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Abstract—In this paper, we enunciate the theorem of secrecy

in tagged protocols using the theory of witness-functions and
we run a formal analysis on a new tagged version of the
Needham-Schroeder public-key protocol using this theorem. We
discuss the significance of tagging in securing cryptographic
protocols as well.
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I. INTRODUCTION

Recently, a new category of analytic functions, called

witness-functions, has been put forward to analyze crypto-

graphic protocols for secrecy [1]–[4]. These functions assign

to every single atomic message involved in the protocol a

reasonable level of security. An analysis with a witness-

function is the process that tries to make sure that this level

of security never goes down between any two consecutive

steps, a receiving step and a sending one, from the very first

appearance of the atomic message in the protocol until its final

destination. This is obviously sufficient to guarantee that any

secret will never fall into the hands of an unauthorized agent

including an evil intruder. In that case, the protocol is said to be

increasing. Certainly, the witness-functions are able to analyze

any protocol. However, we notice that they present interesting

features when they are used on tagged protocols. In fact, the

theorem of analysis acquires a reduced and elegant form and

the analysis becomes much quicker. This is because there is

a subtle relationship between tagging, on the one hand, and a

witness-function definition, on the other hand. In this paper,

1This paper has been accepted at the 31st Annual IEEE Canadian Confer-
ence on Electrical and Computer Engineering (CCECE 2018). Québec City,
Canada. May 13–16, 2018.

we discuss these aspects and we analyze a tagged protocol

with a witness-function. The paper is organized as follows. In

section II, we recall the theory of witness-functions. In section

III, we give an overview on tagged protocol. In section IV, we

enunciate the theorem of secrecy in tagged protocols using

witness-functions. In section V, we propose a tagged version

of the Needham-Schroeder public-key protocol and we analyze

it with that theorem. In section VI, we discuss some interesting

related works dealing with tagged protocols and we compare

them to our approach. In section VII, we conclude.

II. THE THEORY OF WITNESS-FUNCTIONS

The theory of witness-functions has been proposed by

Fattahi et al. [1]–[4] to statically verify cryptographic protocols

for secrecy. A witness-function is an analytic function that

attributes a safe level of security to every atomic message in

the protocol and the analysis using a witness-function closely

follows the growth of this value during the lifecycle of this

atom. In this section, we recall the fundaments of this theory.

Please notice that we will give the meaning of every notation

we use in a natural language as soon as it shows up first.

A. Context of verification

A protocol analysis using the witness-functions runs in a

role-based specification [5], [6] under the hypotheses of Dolev-

Yao [7]. In this paper, we assume that a protocol is always

analyzed under the perfect encryption assumption which means

that we do not deal with flaws caused by the cryptographic sys-

tem in use or the implementation of cryptographic primitives.

Equally, we suppose that there is no special equational theory

and all secrets, keys and other names are atomic.

B. Reliable function

Definition 1: (Well-formed Function) Let F be a function.

F is well-formed iff: ∀M,M1,M2 ⊆ M, ∀α ∈ A(M):
F (α, {α}) = ⊥
F (α,M1 ∪M2) = F (α,M1) ⊓ F (α,M2)
F (α,M) = ⊤, if α /∈ A(M)

A well-formed function F should assign the infimum level

of security (i.e. ⊥) to an atomic message α that shows up in

clear (not encrypted) in a set M of messages. This is obviously
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to express that anybody who knows M inevitably knows α.

It assigns to an atomic message in the union of two sets of

messages the minimum of the two levels (i.e. ⊓) assigned in

each set alone. It assigns the supremum (i.e. ⊤) to an atomic

message α that does not even appear in M . This is to express

the fact that nobody is able to know α when he knows M . We

note by A(M) the atomic messages of M .

Definition 2: (Full-invariant-by-intruder Function) Let F
be a function. F is full-invariant-by-intruder iff: ∀M ⊆
M,m ∈ M, α ∈ A(m):
M |= m ⇒ (F (α,m) ⊒ F (α,M)) ∨ (pK(I)q ⊒ pαq).

A full-invariant-by-intruder function F should resist against

any malicious tentative to lower the level of security by an

intruder once F assigns to an atomic message α a level of

security in a set of messages M . That is to say that the intruder

can never infer (i.e. |=) from this set M any other message

m in which this level may be lower than the one given in M
(i.e. F (α,m) 6⊒ F (α,M)), exception made when the intruder

is explicitly authorized to know α (i.e. pK(I)q ⊒ pαq). We

say that a function F is reliable when it is well-formed and

full-invariant-by-intruder.

Definition 3: (F -Increasing Protocol) Let F be a function

and p be a protocol. p is F -increasing iff: ∀R.r, ∀σ, ∀α ∈
A(r+), we have: F (α, r+σ) ⊒ pαq ⊓ F (α,R−σ)

An F -increasing protocol is a protocol that constantly

pumps traces (substituted generalized roles in a role-based

specification) with atomic messages α that always have a

security level, calculated by F , higher (i.e. ⊒) upon a sending

step (i.e. in the generalized role r+σ, the sign + denotes a

sending operation and σ a substitution corresponding to a

possible execution of the protocol) than the one calculated

by the same function in the messages received in the latest

receiving step (i.e. in the generalized role R−σ, the sign −
denotes a receiving operation), or higher than the level of

security of α obtained directly from within the context of

verification (i.e. pαq), if it is available.

Theorem 1: (Secrecy in Increasing Protocols) Let F be a

reliable function and p be an F -increasing protocol.

p is correct for secrecy.

Theorem 1 brings up a very important result. It establishes

that a protocol is correct for secrecy if it could be demonstrated

increasing using a reliable function F . The sketch of the proof

is quite straightforward. That is, if the attacker manages to

discover an initially protected secret α (get it in clear) then its

security level calculated by F should be the infimum seeing as

F is well-formed. This scenario cannot be rooted in the rules

of the protocol seeing as this latter is F -increasing and its rules

constantly raise the level of security of α. This scenario could

not happen either if the intruder uses his capabilities seeing

as F is full-invariant-by-intruder and then the intruder could

not forge any message in which the security level of α may

decline. Hence, this scenario could simply never happen and

the secret could never be disclosed. The complete formal proof

could be found in [8].

C. Construction of Reliable Function

Here we give one constructive way to build a reliable

function. Let’s consider the function F defined as follows:

Definition 4: (Reliable Function)
1. F (α, {α}) = ⊥
2. F (α,M1 ∪M2) = F (α,M1) ⊓ F (α,M2)
3. F (α,M) = ⊤, if α /∈ A(M)
4. F (α,m1.m2) = F (α, {m1,m2})
5. F (α, {m}k) = F (α, {m}), if pk−1

q 6⊒ pαq
6. F (α, {m}k) = pk−1

q ⊓ ID(m), if pk−1
q ⊒ pαq

The first three steps 1., 2. and 3. directly grant the function F
the property of being well-formed. The step 4. deconcatenates

a message m1.m2 into two messages m1 and m2 and F
returns the same level of security as in the set {m1,m2}.

That is because an intruder, although he can deconcatenate

any message m1.m2, he cannot infer about α in m1.m2 more

than he could infer about it in each of m1 or m2 separately.

The step 5. ignores encryption with an outer weak key (i.e.

pk−1
q 6⊒ pαq) and looks for a deeper strong key. That is

because if α is encrypted with a weak key, it can fall into the

hands of an unauthorized agent. The step 6. makes sure that α
is encrypted with a strong key k (i.e. pk−1

q ⊒ pαq meaning

the reverse key k−1 must be known only by a part of agents

who are authorized to know α in the context) and F returns the

set of agent identities who know the reverse key (i.e. pk−1
q) as

well as the identity of all the neighbors of α in m (i.e. ID(m)).
The step 6. transforms F into a full-invariant-by-intruder

function. In fact, an unauthorized intruder who attempts to

mislead F should obtain the key k−1 beforehand. Hence, his

knowledge must include k−1 (i.e. pK(I)q ⊒ pk−1
q). Since

the key k−1 is such that pk−1
q ⊒ pαq then the knowledge of

the intruder must satisfy pK(I)q ⊒ pαq as well owing to the

transitivity of the comparator ”⊒”. This is contradictory to the

fact that the intruder is unauthorized to know α.

Example 1: Let us have the following context of veri-

fication: pαq = {A,B, S}; m = {{C.{α.D}kas
}kab

}kac
;

k−1
ac = kac, k

−1
ab = kab, k

−1
as = kas; pkacq = {A,C}, pkasq =

{A,S}, pkabq = {A,B}. We have:

F (α,m) = F (α, {C.{α.D}kas
}kab

) = {C,D}∪pk−1
ab q =

{C,D} ∪ {A,B} = {A,B,C,D}.

Please notice that the outermost encryption by kac has been

ignored by F because it is a weak key since the agent C is not

authorized to know α in the context (i.e. pαq = {A,B, S}).

This case falls into the step 5.

Other reliable functions could be found in [2], [4]. In the

rest of this paper, we will only use the function defined in this

subsection and we refer to it by F .

D. Witness-functions to reduce the impact of variables

The function F as defined above may be suitable to assign

security level for atomic messages but in ground terms only.

Nevertheless, when we analyze a protocol, messages are not

necessarily ground and may contain variables. To cope with

this situation, the idea is to use the derivative function F ′

of F that operates like F but after eliminating variables



from the neighborhood of α (e.g. F ′(α, {α.X.B}kcd
) =

F (α, {α.B}kcd
) = {B,C,D}). Although the derivative func-

tion remains well-formed and full-invariant-by-intruder, it may

lose its quality as a function and may return multiple and

contradictory values for the same trace generated by a sub-

stitution in the generalized roles. For example, if the trace

is {α.A.B}kcd
that could be produced by substitution in two

generalized roles {α.X.B}kcd
and {α.Y }kcd

, the function F ′

assigns to α the level of security {B,C,D} when the trace

originates from the first generalized role, and the level of

security {C,D} if the trace originates from the second one. To

overcome this incoherence, we define the witness-functions.

Definition 5: [Witness-Function]

Wp,F (α,mσ) = ⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=mσ}
F ′(α,m′σ′)

A witness-function Wp,F calculates the level of security of

an atomic message α in a trace mσ by using F ′ applied to all

the possible origins m′ in the messages M̃p generated by the

generalized roles and returns the minimum, which is obviously

a single value. Nevertheless, a witness-function could not be

used as is to analyze a protocol since the analysis runs statically

on the generalized roles not on the traces (i.e. mσ) which are

dynamic entities. For that, we bound a witness-function by two

static bounds as follows.

Lemma 1: [binding a witness-function]

F ′(α,m) ⊒ Wp,F (α,mσ) ⊒ ⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=mσ′}
F ′(α,m′σ′)

The upper-bound F ′(α,m) returns a minimal set of identi-

ties from m after removing all variables in m. The lower-bound

⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=mσ′}
F ′(α,m′σ′) returns all the identities gathered

from all the messages that could be unified with m. The

witness-function returns certain identities in between which

are known only when the protocol is executed from the actual

origins of the trace only. The inequality is quite intuitive since

m is a guaranteed origin of the trace mσ and the actual origins

of the trace mσ is a subset of the messages that are unifiable

with m. The two bounds are obviously statically computable.

Theorem 2: [Decision Procedure for Secrecy with a

Witness-Function] Let p be a protocol. Let Wp,F be a witness-

function. p is correct for secrecy if: ∀R.r ∈ RG(p), ∀α ∈
A(r+) we have:

⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=r+σ′}
F ′(α,m′σ′) ⊒ pαq ⊓ F ′(α,R−)

Theorem 2 establishes a decision procedure for secrecy

using the bounds a witness-function. When a message is sent

(i.e. r+), it is analyzed largely with the lower-bound of a

witness-function. When a message is received (i.e R−), it is

analyzed strictly with the upper-bound of a witness-function.

Any dishonest identity ambushed by the lower-bound that is

not returned by the upper-bound will be interpreted as an

intrusion. The protocol is then decided not increasing and the

analysis halts with a failure flag. Theorem 2 is a direct result of

Theorem 1 and Lemma 1. Please notice that Theorem 2 does

not imply the witness-function itself (i.e. Wp,F ). It involves

its bounds only.

III. TAGGED PROTOCOLS

A tag is any subtlety or any syntactic annotation put inside

a message to differentiate it from another message. A tagged

protocol is a protocol such that every message received by

any agent has a unique and regular origin. That implies that

every single message (an encryption pattern) containing a

variable (i.e. something that the receiver does not know) is

distinguishable from any other message (any other encryption

pattern) and does not unify with any message other than

the regular message that the receiver is expecting to get

through the network from the right agent. Tagging a protocol

could be reached by inserting an identity beside some atom

in the message. For example, if an agent A receives the

message {α.B.X}kab
where the variable X is supposed to

be a nonce Nb sent by a regular agent B and the protocol

generates also the message {α.B.C}kab
, we can change the

message {α.B.X}kab
in the definition of the protocol by

{A.α.B.X}kab
in the new tagged version of the protocol and

hence the message {α.B.C}kab
will not unify with it. All the

same, a signature could be an efficient tag, too. For example,

we can change the message {α.B.X}kab
in the definition of

the protocol by {{α}k−1

b
.B.X}kab

in the new tagged version

of the protocol to prevent {α.B.C}kab
from unifying with it.

Tagging could be also reached by inserting an ordinal number

into an encrypted message or inserting a string describing

the type of certain components inside. In general, tagging

prevents man-in-the-middle attacks from happening by offering

the receiver the way to distinguish a regular message from an

irregular one.

IV. THEOREM FOR SECRECY IN TAGGED PROTOCOLS

As a matter of fact, when a protocol is tagged (all its

messages are distinguishable one from another), it becomes

nonsense talking about message that overlap (unifiable).

This has a direct impact on the reduction of Theorem 2. In

fact, the expression ⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=r+σ′}
F ′(α,m′σ′) in Theorem

2 will be reduced to F ′(α, r+). That is, the lower-bound

⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=r+σ′}
F ′(α,m′σ′) means F ′ applied to all the

patterns in the generalized roles that are unifiable with the

message r+ and its goal is to ambush dishonest identities that

could be inserted in the neighborhood of an analyzed atomic

message α. Nevertheless, this could never happen when the

protocol is tagged. A tagged protocol creates in fact a series

of from regular to regular data flow in which the intruder is

hopeless to launch any man-in-the-middle attack. In that case,

if the protocol happens to be incorrect, that will definitely be

because it is not increasing by construction because of a bad

reasoning on the knowledge of every agent and without any

intervention from the intruder. This brings us to the following

theorem.



p= 〈1, A −→ B : {Na.A.B}kb
〉

〈2, B −→ A : {A.B.Na}ka
.{B.A.Nb}ka

〉
〈3, A −→ B : {Nb.B.A.Na}kb

〉.

TABLE I
A TAGGED VERSION OF THE NEEDHAM-SCHROEDER PROTOCOL

Theorem 3: [Theorem of Secrecy for Tagged Protocols] Let

p be a tagged protocol. Let Wp,F be a witness- function. p is

correct for secrecy if: ∀R.r ∈ RG(p), ∀α ∈ A(r+) we have:

F ′(α, r+) ⊒ pαq ⊓ F ′(α,R−)

Theorem 3 enables tagged protocols to use simply the

derivative function F ′ on both the received generalized role

and the sent one to determine whether or not the tagged

protocol is increasing, with no need to perform any further

unifications. It is worth mentioning that verifying whether or

not a protocol is tagged is an easy task that is carried out only

once before analyzing the protocol. It is equally worth noticing

that Theorem 3 sets just sufficient conditions for the tagged

protocol correctness regarding secrecy, which conditions are

not inevitably necessary since the problem of secrecy remains

undecidable in general. In the rest of the paper, we will refer

to Theorem 3 by the acronym TSTP.

V. FORMAL ANALYSIS OF A TAGGED VERSION OF THE

NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL

In this section, we propose our new tagged version of the

Needham-Schroeder public-key protocol (different from the

NSL protocol) and we analyze it with Theorem 3 (TSTP) for

secrecy. This version is given in Table I.

A. Context setting

The generalized roles of p are defined by RG(p) =
{AG ,BG} where:

AG = i.1 A −→ I(B) : {N i
a.A.B}kb

i.2 I(B) −→ A : {A.B.N i
a}ka .{B.A.X}ka

i.3 A −→ I(B) : {X.B.A.N i
a}kb

BG = j.1 I(A) −→ B : {Y.A.B}kb

j.2 B −→ I(A) : {A.B.Y }ka .{B.A.N
j
b }ka

j.3 I(A) −→ B : {N j
b .B.A.Y }kb

Initial knowledge :
pAq = ⊥; pBq = ⊥; (i.e. two public identities)
pNaq = {A,B} (i.e. secret shared between A and B);
pNbq = {A,B} (i.e. secret shared between A and B);
pk−1

a q = {A}; (i.e. private key of A)
pk−1

b q = {B}; (i.e. private key of B)
pkaq = ⊥; (i.e. public key of A)
pkbq = ⊥; (i.e. public key of B)
(L,⊒,⊔,⊓,⊥,⊤) = (2I ,⊆,∩,∪, I, ∅); (i.e. security lattice)
I = {I,A,B}; (i.e. intruder and regular agents present on the net)
Xp = {X,Y } is the set of variables. F is the function given by
Definition 4 and F ′ is its derivative form.

B. Tagging verification

Before we dive into the analysis, let us make sure that this
protocol is a tagged one. At the first sight, an attentive eye should
remark that the protocol is tagged by the position of the identities
in its messages. In fact, the encrypted message {Na.A.B}kb

is the

only one that contains the identity of the receiver (i.e. B) at the
last position. The encrypted message {A.B.Na}ka is the only one
that contains the identity of the receiver (i.e. A) at the first position
and the identity of the sender (i.e. B) at the second position. The
encrypted message {B.A.Nb}ka is the only one that contains the
identity of the receiver (i.e. A) at the second position and the identity
of the sender (i.e. B) at the first position. Finally, the encrypted
message {Nb.B.A.Na}kb

is the only one that contains the identity
of the receiver (i.e. B) followed by the identity of the sender (i.e. A)
that must show up in the middle of the message only. This makes
all the encryptions distinguishable one from another from a receiver
point of view. More rigorously, according to the generalized roles
AG , the agent A is a receiver in the step i.2. The first message
he receives is {A.B.N i

a}ka which is the regular message expected
by B. The other message is {B.A.X}ka which unifies only with
{B.A.N i

b}ka which is the regular message that A is expecting.

According to the generalized roles BG , the agent B is a receiver
in two steps.

1) In the step j.1 : B receives {Y.A.B}kb
. This message unifies

only with the message {N i
a.A.B}kb

, which is the regular
message that B is expecting;

2) In the step j.3 : B receives {N j
b .B.A.Y }kb

. This message

unifies only with {X.B.A.N i
a}kb

. Upon replacing X by N
j
b

and Y by N i
a, the received message becomes {N j

b .B.A.N i
a}kb

,
which is the regular message that B is expecting.

Therefore, this protocol is a tagged one and Theorem TSTP
applies.

C. Analyzing the generalized role of A

As defined in the generalized role AG , an agent A may participate
in two receiving-sending steps. In the first step, he receives nothing
and sends the message {N i

a.A.B}kb
. In the subsequent step, he re-

ceives the message {A.B.N i
a}ka .{B.A.X}ka and sends the message

{X.B.A.N i
a}kb

. This is represented by the following two rules.

S
1
A :

�

{N i
a.A.B}kb

S
2
A :

{A.B.N i
a}ka .{B.A.X}ka

{X.B.A.N i
a}kb

1) Analyzing exchanged messages in S1
A:

1- For N i
a:

a- On sending: r+
S1
A

= {N i
a.A.B}kb

F ′(N i
a, r

+

S1
A

) = F ′(N i
a, {N

i
a.A.B}kb

)

{No variable in the neighborhood of N i
a to be removed by derivation}

= F (N i
a, {N

i
a.A.B}kb

)
{Definition 4}

= {A,B} ∪ pk−1

b q

{Since pk−1

b q = {B}}
= {A,B} ∪ {B}
= {A,B} (1.1)

b- On receiving: R−

Si = ∅

F ′(N i
a, R

−

S1
A

) = F ′(N i
a, ∅)

{No variable in the neighborhood of N i
a to be removed by derivation}

= F (N i
a, ∅)

{Definition 4}
= ⊤ (1.2)

2- Accordance with Theorem TSTP:

From (1.2) and since pNaq = {A,B}, we have:

pN i
aq ⊓ F ′(N i

a, R
−

S1
A

) = {A,B} ⊓ ⊤ = {A,B} (1.3)



From (1.1) and (1.3), we have :

F ′(N i
a, r

+

S1
A

) ⊒ pN i
aq ⊓ F ′(N i

a, R
−

S1
A

) (1.4)

From (1.4), S1
A respects Theorem TSTP. (I)

2) Analyzing exchanged messages in S2
A:

1- For N i
a:

a- On sending: r+
S2
A

= {X.B.A.N i
a}kb

F ′(N i
a, r

+

S2
A

) = F ′(N i
a, {X.B.A.N i

a}kb
)

{The variable X is removed by derivation}
= F (N i

a, {B.A.N i
a}kb

)
{Definition 4}

= {A,B} ∪ pk−1

b q

{Since pk−1

b q = {B}}
= {A,B} ∪ {B}
= {A,B} (2.1)

b- On receiving: R−

S2
A

= {A.B.N i
a}ka .{B.A.X}ka

F ′(N i
a, R

−

S2
A

) = F ′(N i
a, {A.B.N i

a}ka .{B.A.X}ka )

{The variable X is removed by derivation}
= F (N i

a, {A.B.N i
a}ka .{B.A}ka )

{Definition 4 and F is well-formed}
= F (N i

a, {A.B.N i
a}ka) ⊓ F (N i

a, {B.A}ka)
{F is well-formed}

= F (N i
a, {A.B.N i

a}ka) ⊓ ⊤
{Security lattice property}

= F (N i
a, {A.B.N i

a}ka)
{Definition 4}

= {A,B} ∪ pk−1
a q

{Since pk−1
a q = {A}}

= {A,B} ∪ {A}
= {A,B} (2.2)

2- For X:

c- On sending: r+
S2
A

= {X.B.A.N i
a}kb

F ′(X, r+
S2
A

) = F ′(X, {X.B.A.N i
a}kb

)

{No variable in the neighborhood of X to be removed by derivation}
= F (X, {X.B.A.N i

a}kb
)

{Definition 4}
= {A,B} ∪ pk−1

b q

{Since pk−1

b q = {B}}
= {A,B} ∪ {B}
= {A,B} (2.3)

d- On receiving: R−

S2
A

= {A.B.N i
a}ka .{B.A.X}ka

F ′(X,R−

S2
A

) = F ′(X, {A.B.N i
a}ka .{B.A.X}ka )

{No variable in the neighborhood of X to be removed by derivation}
= F (X, {A.B.N i

a}ka .{B.A.X}ka )
{Definition 4 and F is well-formed}

= F (X, {A.B.N i
a}ka) ⊓ F (X, {B.A.X}ka)

{F is well-formed}
= ⊤ ⊓ F (X, {B.A.X}ka)

{Security lattice property}
= F (X, {B.A.X}ka)

{Definition 4}
= {A,B} ∪ pk−1

a q

{Since pk−1
a q = {A}}

= {A,B} ∪ {A}
= {A,B} (2.4)

3- Accordance with Theorem TSTP:

From (2.1), (2.2), we have directly:

F
′(N i

a, r
+

S2
A

) ⊒ pN
i
aq ⊓ F

′(N i
a, R

−

S2
A

) (2.5)

From (2.3) and (2.4), we have directly:

F
′(X, r

+

S2
A

) ⊒ pXq ⊓ F
′(X,R

−

S2
A

) (2.6)

From (2.5) and (2.6), S2
A respects Theorem TSTP. (II)

D. Analyzing the generalized role of B

As defined in the generalized role BG , an agent B may participate
in just one receiving-sending step in which he receives the message

{Y.A.B}kb
and sends the message {A.B.Y }ka .{B.A.N

j
b }ka . This

is represented by the following rule.

SB :
{Y.A.B}kb

{A.B.Y }ka .{B.A.N
j
b }ka

1) Analyzing exchanged messages in SB:

1- For N
j
b :

a- On sending: r+SB
= {A.B.Y }ka .{B.A.N

j
b }ka

F ′(N j
b , r

+

SB
) = F ′(N j

b , {A.B.Y }ka .{B.A.N
j
b }ka)

{The variable Y is removed by derivation}
= F (N j

b , {A.B}ka .{B.A.N
j
b }ka)

{Definition 4 and F is well-formed}
= F (N j

b , {A.B}ka) ⊓ F (N j
b , {B.A.N

j
b }ka)

{Definition 4 and F is well-formed}
= F (N j

b , {A.B}ka) ⊓ F (N j
b , {B.A.N

j
b }ka)

{F is well-formed}
= ⊤⊓ F (N j

b , {B.A.N
j
b }ka)

{Security lattice property}
= F (N j

b , {B.A.N
j
b }ka)

{Definition 4}
= {A,B} ∪ pk−1

a q

{Since pk−1
a q = {A}}

= {A,B} ∪ {A}
= {A,B} (3.1)

b- On receiving: R−

SB
= {Y.A.B}kb

F ′(N j
b , R

−

SB
) = F ′(N j

b , {Y.A.B}kb
)

{The variable Y is removed by derivation}
= F (N j

b , {A.B}kb
)

{F is well-formed}
= ⊤ (3.2)

2- For Y :

a- On sending: r+SB
= {A.B.Y }ka .{B.A.N

j
b }ka

F ′(Y, r+SB
) = F ′(Y, {A.B.Y }ka .{B.A.N

j
b }ka)

{No variable in the neighborhood of Y to be removed by derivation}
= F (Y, {A.B.Y }ka .{B.A.N

j
b }ka)

{Definition 4 and F is well-formed}
= F (Y, {A.B.Y }ka) ⊓ F (Y, {B.A.N

j
b }ka)

{F is well-formed}
= F (Y, {A.B.Y }ka) ⊓ ⊤

{Security lattice property}
= F (Y, {A.B.Y }ka)

{Definition 4}
= {A,B} ∪ pk−1

a q

{Since pk−1
a q = {A}}

= {A,B} ∪ {A}
= {A,B} (3.3)



b- On receiving: R−

SB
= {Y.A.B}kb

F ′(Y,R−

SB
) = F ′(Y, {Y.A.B}kb

)
{No variable in the neighborhood of Y to be removed by derivation}

= F (Y, {Y.A.B}kb
)

{Definition 4}
= {A,B} ∪ pk−1

b q

{Since pk−1

b q = {B}}
= {A,B} ∪ {B}
= {A,B} (3.4)

3- Accordance with Theorem TSTP:

From (3.1), (3.2) and since pNbq = {A,B} we have:

F
′(N j

b , r
+

SB
) ⊒ pN

j
b q ⊓ F

′(N j
b , R

−

SB
) (3.5)

From (3.3) and (3.4), we have directly:

F
′(Y, r+SB

) ⊒ pY q ⊓ F
′(Y,R−

SA
) (3.6)

From (3.5) and (3.6), SB respects Theorem TSTP. (III)

VI. COMPARISON WITH RELATED WORKS

From (I), (II) and (II), we deduce that the tagged version

of the Needham-Schroeder public-key protocol given in Table

I fully respects Theorem TSTP. Hence, we conclude that it

is correct for secrecy. In fact, tagging constitutes an efficient

way to create well-structured protocols that help avoid mis-

interpretation of received messages and a regular agent is

always assured that he is receiving messages from the right

regular agent. A tagged protocol is a good candidate for an

analysis by witness-functions that can verify it quickly owing

to the simplified theorem we have exhibited so far. By the

same token, the authors in [9] add a tag for each type by

adding an explicit name in every message generated by the

protocol. For instance, they use the notation (nonce, N ) to

indicate that the value N is supposed to be a nonce. This

extra information is in fact added by honest agents to precise

the intended type of the message and the receiver uses it to

recognize the message. This way, tags ensure that any message

having originally a given type will not be interpreted as having

another type which prevents any possible type-flaw attack.

In [10], tagging schemes are used for a decidability proof

purpose. The tag is represented as a fresh number that marks

all encrypted sub-terms in the protocol. As a result, tagging

prevents the unification of different encrypted sub-terms which

transforms an undecidable general problem to a decidable

particular one even with an infinite number of nonces. In

[11], tagging allows to change the inherent non-termination

property caused by inference rules. An approach based on Horn

clauses [12] is adopted in which attacker abilities and protocol

rules are translated into Horn clauses, then the algorithm infers

progressively new clauses by resolution. After some resolution

steps, the authors show that it is possible to generate an

infinite number of sessions which may lead to non-termination.

However, after adding a tag on each use of a cryptographic

primitive, every encrypted message becomes distinguishable

from others, obviously owing to the tag. To practically high-

light the effect of tagging, they apply their approach on

untagged protocols whose their resolution algorithm does not

terminate (i.e. the Needham–Schroeder shared-key protocol,

the Woo-Lam shared key protocol, etc.). Then, they show that

after tagging the protocol, messages become unambiguously

identified and the infinite loop observed before never happens

again. Therefore, the algorithm terminates. In [13], Arapinis et

al. give a scheme to transform a secure protocol for a single

session, which is a decidable problem, to a secure one for an

unbounded number of sessions using tagging. In [14], Cortier

et al. show that if a protocol running alone is secure, it remains

secure even if it runs simultaneously with other protocols if

we carefully add a tag to every encryption in such a way that

we can differentiate between all the protocols by adding the

name of the protocol for example. Similarly, Bauer et al. [15]

show that if a protocol is correct for secrecy with a probability

higher than some threshold, a protocol composition remains

correct for secrecy provided that protocol messages are tagged.

Our work in this paper is one of these efforts with the clear

advantage that our proposed theorem helps to prove secrecy

statically with no need to go through dynamic complexities.

VII. CONCLUSION

In this paper, we put forward a new theorem to prove

secrecy inside tagged protocols using witness-functions. Then,

we run a detailed analysis on a tagged version of the Needham-

Schroeder public-key protocol. Finally, we discussed some

works pinpointing multiple advantages of protocol tagging.
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