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Abstract—Health monitoring without a priori knowledge can
save a significant amount of design and implementation time.
However, for smaller devices with limited available resources,
this is not feasible using most conventional methods. For small
footprint sensor and actuator devices, we propose a health
monitoring architecture and algorithm, which uses context-
awareness to assess the health status of an “Injective-function
Black-Box” without having a priori knowledge about it. The
proposed algorithm can identify normal modes of operation,
change of states (operation modes), deviation from a state, and
abnormal functional operation. We have tested the algorithm on
an AC Motor where the system was able to identify its health
and changes in the operation status accordingly.

I. INTRODUCTION

In the context of Internet of Things (IoT) and system of
systems, the number of small devices and sensors is exponen-
tially growing [1], [2]. The natural diversity of these gadgets
imposes an ever increasing engineering time and effort on
the design process. To reduce these efforts and extra costs
associated with it, more generic methods, which can be applied
to a range of devices, are desired. Deep learning, data mining,
and similar methods address this issue; however, they can be
applied only to larger scale systems with massive resources.
We tackle this issue under tight resource constraints, which is
suitable for implementation on smaller gadgets with limited
computation power.

Traditional methods of control theory are often used to steer
motors for a desired action. For example, moving conveyor
belts and robotic arms under normal conditions, that is when
all parts operate within their respective specified operational
specifications [3]. When parts in the system become faulty
due to a wear-out or other effects, the system has to detect
and diagnose this fault and change its operation accordingly.
To save engineering efforts, it is desirable that this process is
fully automated, in a reliable fashion, and without requiring
extensive computational resources.

Therefore, here we propose a health monitoring system with
a small footprint and without a priori knowledge about the
design or specifications of the system under monitoring. The
proposed system is suitable for monitoring all devices which
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Fig. 1. Block Diagram of the proposed Context-Aware Health monitoring
(CAH) system.

are considered an “injective function”. That is, for the function
f , we have ∀ a, b ∈ D, f(a) = f(b) ⇐⇒ a = b, where
D is the domain on which f is defined. Our system uses
contextual information, to find out normal modes of operation
and perturbations therefrom. Since our Context-Aware Health
monitoring (CAH) does not use a priori knowledge about
the functionality and design of the device it monitors, it can
be used for any black-box which constitutes an ‘injective
function’; the induction motor used as a case-study in this
work included. Hence, to validate our method, we have tested
it on the data for an AC induction motor, where normal modes
of operation, change of state, deviation from normal mode
(drift), and anomalies are detected.

The rest of this paper is organized as it follows; In Sec-
tion II, we briefly review the requirements and specification
of the use case, which justifies the needs and benefits of using
CAH for this application. The architecture of the proposed
system is presented in Section III. The set-up and result of our
simulations are found in Section IV, and Section V concludes
the paper.

II. USE-CASE BACKGROUND: AC MOTORS

Induction motors are widely used in industry. The high costs
of this equipment, its energy consumption, and the importance
of avoiding downtimes highlight the necessity of continuous
and reliable monitoring as well as regular maintenance [4].
Parameters, such as voltage, frequency, and mechanical torque,
influence the various outputs of the motor such as its speed,
and torque.



From a high-level point of view, a motor can operate
normally, deviate from such a normal state, or fail. A normal
operation is when the motor is rotating at a constant speed
or changes its speed due to the process plan. However, the
condition of the motor and its behavior is prone to decay, and
the performance may deteriorate over time because of various
causes. In some cases, this deterioration may be reflected in
a small deviation from a normal operation mode. In this case,
one or more signals are drifting (normally very slowly) away
from the normal state. Finally, the motor may get unacceptably
far from expected performance or break down, which is called
a failure. Some of the causes for motor failures are presented
in [5].

When the motor is not connected to a speed controller (in
free-running operation), the synchronous speed is proportional
to the frequency of power supply and the number of poles
of the motor [6]. If the motor is not deteriorated, with
the nominal value of power supply the nominal speed is
expected. However, sometimes the motor should change its
speed. Therefore, various techniques have been introduced
to force the motor to rotate at desired values. A constant
voltage-frequency ratio is considered as one of the simplest
methods, which changes the frequency and voltage to adjust
the speed [6]. Nonetheless, when the motor wears out (due
to any causes including contamination, lack of lubricant, and
corrosion), its speed deviates from the nominal behavior [7].

Health monitoring and fault diagnosis in induction motors
have already been studied before, most of which aim at
detecting faults in the machine. Nejjari et al. [8] proposed a
neural network monitoring methodology to diagnose the elec-
trical faults of induction motors. This system can distinguish
between faulty and healthy states of the motor while running
at a constant speed. Blodt et al. [9] present an on-line con-
dition monitoring system which detects the mechanical faults
of induction motor drives in various load conditions, using
current analysis. A variety of health monitoring techniques
such as thermal monitoring, vibration and noise monitoring,
as well as current analysis, have been reviewed in [10]. The
used methodologies can be categorized as methods based on
models [11], thresholds [12], pattern recognition and neural
networks [13], [14], as well as fuzzy logic [15]. However,
to the best of our knowledge, no report on utilizing multiple
signals to monitor the health and operation of a motor without
a priori knowledge about the motor has been published so far.
Such a technique makes the task of monitoring independent
from the motor specification.

III. SYSTEM ARCHITECTURE

Figure 2 shows the proposed CAH monitoring system con-
sisting of three blocks that are responsible for different tasks:
pre-processing, controlling stability, and handling different
states. Before describing each part in this section, we present
the scope of the proposed system as it follows.

A. Scope

Since the proposed system has no information on the black
box it monitors (i.e., the motor), the relations of the various
signals are also unknown. However, we do assume that the
black-box under study is an “injective function”. Therefore,
any unique set of input data should correspond to a unique set
of output data, and vice-versa. Thus, the working mode can be
considered as normal only when a change of the output dataset
is also reflected in a change of the input dataset and vice-versa.
In other words, the black-box (in this case the motor) does not
work well (is broken), when the output changes without being
stimulated by an input, or if an input change does not lead to
a changed output.

The second assumption is that the system is in a steady state.
Therefore, unstable signals and states (in particular transient
signals during state changes) need to be disregarded. Hence,
data pre-processing steps are needed for some signals to
convert the data to a format suitable for CAH.

B. Pre-Processing

The pre-processing block (shown in the red frame of Fig-
ure 2) covers both abstraction and low-pass filtering of a
signal. For example, the abstraction receives the sinusoidal
signal of voltage and provides its amplitude and frequency.
Filtering removes some of the noise and unwanted signal
values (e.g., oscillations during a transition). Pre-processing
is the only case-dependent part of the system; although, the
requirements on it are still generic.

C. Stability Controller

Even though filtered signals are better than the original
ones, they may not be stable enough. Therefore, the Stability
Controller block (shown in the green frame of Figure 2) is
needed to decide whether a signal is stable or not. For this
purpose, a sample history in the form of a sliding window
(the size of which can be configured) saves the latest values.
The Stability Controller compares an actual sensor value with
the history and decides that a signal is stable if the disparity (in
percentage) of the actual value to a defined number of values
of the history is below a certain threshold. In other words, an
actual value has to be sufficiently close to a defined number of
the values saved in the history. A dataset is only stable when
all the signals constituting the set are stable.

D. State Handler (SH)

The SH (shown in the blue frame of Figure 2) does the
bulk of the work. This unit tries to recognize all states of
normal operation, so that it can, subsequently, detect deviations
therefrom.

1) Algorithm: One of the tasks of the SH is to verify
whether the actual state is valid or not. For this purpose, the
values inserted into this state are counted. A state is considered
as valid only if enough values are already stored in it. While
the SH saves valid states in the state vector, it discards invalid
ones. This procedure ensures that extremely noisy data or



No

Get a dataset 
([Input],[Output])

Abstraction

Filtering

Update the actual values

Is the system 
stable?

Save in the 
history

Does an active 
state exist?

Does the actual
dataset match the 

active state?

Count the number of datasets 
inserted in the active state

Are there enough 
inserted datasets?

Delete the 
active state

Does the 
dataset match an 

existing state?

Make that 
state active

Does 
only one subset 
match the active 

state

Save the active state to 
the state vector

“BROKEN”

“DRIFT”

Is the 
difference within the 

allowable range?

Compare the last dis-
crete average block 

with the first one

Update the 
active state

Was the 
system stable 

before?

Count the number of datasets 
inserted in the active state

Are there 
enough inserted 

datasets?

Delete the 
active state

Save the active state 
to the state vector

Inactivate the active state

Is the state 
vector empty?

Create a new 
active state

Update the 
active state

Yes

Yes

Yes

Yes

YesYes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

Yes

Stability Controller

Preprocessing

State Handler

Fig. 2. Flow chart of the Context-Aware Health Monitoring system.

transition phases do not lead to creating a new state, which
does not reflect the actual operation of the system.

The SH compares new values, marked by the Stability
Controller as stable, with the actual state which is called active
state. If deviations of both input and output datasets (measured
in percentage), are not bigger than a certain threshold, the SH
considers the active state still as active and updates it with
the new values. Next, the discrete average of that state is
updated and compared with its initial discrete average. If the
two discrete averages have a difference larger than a defined
acceptable threshold, a drift is observed. Discrete averages and
its respective processes are described in more detail in the next
subsection.

If the input or output datasets do not match the actual
state, a change of state has happened, which can be normal or
abnormal. Since the monitored system is treated as an injective
function, the change of only one dataset (input or output

exclusively) is due to an anomaly. Whereas, a change of both
datasets indicates a normal state change. In the latter case, the
question is whether the system changes to an already known
state or a new state has to be created by the SH. Therefore,
the SH goes through the entire state vector and compares all
saved states with the new datasets. The SH sets an old state
active if the new datasets match an old state. Otherwise, the
SH creates a new active state and activates it.

2) Creating and Comparing Discrete Average Blocks
(DABs): The CAH system is not meant to raise an alarm
only when the system is broken, but it is meant to announce
deviations from normal operations as well; that is, when some
signals are drifting. In this context, drifting means a signal that
changes continuously but very slowly (i.e., a change that is not
reflected in continuous averaging). In other words, a series of
values of a signal belong to the same state, but the signal is
gradually deviating outside its normal expected range. The SH
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Fig. 3. Block Diagram of the state updating task of the proposed CAH system.
Discrete averages are also created and kept in this procedure.

detects this behavior through periodically creating DABs of the
signal values. To this end, the task of updating the active state
(shaded in gray in Figure 2) consists of more operations than
only inserting the actual datasets into a state. Figure 3 shows
each step of this procedure. To avoid having semi-filled DABs,
which are not reliable, the SH deletes the previous DAB, if
it is incomplete and belongs to a previously active episode of
that state. Afterward, the SH checks whether the active DAB
is already full, in which case, the SH initiates a new active
block and inserts the actual value into it. If the active DAB
is not full1, no new block is needed, and the SH inserts the
actual datasets into the DAB.

A new value of a signal might be in the vicinity of the
continuous average (CA) because the CA slowly changes
following the drift of the signal. Thus, the comparison of the
new values with the CA values does not indicate symptoms of
deviation, since it is within the acceptable range of variation. In
contrast to the CA, which slowly shifts due to slow changes,
the difference between two DABs increases as a slow drift
happens in a signal.

IV. SIMULATION AND RESULTS

To validate the proposed CAH system, we modeled it in
C++ and simulated it on a set of data from an AC motor,
operating normally, changing state, having a drift and failing.

A. Data

The data of the motor has been collected based on both
simulations and real measurements. The data of normal and
abnormal functional operations are based on measuring volt-
age, current, vibration, frequency, and torque (mechanical and
electrical) signals from the sensors of a three-phase induction

1Given that no state change has happened.

Fig. 4. Outputs of CAH system for an AC motor operating in normal mode
when a load change is happening.

motor [16]. The normal state and change of states have been
simulated as changes in load and operating speed. For the
drift, the continuous increase of load was modeled using
a gradual change in mechanical torque, to show the wear-
out phenomenon. In the simulation, three-phase current and
voltage, speed and load torque have been acquired and later
used as inputs for the proposed health monitoring system. The
motor is a squirrel-cage, three-phase, 380V, 50Hz, induction
motor with 3KW power consumption and four poles [16].
The steady state model used for the motor is the model of
asynchronous machine in MATLAB R©.

B. Pre-processing

The voltage and current values had to be abstracted to
extract information about their amplitudes. All output vari-
ables showed occasional unsteadiness, and therefore, they
were filtered using a low-pass filter2. Other signals could be
used without any modification. Last but not least, to avoid
unnecessary extra processing, all datasets were down-sampled
by a factor of 50, after which each two samples are 5ms apart.
Here on, all the references to the numbers of samples are after
down-sampling.

C. Simulations

1) Normal Operation with and without Changes: Figure 4
shows our test scenario for recognition of the normal operation
of the system and respective state changes. In this scenario,
the motor is started first, and then, runs monotonically; which

2We used an Equiripple filter, namely fdesign.lowpass function of
MATLAB R©, two times in a row, with following parameters: Fp =
0.005, F st = 0.1, Ap = 0.15, Ast = 0.999. We note that a low-pass filter
implementation is outside the scope of this work for which there are several
light-weight methods of implementation on hardware or software.



Fig. 5. CAH system outputs for a motor undergoing wear-out.

means, that no parameter changes. In the beginning, the
output signals oscillate considerably. Around 0.2s (or the
42nd sample), for the first time, the stability-controller verifies
the signals as stable. However, this changes within the next
samples, and consequently the active state is discarded (shown
as a negative state), and a new active state is created. This
situation continues until the 196th sample (∼ 1s) where a new
active state is created which remains stable and is updated by
new samples. In this instance, the initial state collects 205
samples, until the load changes at around the 400th sample
(∼ 2s). Since there are no big changes in any of the signals,
the SH recognizes that the monitored system remains in the
same state and tags the monitored system as healthy.

When the load changes, the system becomes shortly unsta-
ble. After a period of oscillating signals and instability, around
the 431st sample (∼ 2.2s), the system settles into a new state.
Once the system is stable again and recognized as such, the SH
is updated again with new values. In this case, until the second
load change at the 800th sample (or ∼ 4s). The third and
final state of this scenario is created at around 831st sample
(∼ 4.2s) and remains unchanged until the end. We successfully
ran a similar experiment to detect state changes due to speed
changes.

2) State Drift (Wear-Out): The wear-out phenomenon de-
scribes a case where the system (here the motor) still works,
but one or more signals are drifting away from the nominal
value(s). In this example, shown in Figure 5, at the 188th
sample (∼ 0.9s), a valid state is created, and after 265 samples,
the CAH system recognizes a drifting signal and raises a
flag. Since the drift continues, where the signal exceeds the
boundary of being part of the existing state, the “drift” alarm
is replaced by a “broken” alarm. This event occurs at the 628th
sample (∼ 3.1s).

3) Anomaly: Caused by a bearing defect, the vibration
signals, and the current change significantly. At the moment of
failure, one of the output signals changed while the input sig-
nal (in this case the voltage) remained unchanged. Therefore,
the SH raised a “broken” flag.

V. CONCLUSION

In this paper, we presented a small footprint health mon-
itoring system which can track the health status of any
“injective function black-box”. Our system is able to achieve
this without a priori knowledge about the specification or
design details of the monitored system, by using only con-
textual information. For verifying the validity of the proposed
approach, it was tested on an AC motor dataset, where it could

successfully identify normal modes of operations, changes
therein and deviations thereof (including drift and failure).
This method reduces the engineering effort of designing
health monitoring systems for various small gadgets, to a
configuration setup of thresholds for an acceptable range of
variation for the input and output values. In further steps, this
process can be automated through a one-time application of
optimization, self-awareness, or learning methods during setup
or commissioning.
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