, the proposed algorithm
has less time and space complexity.

3. CONCLUSION

In this paper, a label-setting shortest path algorithm was
proposed to consider the waiting times for green light
(nodes cost) as well as required time to travel the streets
(arcs cost) in calculation of optimal routes in synchronized
traffic-light networks. The proposed algorithm uses
classified traffic light timings (TLT) and simulates different
timings by using timers. The proposed algorithm has less
time and space complexities as compared to similar
algorithms. As further work, finding shortest paths at
presence of different criteria for arc cost and node cost could
be considered.

4. REFERENCES

[1] A. Sedeño-Noda, C. González-Martín, “On the K shortest

path trees problem,” Elsevier European Journal of
Operational Research, vol. 202, no. 3, pp. 628-635, 2010.

[2] M.H. Farahi, M. Zamirian, A.R. Nazemi, “An applicable
method for solving the shortest path problems,” Elsevier
Applied Mathematics and Computation, vol. 190, no. 2, pp.
1479-1486, 2007.

[3] J. B. Orlin, K. Madduri, K. Subramani, M. Williamson, “A
faster algorithm for the single source shortest path problem
with few distinct positive lengths,” Elsevier Journal of
Discrete Algorithms, vol. 8, no. 2, pp. 189-198, 2010.

[4] D. Villeneuve, G. Desaulniers, “The shortest path problem
with forbidden paths,” Elsevier European Journal of
Operational Research, vol. 165, no. 1, pp. 97-107, 2005.

[5] N. Deo, C. Pang, “Shortest path algorithms: Taxonomy and
annotation,” Wiley Networks, vol. 14, no. 2, pp. 275−323,
1984.

[6] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, “Network Flows:
Theory, Algorithms, and Applications,” Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[7] J. M. Hill, H. D. Sherali, “Reverse time-restricted shortest
paths: Application to air traffic management,” Elsevier
Transportation Research Part C, vol. 17, no. 6, pp. 631−641,
2009.

[8] S. Urrutia, R. F. Da Silva, “A General VNS heuristic for the
traveling salesman problem with time windows,” Elsevier
Discrete Optimization, 2010, In Press.

[9] D. Feillet, T. Garaix, D. Josselin, C. Artigues, “Vehicle
routing problems with alternative paths: An application to on-
demand transportation,” Elsevier European Journal of
Operational Research, vol. 204, no. 1, pp. 62−75, 2010.

[10] L.R. Rilett, L. Fu, “Expected shortest paths in dynamic and
stochastic traffic networks,” Elsevier Transportation
Research Part B, vol. 32, no. 7, pp. 499−516, 1998.

[11] P. Recht, A. Fabri, “On dynamic pickup and delivery vehicle
routing with several time windows and waiting times,”
Elsevier Transportation Research Part B, vol. 40, no. 4, pp.
335−350, 2006.

[12] J. Albiach, D. Soler, E. Martínez, “A way to optimally solve a
time-dependent Vehicle Routing Problem with Time
Windows,” Elsevier Operations Research Letters, vol. 37, no.
1, pp. 37−42, 2009.

[13] W. T. Ooi, Y. W. Wan, T. S. Chang, “A stochastic dynamic
traveling salesman problem with hard time windows,”
Elsevier European Journal of Operational Research, vol. 198,
no. 3, pp. 748−759, 2009.

[14] T. Yamada, E. Taniguchi, A. G. Qureshi, “An exact solution
approach for vehicle routing and scheduling problems with
soft time windows,” Elsevier Transportation Research Part E,
vol. 45, no. 6, pp. 960−977, 2009.

[15] Y. Chen, H. Yang, “Shortest paths in traffic-light networks,”
Elsevier Transportation Research Part B, vol. 34, no. 4, pp.
241−253, 2000.

[16] H. Yang, Y. Chen, “Finding K shortest looping paths with
waiting time in a time-window network,” Elsevier Applied
Mathematical Modeling, vol. 30, no. 5, pp. 458−465, 2006.

[17] H. Yang, Y. Chen, “Minimization of travel time and weighted
number of stops in a traffic-light network,” Elsevier European
Journal of Operational Research, vol. 144, no. 3, pp.
565−580, 2003.

[18] H. Yang, Y. Chen, “Finding the first K shortest paths in a
time-window network,” Elsevier Computers & Operations
Research, vol. 31, no. 4, pp. 499−513, 2004.

[19] H. Yang, Y. Chen, “The First K Shortest Unique-Arc Walks
in a Traffic-Light Network,” Elsevier Mathematical and
Computer Modelling, vol. 40, no. 13, pp. 1453−1464, 2004.

[20] H. Yang, Y. Chen, “Finding K shortest looping paths in a
traffic-light network,” Elsevier Computers & Operations
Research, vol. 32, no. 3, pp. 571−581, 2005.

[21] B. Yang, E. Miller-Hooks, “Adaptive routing considering
delays due to signal operations,” Elsevier Transportation
Research Part B, vol. 38, no. 5, pp.385−413, 2004.

[22] M. L. Fredman, R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of
ACM, vol. 34, no. 3, pp. 596−615, 1987.

TABLE I.
COMPARISON OF TIME AND SPACE COMPLEXITY BETWEEN YANG AND

CHEN ALGORITHM AND PROPOSED ALGORITHM

Algorithm Time Complexity Space Complexity

Yang and Chen [15] O(m log m + mn log r + rn3) O(n2 + rn3)

Faez and Khanjary O(m log m + mnr) O(n2 + n3+ rc)

IEEE CCECE 2011 - 000886

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

