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ABSTRACT

This paper deals with the problem of Adaptive Noise
Cancellation (ANC) when only corrupted speech signal
with an additive Gaussian white noise is available for
processing. We propose a new method based on adaptive
Kalman filtering. All the approaches based on the Kalman
filter proposed in the past, in this context, operate in two
steps: they first estimate the noise variance and the
parameters of the signal model and secondly estimate the
speech signal. The approach presented in this paper gives
an alternative to these approaches since it does not require
the estimation of the noise variance. The noise variance
estimation is a part of the Kalman gain calculation. For
optimizing the Kalman gain we have reformulated and
adapted, to the single-microphone ANC problem, the
approach proposed in control by R. K. Mehra.

1 INTRODUCTION

Speech enhancement using a single microphone system
has become an active research area for audio signal
enhancement. The aim is to retrieve the desired speech
signal from the noisy observations. These problems occur,
for example, in hands free mobile phones and
teleconferencing.

In the standard ANC systems one uses at least two
microphones. One microphone to capt the observation
signal and another one to serve as the noise reference.
Many approaches for speech enhancement based on the
Kalman filtering [1-4] have been reported in the literature.
These approaches differ essentially one from the other by
the algorithm used to estimate the parameters of such a
model.

A time-adaptive algorithm is used in [1] to adaptively
estimate the speech model parameters and the noise
variance. In [2] the ideal values of the parameters have
been used and a delayed-Kalman filter is proposed. In [3]
the speech signal is considered as an output of an ARMA
process and an adaptive Kalman filter is used to estimate
the speech signal. The estimation method of the speech
model parameters used in [4] is a suboptimal solution that
can be considered as a version of the Estimate-Maximize

(EM) algorithm based on the maximum likelihood
argument.

In this paper we reformulate, for the speech enhancement,
the approach proposed by R. K. Mehra in the field of
control [5]. In this approach, signal and noise variances
estimation are handled by the optimization gain procedure.
So, this new approach looks very attractive in comparison
to the ones where these heavy tasks must also be made.
This paper is organized as follows. We present in section 2
the state-space model representation of the noisy speech
observation and Kalman filtering. The section 3 is
concerned with the presentation of the estimation of the
AR parameters and the different steps of Mehra algorithm
for the Kalman gain optimization. The section 4 presents
our single-microphone ANC system based on the Kalman
gain optimization. In the last section we provide
experimental results and evaluate the performance of the
proposed system.

2 NOISY SPEECH MODEL AND KALMAN
FILTERING

Let us consider the speech signal modelled as a p order AR
process:

s(n) = Zais(n —i) +u(n) (1a)
z(n) = s(n) + v(n) (1b)

This system can be represented by the following state-space
model:

x(n+1) =®x(n) +Mu(n) 2)
z(n) = Hx(n) + v(n) 3)
where:

x(n+1)=[s(n-p+1), -, sm)] @

is the state vector,
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is the state-transition matrix, [ and H are the input and the
output matrices defined by

r=H"=[00,-.0,1]" 6)

u(n) and v(n) are uncorrelated Gaussian white noises with
means and covariances given below:

E{u(m)}=0; E{u(n)u(n- m} = a28(n- m) @
E{v(n)}=0; E{v(n)v(n-m} =0.3(n-m) ®)
E{u(nv(m} =0 On,m ©9)

The standard Kalman filter provides the following
updating state-vector estimation [7]:

X(n+1/n)=®x(n/n-1) +PKe(n) (10)
z(n) = HX(n/n-1) + e(n) an

where e(n)is the innovation sequence.

Here @ and K are unknown and hence must be estimated.
Then, the updating state vector estimation becomes:

R +1/n) =P(n/n-1) +PKe(n) 12)

where @ andK are respectively the estimated state-
transition matrix and the Kalman gain. @ is in fact
including the parameters to be estimated.

The estimation of ® and K is the object the following
section.

3. PARAMETER ESTIMATIONS
3.1 Transition matrix estimation

The estimation of ® is achieved this way: one needs to
estimate first the autocorrelation of the observation z(n) as
follows:

n

&k) = % z 2(1)z(i —k) (13)

1=k

and, in the second step, the parameters of the AR process
using (13) and the Cayley-Hamilton theorem applied for
the matrix ®.
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The estimation of the unknowns parameters in @ are
obtained from a set of algebraic equations used to estimate
the AR parameters [6].
Using these estimated AR parameters one can obtain the
estimation of the state-transition matrix:
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The canonical representation (2) and (3) is complete if we
can estimate the variances of the additive noise v(n) and
the process noise u(n).

The estimation of additive noise variance is
straightforward from the estimated AR parameters and the
estimated autocorrelation of the observation z(n) [6].

The direct estimation of the variance of the process noise
can be avoided. To avoid a direct calculation of the noise
variance we adopt the Mehra approach which permits, by
providing an estimated Kalman gain, to retrieve the speech
signal by Kalman filtering.

3.2 Kalman gain estimation

In fact, our aim is to retrieve the estimated signal from the
observation sequence using equations (10) and (11). So,
this can also be done by estimating the Kalman gain
instead of the estimation of the noise variance.

The estimation of K proposed by Mehra is based on the
statistical test of the whiteness of the innovation sequence.
For an optimal Kalman filter where ® and K are known,
this innovation sequence is a Gaussian white noise
sequence [8]. We are not in the presence of an optimal
Kalman filter since @ and K must be estimated. However,
the innovation sequence is assumed to be a stationary
Gaussian random sequence and an iterative procedure can
be conducted to derive an asymptotical optimal Kalman
filter.

We give in the following the outlines of the gain
optimization algorithm, for more details see [5].

Let us call K(0) the initial Kalman gain value.

The gain K is estimated by the iterative algorithm:
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K@) =K@-1)+

where V(k) is the autocorrelation of the innovation
sequence at the lag k:

N l<e .
Jk) == e(ie(i —k) (17)
n iz

A statistical test on the whiteness of the innovation is used
to check whether the Kalman filter is working optimally or
not. If it is not, one estimates the autocorrelation of the
new innovation sequence to adapt the Kalman gain based
on the equation (16), and so on until the optimal Kalman
gain is reached. Hence, the estimated state-vector X is

updated using the new value of K according to the above
test. Finally, the estimated speech signal can be retrieved
from the equation:

§(n) =HX(n/n) =H®X(n/n-1) (18)

In the next section, we present the application of this
approach to achieve noise cancellation system when only a
single observation containing the speech signal and the
unwanted noise is available.

4. NOISE CANCELLER BASED ADAPTIVE
KALMAN FILTER

Our proposed single microphone ANC system is sketched
in the figure 1. The observation sequence z(n) contains the
speech component and the unwanted noise v(n). The AR
parameters estimation of the speech model are included in
the transition matrix @ estimation using the procedure
described in 3.1. The innovation sequence drives the
iterative algorithm for optimizing the Kalman gain.

) Iterative

Algorithm

x(n/n-1)
Unit }

Delay

e
E( x(n/n-1)

Fig. 1: Single microphone ANC system based on an
adaptive gain Kalman filter

As far as we know, in all the ANC techniques, one
estimates the noise variance during silence period. In this
paper the noise variance estimation is a part of Kalman
gain estimation. Actually, since Kalman filter requires the
AR parameters and the noise variances, the noise variance
estimation does not appear explicitly in the iterative
algorithm of the gain optimization. This algorithm can be
considered, in a sense, as operating in a global way in
comparison to other approaches which can be considered
as operating in multistage procedure.

The Kalman gain, and consequently the noise variance, is
estimated using the autocorrelation of the innovation
sequence instead of the autocorrelation of the observation
sequence. It is an advantage in running the iterative
procedure since the Kalman gain are adapted with the
innovation sequence less correlated than the observation
sequence. This fact has been confirmed in the simulation
results where the iterative algorithm converges at most in 4
iterations as precisely stated by Mehra [5].

5 SIMULATIONS AND RESULTS

The effectiveness of the method is tested using natural
speech signal corrupted by a Gaussian white noise. The
order p of the AR process of speech signal has been fixed
to 5. Using AR process order higher than 5 does not
improve the SNR.

An example of speech enhancement results is reported in
the Table 1. A SNR improvement from 1.57 dB to 10.48
dB has been obtained. For these results the iterative
algorithm converges in 2 iterations. Figures 2, 3 and 4
represent, respectively, the cepstrogram followed by the
time signal of the free-noise speech, the noisy speech and
the enhanced speech. For this example, the SNR of the
noisy speech signal is 0 dB.

Input SNR(B) | -10 | -5 [ 0 | 5 | 10
Gain SNR (dB) | 10.48 | 8.13 | 5.78 | 3.50 | 1.57

Table 1: Gain SNR for different input SNR
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Fig. 2: Noise-free speech signal
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Fig. 3: Noisy speech signal
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Fig. 4: Enhanced speech signal

REFERENCES

[1] A. V. Oppenheim, E. Weinstein, K.C.Zangi, M.Feder
and D.Gauger, "Single-Sensor Active Noise Cancellation,"
IEEE Trans. on Speech and Audio Processing, Vol. 2,No.
2, pp. 285-290, April 1994.

[2] K. K. Paliwal and A.Basu, "A Speech Enhancement
Method Based on Kalman Filtering," ICASSP 87, pp. 177-
180.

[3] H. Morikawa and H. Fujisaki, "Noise Reduction of
Speech Signal by Adaptive Kalman Filtering," Special
issue in Signal Processing APII-AFCET-Edited by
M.Najim, Vol. 22, No. 1, pp. 53-68, 1988.

[4] J. D. Gibson, B. Koo and S. D. Gray, " Filtering of
Colored Noise for Speech Enhancement and Coding,"
IEEE Trans. on Signal Processing, Vol. 39, No.8, pp.
1732-1742, August 1991.

[5]1 R. K. Mehra, "On the Identification of Variances and
Adaptive Kalman Filtering," IEEE Trans. on Automatic
Control. Vol. AC-15, No. 2, pp. 175-184, April 1970.

[6] R. K. Mehra, "On-Line Identification of Linear
Dynamic Systems with Applications to Kalman Filtering,"
IEEE Trans. on Automatic Control. Vol. AC-16, No. 1, pp.
12-21, February 1971.

[7] M. Najim, Modelization and Identifications in Signal
Processing, Masson, Paris 1988 (in French).

[8] T. Kailath, " An innovations approach to least-squares
estimation, part I: linear filtering in additive white noise,"
IEEE Trans. Automatic Control, Vol. AC-13, pp. 646-655,
December 1968.



