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Abstract

Granular association rule mining is a new relational data mining approach to
reveal patterns hidden in multiple tables. The current research of granular
association rule mining considers only nominal data. In this paper, we study the
impact of discretization approaches on mining semantically richer and stronger
rules from numeric data. Specifically, the Equal Width approach and the Equal
Frequency approach are adopted and compared. The setting of interval numbers
is a key issue in discretization approaches, so we compare different settings
through experiments on a well-known real life data set. Experimental results
show that: 1) discretization is an effective preprocessing technique in mining
stronger rules; 2) the Equal Frequency approach helps generating more rules
than the Equal Width approach; 3) with certain settings of interval numbers,
we can obtain much more rules than others.

Keywords: Granular association rule, discretization, Equal Width, Equal
Frequency, relational data mining.

1. Introduction

Relational data mining schemes [7, 8] look for patterns that include multiple
tables in the database. Some meaningful issues [5, 12, 10, 13, 9] are undisputed
more common and more challenging than their transcriptions on a single data
table. Recently, people focus on the tasks of association rule and computing
with granules [14, 26, 27, 29, 33, 28].

Granular association rule mining [16, 17] is a new approach to reveal patterns
hidden in multiple tables. This approach generates rules with four measures to
reveal connections between concepts in two universes. We consider a database
with two entities customer and product connected by a relation buys. An
example of granular association rules might be “40% men like at least 30% kinds
of alcohol; 45% customers are men and 6% products are alcohol.” Here 45%, 6%,
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40% and 30% are the source coverage, the target coverage, the source confidence
and the target confidence, respectively. Numeric data are very common in real
world problems. Unfortunately, only nominal data are considered in the original
definition of granular association rule [16, 17].

We employed two discretization approaches, called the Equal Width ap-
proach and the Equal Frequency approach [4, 6], to preprocess the numeric
data. The Equal Width approach confirms the minimum and maximum of the
numeric data, and divides the range into k equal-width discrete intervals. The
Equal Frequency approach confirms the minimum and maximum of the nu-
meric data, and divides the range into k intervals which have the same number
of sorted values in ascending order. Compare those two approaches by gener-
ated rules and candidates, we can obtain the strength one applied to granular
association rule mining.

Experiments are undertaken on the publicly available MovieLens data set.
We introduce two parameters k1 and k2. k1 is the number of intervals for the
age of the user, k2 is the number of intervals for the released year of the movie.
The discretization approaches are implemented with Java in our open source
software COSER (Cost sensitive rough set) [22].

Our experiment results show that discretization is effective preprocessing
technique in mining stronger rules. The Equal Frequency and the Equal Width
approach are both simple methods to discretize data, while achieving good re-
sults. Given four measures thresholds, the Equal Frequency generates more
rules than the other one. For any pair of integers (k1, k2), we can obtain a set
of rules. Through comparing the number of all the sets of rules, we obtain cer-
tain settings of discrete interval numbers through different approaches. When
setting k1 range from 8 to 10 and k2 range from 10 to 12 through the Equal
Frequency approach, we can obtain much more rules than other settings.

The remainder of the paper is organized as follows. Section 2 reviews gran-
ular association rule. Section 3 presents granular association rules on numeric
data, we might mine semantically richer and stronger rules. In Section 4, we
describe each discretization approach and discuss its suitability for granular as-
sociation rule mining. Experiments on the MovieLens data set [1] are discussed
in Section 5. Finally, Section 6 presents the concluding remarks and further
research directions.

2. Granular association rule

In this section, we revisit granular association rule [17]. We analyse the
definition, and four measures of such rule. Moreover, we introduce the basic
design of granular association rule mining.

2.1. The data model

First of all, we introduce the data model which is built on information sys-
tems and binary relations.
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Definition 1. S = (U,A) is an information system, where U = {x1, x2, . . . , xn}
is the set of all objects, A = {a1, a2, . . . , am} is the set of all attributes, and
aj(xi) is the value of xi on attribute aj for i ∈ [1..n] and j ∈ [1..m].

In an information system, any A′ ⊆ A induces an equivalence relation [23, 25]

EA′ = {(x, y) ∈ U × U |∀a ∈ A′, a(x) = a(y)}, (1)

and partitions U into a number of disjoint subsets called blocks. The block
containing x ∈ U is

EA′(x) = {y ∈ U |∀a ∈ A′, a(y) = a(x)}. (2)

From another viewpoint, a pair C = (A′, x) where x ∈ U and A′ ⊆ A is called
a concept. The extension of the concept is

ET (C) = ET (A′, x) = EA′(x); (3)

while the intension of the concept is the conjunction of respective attribute-
value pairs, i.e.,

IT (C) = IT (A′, x) =
∧

a∈A′

〈a : a(x)〉. (4)

The support of the concept is the size of its extension divided by the size of the
universe, namely,

support(C) = support(A′, x) = support(
∧

a∈A′〈a : a(x)〉)
= support(EA′(x)) = |ET (A′,x)|

|U |
= |EA′ (x)|

|U | .

(5)

Definition 2. Let U = {x1, x2, . . . , xn} and V = {y1, y2, . . . , yk} be two sets of
objects. Any R ⊆ U × V is a binary relation from U to V . The neighborhood
of x ∈ U is

R(x) = {y ∈ V |(x, y) ∈ R}. (6)

If U = V and R is an equivalence relation, R(x) is the equivalence class
containing x. From this definition we know immediately that for y ∈ V ,

R−1(y) = {x ∈ U |(x, y) ∈ R}. (7)

A binary relation is more often stored in the database as a table with two
foreign keys. In this way the storage is saved. For the convenience of illustration,
here we represented it with an n× k boolean matrix.

With Definitions 1 and 2, we propose the following definition.

Definition 3. [16] A many-to-many entity-relationship system (MMER) is a
5-tuple ES = (U,A, V,B,R), where (U,A) and (V,B) are two information sys-
tems, and R ⊆ U × V is a binary relation from U to V .
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2.2. Granular association rule with four measures

Now we come to the central definition of granular association rules.

Definition 4. [16] A granular association rule is an implication of the form

(GR) :
∧

a∈A′

〈a : a(x)〉 ⇒
∧
b∈B′

〈b : b(y)〉, (8)

where A′ ⊆ A and B′ ⊆ B.

According to Equation (5), the set of objects meeting the left-hand side of
the granular association rule is

LH(GR) = EA′(x); (9)

while the set of objects meeting the right-hand side of the granular association
rule is

RH(GR) = EB′(y). (10)

The source coverage of a granular association rule is

scoverage(GR) = |LH(GR)|/|U |. (11)

The target coverage of GR is

tcoverage(GR) = |RH(GR)|/|V |. (12)

There is a tradeoff between the source confidence and the target confidence
of a rule. Consequently, no values can be obtained directly from the rule. To
compute any one of them, we should specify the threshold of the other. Let tc
be the target confidence threshold. The source confidence of the rule is

sconfidence(GR, tc) =
|{x ∈ LH(GR)| |R(x)∩RH(GR)|

|RH(GR)| ≥ tc}|
|LH(GR)|

. (13)

Let mc be the source confidence threshold, and

|{x ∈ LH(GR)||R(x) ∩RH(GR)| ≥ K + 1}|
< mc× |LH(GR)|
≤ |{x ∈ LH(GR)||R(x) ∩RH(GR)| ≥ K}|.

(14)

This equation means that mc × 100% elements in LH(GR) have connections
with at least K elements in RH(GR), but less than mc × 100% elements in
LH(GR) have connections with at least K+1 elements in RH(GR). The target
confidence of the rule is

tconfidence(GR,mc) = K/|RH(GR)|. (15)

In fact, the computation ofK is non-trivial. First, for any x ∈ LH(GR), we need
to compute tc(x) = |R(x) ∩RH(GR)| and obtain an array of integers. Second,
we sort the array in a descending order. Third, let k = bmc× |LH(GR)|c, K is
the k-th element in the array.
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2.3. Granular association rule mining

The basic design of granular association rule mining is as follows.

Definition 5. The granular association rule mining.
Input: An ES = (U,A, V,B,R), a minimal source coverage threshold ms,

a minimal target coverage threshold mt, a minimal source confidence threshold
mc, and a minimal target confidence threshold tc.

Output: All granular association rules satisfying scoverage(GR) ≥ ms,
tcoverage(GR) ≥ mt, sconfidence(GR) ≥ mc, and tconfidence(GR) ≥ tc.

3. Granular association rule on numeric data

There are many different types of data to describe objects. Recently, all data
are implicitly considered to be nominal. However, in the real world applications,
a very large proportion of data sets involve numerical data. One scheme to solve
this problem is to divide numeric data into a number of intervals and regard
each interval as a category. This process is usually named discrerization [?
3, 15, 18, 15, 18]. At present, the most important thing we intend to do is
that we can mine semantically richer and stronger rules which cannot mine
in primary data through discretization. For instance, we give an information
system in Table 1, where U = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}, and A
= {Age, Gender, Married, Salary}. Among them, Age and Salary values are
numeric data. Another example is given by Table 2, where U = {p1, p2, p3,
p4, p5, p6, p7, p8}, and A = {Country, Category, Color, Price}. Among them,
Price values are numeric data.

A binary relation is more often stored in the database as a table with two
foreign keys. In this way the storage is saved. For the convenience of illustration,
here we represented it with an n × k boolean matrix. An example is given by
Table 3, where U is the set of customers as indicated by Table 1, and V is the
set of products as indicated by Table 2.

At present, we indicate all of the numeric data from the information systems.
And then divide numeric data into a number of intervals and regard each interval
as a category, as shown in Tables 4, 5. From the MMER given by Tables 3,
4and 5 we may obtain the following interesting rule.
(Rule 1) 〈Gender: Male〉 ⇒ 〈Category: Alcohol〉.
(Rule 2) 〈Age: [30, 35)〉 ∧ 〈Gender: Male〉 ⇒ 〈Category: Alcohol〉.
(Rule 3) 〈Married: Yes〉 ⇒ 〈Country: China〉.
(Rule 4) 〈Married: Yes〉 ∧ 〈Salary: [4700, 5600]〉

⇒ 〈Country: China〉 ∧ 〈Price: [2.0, 7.3)〉.
Rule 1 can be read as “men like alcohol.” Rule 2 can be read as “men whose

age is between 30 and 35 like alcohol.” Rule 3 can be read as “Married people
like products made in China.” Rule 4 can be read as “Married people whose
salaries are between 4700 and 5600, like products made in China, which prices
are between 2.0 and 7.3.”

From above we can come to a conclusion, we can mine semantically richer and
stronger rules which cannot be mined in primary data through discretization,
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Table 1: Customer

CID Age Gender Married Salary
c1 20 Male No 2000
c2 25 Female Yes 2800
c3 23 Male No 3500
c4 26 Female Yes 2400
c5 32 Male Yes 5600
c6 36 Male Yes 4200
c7 39 Male Yes 5000
c8 40 Female Yes 5000
c9 35 Female Yes 3400
c10 34 Male Yes 3600

Table 2: Product

PID Country Category Color Price
p1 China Staple Yellow 2.0
p2 Australia Staple Black 4.0
p3 China Daily White 5.5
p4 China Meat Red 8.0
p5 Australia Meat Red 18.0
p6 China Alcohol Yellow 3.0
p7 France Alcohol Yellow 5.0
p8 France Alcohol White 16.5

such as Rules 2, 4. Given the same four measures threshold, Rule 2 has a
semantically richer rule than Rule 1, and Rule 4 has a richer rule than Rule 3.
A detailed explanation of Rule 4 might be “60% married people like at least
60% products, which prices are between 2.0 and 7.3; 70% customers are married
people, 62.5% products of all products which prices are between 2.0 and 7.3.”

4. Discretization approaches

In this section, we introduce different discretization approaches, which can
divide the numeric data into different intervals and regard each interval as a
category. Given four measures thresholds, we can mine different rules. Since
the number of intervals is a key issue in discretization approaches, we try to use
some different settings of interval numbers to can obtain the suitable one. Then
we can mine appropriate granule association rules.

In this paper, we adopt two discretization approaches, namely the Equal
Width approach and the Equal Frequency approach. The two approaches are
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Table 3: Buys

CID� PID p1 p2 p3 p4 p5 p6 p7 p8
c1 1 0 0 1 1 1 0 0
c2 1 0 0 1 0 1 0 0
c3 0 0 1 0 1 0 1 1
c4 0 1 0 1 1 1 0 0
c5 0 1 1 1 0 0 1 1
c6 0 1 0 1 0 0 1 0
c7 1 1 1 1 0 0 1 1
c8 0 1 1 0 1 1 1 0
c9 1 0 1 0 1 0 1 0
c10 1 0 1 0 1 0 1 1

Table 4: Discretization for Age and Salary

CID Age Gender Married Salary
c1 [20,25) Male No [2000, 2900)
c2 [25,30) Female No [2000, 2900)
c3 [20,25) Male No [2900, 3800)
c4 [25,30) Female Yes [2000, 2900)
c5 [30,35) Male Yes [3800, 4700]
c6 [35,40] Male Yes [2900, 3800)
c7 [35,40] Male Yes [4700, 5600)
c8 [35,40] Female Yes [4700, 5600)
c9 [35,40] Female Yes [2900, 3800)
c10 [30,35) Male Yes [2900, 3800)

both simple methods to discretize data and have often been used to produce
nominal data from numeric ones.

4.1. The Equal Width approach

The Equal Width approach confirms the minimal value a0 and the maximal
value ak of the numeric data, and divides the range into k equal-width discrete
intervals. Here k is a parameter supplied by the user. The approach calculates
the discretization width

λ =
ak − a0

k
. (16)

These values form the boundary set {a0, a1, ..., ai, ..., ak−1, ak} for {[a0, a1),
..., [ai−1, ai), ..., [ak−1, ak]}, ai = a0 + iλ, where i = 1, 2, ..., k. The approach is
applied to each numeric data independently. Finally, we obtain discretization
data.
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Table 5: Discretization for Price

PID Country Category Color Price
p1 China Staple Yellow [2.0, 7.3)
p2 Australia Staple Black [2.0, 7.3)
p3 China Daily White [2.0, 7.3)
p4 China Meat Red [7.3, 12.7)
p5 Australia Meat Red [12.7, 18.0]
p6 China Alcohol Yellow [2.0, 7.3)
p7 France Alcohol Yellow [2.0, 7.3)
p8 France Alcohol White [12.7, 18.0]

4.2. The Equal Frequency approach

The Equal Frequency approach confirms the minimal value b0, the maximal
value bk of the numeric data, and sorts the values from in ascending order. Here
k is a parameter supplied by the user. Divide the range into k of intervals in
order that every interval involves the same number of sorted values, These values
form the boundary set {b0, b1, b2, ..., bk−1, bk} for {[b0, b1), [b1, b2), ..., [bk−1, bk]}.

We set different interval number k to divide the numeric data, and use
different discretization approaches to produce different intervals. We know that
more interval numbers, higher confidence of intervals, and lower coverage of
intervals. Compare those intervals to get the suitable one for rule mining. For
example, Table 2 shows that the value of Price range from 2.0 to 18.0. Set
k = 3, we get the price of p3 is between 2.0 and 7.3 with the Equal Width
approach, while it is between 2.0 and 7.0 with the Equal Frequency approach.
Set k = 4, we get the price of p3 is between 2.0 and 6.0 with the Equal Width
approach, while it is between 2.0 and 5.5 with the Equal Frequency approach.
Comparing those intervals, we obtain that take advantage of interval numbers
and discretization approach is very important to produce suitable intervals for
mining rule.

5. Experiments on a real world data set

5.1. A movie rating data set

The MovieLens data set [1] assembled by the GroupLens project is widely
used in recommender systems (see, e.g., [2, 11, 24, 20, 21]). We downloaded the
data set from the Internet Movie Database [1]. The data set contains 100,000
ratings (1-5) from 943 users on 1,682 movies, with each user rating at least 20
movies [24]. In order to run our algorithm, we preprocessed the data set as
follows.

1. Remove movie names. They are not useful in generating meaningful gran-
ular association rules.
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2. Use release year instead of release date. In this way the granule is more
suitable.

3. Select the movie genre. In the original data, the movie genre is multi-
valued since one movie may fall in more than one genre. For example,
a movie can be both Animation and Children’s. Unfortunately, granular
association rules do not support this type of data at this time. Since the
main objective of this work is to test compare the performances of algo-
rithms, we use a simple approach to deal with this issue. That is to sort
movie genres according to the number of users they attract, and only keep
the one highest priority for the current movie. We adopt the following pri-
ority (from high to low): Comedy, Action, Thriller, Romance, Adventure,
Children, Crime, Sci-Fi, Horror, War, Mystery, Musical, Documentary,
Animation, Western, FilmNoir, Fantasy, Unkown.

Our database schema is as follows.

• User (userID, age, gender, occupation)

• Movie (movieID, releaseYear, genre)

• Rates (userID, movieID)

According to given intervals [0, 18), [18, 25), [25, 30), [30, 35), [35, 45), [45, 56),
[56,∞), the age of the user is discretized by the GroupLens project. And then
we use release decade instead of release date for the movies range from 1920s
to 1990s. As a result, a manual discretization setting is given to divide numeric
data to obtain a finer granule. The setting would be used to compare with other
discretization approaches.

5.2. Results

In this section, we try to answer the following problems through experimen-
tation.

1. Compared with the manual discretization setting to mine rules, Which
approach outperform, the Equal Width approach or the Equal Frequency
approach?

2. Whether we can mine much semantically richer rules through discretiza-
tion?

3. What are the certain settings of discrete interval numbers for the numeric
data?

We undertake three sets of experiments to answer the questions one by one.

5.2.1. The performance of discretization approaches

The evaluation of discretization approaches was performed using the number
of generated rules and candidates. We compare the Equal Width approach, the
Equal Frequency approach, the manual discretization setting and primary data
which is without discretization. Let mc = 0.15, tc = 0.17 and ms = mt ∈ {0.04,
0.06, 0.08, 0.10, 0.12}. Suppose k is the number of intervals. We set k = 4 and
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Figure 1: Number of candidates: (a) interval number k = 4; (b) interval number k = 8.

k = 8 for rule mining, respectively. We compare the number of candidates and
rules, as shown in Figures 1, 2.

Figures 1, 2 show that all discrete approaches can help to mine more candi-
dates and rules from discreted data than not do it from primary data, and the
Equal Frequency mine the most. When ms = mt = 0.12, the Equal Frequency
can still mine rules, but the others cannot mine any.

We compare the Equal Width approach and the manual discretization set-
ting. When k = 4, the number of candidates and rules of the Equal Width
approach and the manual discretization setting have big different, the reason is
that a interval may divide into some intervals, which have affects on the number
of generated rules. For example, the Equal Width approach obtain a interval
[1979, 1998], which includes 1980s and 1990s. Specifically, when k = 8, the
number of candidates and rules of them is very similar, the reason is that each
interval of them is very similar.

5.2.2. The semantically richer

We obtain some strong rules using Equal Width and Equal Frequency. Here
we set interval number k = 4, ms = mt = 0.06, mc = 0.15, and tc = 0.17. 43
and 68 granular association rules are respectively obtained by Equal Width and
Equal Frequency. We respectively list 4 rules of them below.
The Equal Width approach:
(Rule 6) 〈age [7,24)〉
⇒ 〈genre: action〉

(Rule 7) 〈age [7,24)〉 ∧ 〈gender: male〉
⇒ 〈genre: action〉

(Rule 8) 〈age [7,24)〉 ∧ 〈gender: male〉
⇒ 〈releaseYear: [1979,1998]〉 ∧ 〈genre: action〉
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Figure 2: Number of rules: (a) interval number k = 4; (b) interval number k = 8.

(Rule 9) 〈age [7,24)〉 ∧ 〈gender: male〉 ∧ 〈occupation: student〉
⇒ 〈releaseYear: [1979,1998]〉 ∧ 〈genre: action〉

The Equal Frequency approach:
(Rule 10) 〈age [7,25)〉
⇒ 〈genre: action〉

(Rule 11) 〈age [7,25)〉 ∧ 〈occupation: student〉
⇒ 〈genre: action〉

(Rule 12) 〈age [25,31)〉 ∧ 〈gender: male〉
⇒ 〈releaseYear: [1992,1995]〉 ∧ 〈genre: comedy〉

(Rule 13) 〈age [7,25)〉 ∧ 〈gender: male〉 ∧ 〈occupation: student〉
⇒ 〈releaseYear: [1992,1995]〉 ∧ 〈genre: comedy〉
All rules are quite meaningful from different discrete approaches, and they

might be applied to movie recommendation directly. For Rule 6 indicates that
user whose age range from 7 to 24 rate action movies. We observe that Rule 7
and Rule 8 is finer than Rule 6, which is in turn semantically richer than Rule
6. Rule 9 obtains the semantically richest rule. For Rule 11 indicates that user
whose age range from 7 to 25 rate action movies. We observe that Rule 11 is
finer than Rule 10, it is similar to the above. Rule 12 mine user age range 25
to 31, but not range 7 to 25, and Rule 13 mine movie genre is comedy but not
action, those rules cannot be comparable with Rule 11, but still useful.

5.2.3. The setting of interval numbers

The setting of interval numbers is a key issue in discretization approaches, so
we compare different settings through experiment. We introduce two parameters
k1, k2, k1 is number of interval for the numeric data of User, k2 is number of
interval for the numeric data of Movie.

We set ms = mt = 0.08, mc = 0.15, and tc = 0.17. Firstly we let k1 = 10
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Figure 3: Number of rules: (a) k1 = 10; (b) k2 = 11.

and let k2 increases from 2 to 30, the number of rules are compared, as depicted
in Figure 3(a). Secondly we let k2 = 11 and let k1 increases from 2 to 30, the
number of rules are compared, as drew in Figure 3(b). Thirdly we let k1, k2
increase from 2 to 20, respectively, and obtain the corresponding to number of
rules, we draw a three-dimensional figure, as shown in Figures 4 and 5.

Figure 3(a) shows the number of rules decreases as k2 increases, the reason
is more interval numbers and lower coverage of intervals, some rules do not
satisfy mt that we cannot mine them. The Equal Frequency approach can mine
much more rules than the Equal Width approach at begin. This is because the
number of the users and the movies are well-distributed in the intervals divided
by the Equal Frequency approach, more and more intervals can satisfy mt that
we can mine much more rules. When k2 = 12 of Equal Width and k2 = 13 of
Equal Frequency, the number of rules slumps, the reason is some rules do not
satisfy mt. For example, when k2 = 12, the number of candidates is 18 × 15,
while k2 = 13, the number of candidates is only 18 × 3, which is much less.
Finally, the number of rules remains unchanged, because only these rules can
be mined before k2 = 30.

Figure 3(b) also shows the number of rules decreases as k1 increases, this is
because more interval numbers and lower coverage of intervals, some rules do
not satisfy ms that we cannot mine them. The Equal Frequency approach can
mine much more rules when k1 is between 2 and 12. For the Equal Frequency
approach, when k1 = 13, the number of rules slumps. This is because some
rules do not satisfy ms. For instance, when k2 = 12, the number of candidates
is 19×14, while k2 = 13, the number of candidates is only 8×14, which is much
less. Between k1 = 14 and k1 = 30, the number of rules remains unchanged,
this is because only these rules can be mined. For the Equal Width approach,
it decreases stable as k1 increases.
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Figure 4: Different settings of interval numbers obtain number of rules through the Equal
Width approach

Figures 4 and 5 indicate the number of rules changes with k1 and k2 increase.
The Equal Frequency approach can mine more rules than Equal Width. For
Figure 4, while k1 range from 10 to 13 and k2 range from 9 to 11, we can obtain
more rules. For Figure 5, while k1 range from 8 to 10 and k2 range from 10
to 12, we can obtain more rules. Compare those two Figures, we observe that
Figure 5 is more intuitive than Figure 4.

5.3. Discussions

Now we can answer the questions proposed at the beginning of this section.

1. Discretization is an effective preprocessing technique in mining stronger
rules, so it outperforms the primary data. Compared with the manual dis-
cretization setting to mine rules and the Equal Width approach, the Equal
Frequency approach generates more candidates number and stronger rules.

2. Through discretization, we can obtain much semantically richer rules.

3. When setting k1 range from 8 to 10 and k2 range from 10 to 12 for Equal
Frequency, we obtain certain settings of discrete interval numbers.

6. Conclusions and further works

In this paper, we introduced an evaluation and comparison of discretization
approaches for granular association rule mining. With the help of discretization,
we mined semantically richer and stronger rules. The Equal Frequency approach
helped generating more rules than the Equal Width approach. We obtained
certain settings of discrete interval to mine much more rules through different
approaches.

The following research topics deserve further investigation:
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Figure 5: Different settings of interval numbers obtain number of rules through the Equal
Frequency approach

1. Preferable discretization approaches. In this work we adopt the Equal
Width approach and the Equal Frequency approach. In fact, there are a
lot of discretization approaches. Many approaches such as rough sets and
decision trees would work better on discretized data [30, 31, 32, 19]. We
will try to choose some suitable discretization approaches, and design a
more appropriate one for granular association rule mining.

2. Intelligent choice. In practice, some data sets contain different numeric
data of different attributes, and we use the same discretization approaches
to deal with them. However, different algorithms adapt to different data,
so that we try to group different algorithms to realize intelligent choice for
discretization of the same data set. The improved scheme is more valuable
in practical application.
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