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Abstract—Short term load forecasting has an important 

medium for a reliable, economical and efficient operation 

of power system. Most of the existing forecasting 

approaches utilize fixed statistical models with large 

historical data for training the models. However, due to 

recent integration of massive distributed generation, 

nature of load demand has become dynamic. Thus 

because of dynamic nature of the power load demand, 

performance of these models may deteriorate over time. 

To accommodate the dynamic nature of the load 

demands, we propose sliding window regression based 

dynamic model to predict the load demands of multi-area 

power system. Proposed algorithm is tested on five zones 

of New York ISO. Results from our proposed algorithm 

are compared with four existing techniques to validate the 

performance superiority of the proposed algorithm. 

Index Terms—Rolling window regression, power load 

demand forecasting, multi-area power system, New York 

ISO.  

I. INTRODUCTION 

Load forecasting has become an important factor for a 

reliable and economical operation of power systems. 

Depending on the time horizon, load forecasting can 

usually be classified into short-term, midterm-term 

load forecast (MTLF), and long-term. Ranging from 

an hour to a week, short-term load forecasting (STLF), 

is essential for many functions such as unit 

commitment, economic dispatch [1], energy transfer 

scheduling and real-time operation and control [2,3]. 

Covering from a few weeks to several years, mid and 

long-term load forecasting is used for maintenance 

scheduling, adequacy assessment, purchasing fuel, 

scheduling of fuel supplies and limited energy 

resources, etc. [4].  

Accurately estimated forecasts are essential 

part of the electricity utility's operation and production 

costs. Overestimation of electricity load demand will 

lead to the excessive energy purchase or start-up of too 

many units, thereby supplying an unnecessary level of 

reserve. Underestimation, on the other hand, may 

result in a risky operation, with insufficient level of 

spinning reserve, causing the system to operate in a 

vulnerable state to the disturbance [5, 6].  Therefore, a 

wide variety of forecasting models have been 

proposed, most of which can be generally classified 

into two broad categories: statistical methods and 

artificial intelligence (AI)-based methods. Most 

statistical models based on linear analysis have 

deficiencies in solving the load forecasting problem, 

because the load series are usually nonlinear. In recent 

years, AI-based techniques such as neural networks 

have been very popular in finding promising results.  

II. BACKGROUND 

Usually, modeling of a regression problem is 

performed by three ways. The traditional approach to 

model regression problem is by using statistical 

methods like autoregressive integrated moving 

average (ARIMA) model which breaks the time series 

into different components e.g. trend components and 

seasonality components and estimates a model for 

each component. However, it requires an expert in 

statistics to calibrate its model parameters [7]. Another 

approach to model the historical data is to devise a list 

of temporal features so that the auto correlation 

information is not lost. Some of the most commonly 

used temporal features are the time since certain event, 

time between two events, and entropy measurements 

etc. Afterwards, techniques like Random Forest and 

Gradient Boosting are applied on these features to 

observe relative feature importance [8]. By doing so, 

we can keep healthy features and drop the ineffective 

features. The third approach is to use the Sliding 

Windows Regression that is an interesting prediction 

technique and can provides impressive results without 

much prior experience. While predicting next value 

x(t+1), the idea is to feed not only x(t), but also x(t-1), 

x(t-2) etc. to the model. In this way, it incorporates 

auto correlation information into the model [9]. 

Load forecasting is usually made by 

constructing models based on the historical load 

demand data and climate change etc. [10]. Support 

Vector Machine (SVM) was first time applied to load 

forecasting in [10] where it was observed that Support 

Vector Regression (SVR) performs well for time 

series analysis. SVR is an extension of SVM which is 
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used for regression analysis. The main idea of SVR is 

same as SVM that maps the training data into higher 

feature space using kernel functions and finds the 

optimum function that best fits the training data. 

Furthermore, a modified version of the SVR was 

proposed to solve the load forecasting problem in [11] 

where the risk function of the SVR algorithm is 

modified with the use of locally weighted regression 

(LWR) while keeping the regularization term in its 

original form. In addition to it, two improvements to 

the SVR based STLF method: procedure for 

generation of model inputs and subsequent model 

input selection were introduced in [12] using feature 

selection algorithms. Similarly, SVM was used in [13] 

where a hybrid model was proposed to forecast the 

responses of the controlled thermal loads and 

forecasting the residual. In a power system covering a 

large geographical area, a single model for load 

forecasting of the entire area sometimes may not 

guarantee satisfactory forecasting accuracy. One of the 

major reasons is because of the load diversity, usually 

caused by weather diversity, throughout the area. 

Multi-region load forecasting will be an effective 

solution to generate more accurate forecasting results, 

as well as provide regional forecasts for the utilities. A 

SVR based multi-area load forecasting system for day-

ahead operation and market is proposed is [14]. 

However, it was not considered for shorter interval of 

time which is more important especially in a system 

with huge amount of stochastic distributed generation. 

Most of the existing methods use fixed 

models with large amounts of historical data for 

training. However, performance of these models may 

deteriorate over time as the statistical properties of the 

underlying data may change with time due to concept 

drift, especially for the case of power system load data 

which is dynamic. But, model remains unchanged due 

to large amount of historical data to train the model. 

[15] concludes that most of existing approaches for 

STLF are not applicable on local load forecasting due 

to long training time. More recent time series 

prediction methods address these issues [16] where 

different variants of moving window are suggested. 

However, most of these methods depend upon 

individual application and lack a generic solution for 

applying to different domains. 

We propose an adaptive prediction algorithm 

called Sliding Window Regression (SWR) for 

dynamic load data prediction. Generally, prediction 

models are trained with large historical data and once 

the model is trained it may not be updated due to 

limitations posed by large training time and thus, such 

models may not be optimized to perform under 

concept drift [17]. The context of the application or the 

real data may change resulting in the degraded 

performance by the prediction model. For such 

scenarios like real time load data prediction, we 

develop a prediction model which utilizes sliding 

window of data for training the model; and once new 

data arrives, it calculates an error and incorporates it 

in the model accordingly.  

As power system load data is dynamic; thus, 

we forecast the short-term load using SVR and 

training the model using sliding window. We called it 

Sliding Window Regression. For each time interval, 

we automatically find the optimal window size for the 

training data using the Lomb Scargle method to find 

the optimum size of training window [18]. Our 

proposed approach is adaptive in nature as it tracks 

down errors and prevents it from propagating by 

retraining the model periodically. The size of the 

prediction window or forecast horizon is also adaptive 

and is derived by the performance of the model in 

order to ensure a certain reliability in the prediction. 

There are several loss functions which 

describe the performance of the prediction model e.g. 

Mean absolute error (MAE) , Root Mean Square Error 

(RMSE) , Mean Absolute Percentage Error (MAPE) , 

Root Mean Square Percentage Error (RMSEP) and 

Almost correct Predictions Error rate (ACPER). In this 

paper, we have used MAPE which shows the relative 

accuracy of the regression problem as follows: 

  (1) 

where Li is the predicted value and is the actual 

load value and n is the size of training window. 

III. PROPOSED ALGORITHM 

Sliding Window Regression based proposed 

algorithm consists of three main steps: selection of 

regression algorithm, finding optimal training window 

size and finding the size of prediction window/horizon 

as shown in Fig.1. There are several algorithms 

available in literature for time series prediction ranging 

from statistical to pure ML domain algorithms. We 

have adopted SVR due to its ability to model no-

linear data using kernel functions. 

SVR algorithms provide more accurate 

models as their counterparts at the expense of 

additional complexity. However, as in our algorithm 

we propose to use a small training window, the added 

complexity is almost negligible for such small datasets. 

Choice of optimal training window size is an open 

research area for Machine Learning models. Generally, 

accuracy of prediction model improves as the size of 
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the training window increases i.e. it is better to have 

large historical data for training the prediction model 

so that it covers all possible patterns spanning time 

series. However, there is a major drawback of having 

large training data: if the behavior of the underlying 

model changes, trained model may not track the 

changes and result into erroneous readings. 

 

Fig. 1 Flow chart for proposed SWR algorithm 

In contrast to it, we have proposed to use the 

sliding window for training the model in which the 

most recent data will be fed into the model. We have 

proposed a novel method based on Lomb Scargle 

method to find the optimum window size by exploiting 

the inherent periodic nature of the power load demand 

time series data and validated our results by comparing 

it with other existing prediction techniques. 

Finding an optimum size of prediction 

window or more commonly known as prediction 

horizon is very important to ensure a certain level of 

accuracy. The idea behind finding an optimum 

prediction horizon is to increase the size if the 

accuracy of the model is high and decrease it if 

accuracy is low than a certain level as shown in 

Algorithm I. 

 

Algorithm I Adaptive Prediction Window Size 

1. function PREDICTIONWINDOW (yact, ypred) 

2. … MAPE=mean(abs((yact - ypred)/yact) * 100) 

3. ..   if  MAPE>20%  then 
4. ..   PredictionWindow = PredictionWindow -1 

5. ..  else if MAPE<5%  then 
6. ..  PredictionWindow=PredictionWindow +1 

7. ..  else  

8. ..  PredictionWindow = PredictionWindow 

9. ..  end if 

10. ..  return PredictionWindow 

11. end function 
 

IV. RESULTS 

Proposed rolling window regression 

algorithm is simulated for five zones of New York 

ISO: 1) Capital Zone C, 2) Central Zone C, 3) 

Dunwodie Zone I, 4) Genesee Zone B and 5) Valley 

Zone G. Load data of these 5 zones is collected for two 

weeks starting from October 16, 2017 at midnight to 

October 29, 2017 at 13:30 pm with each reading after 

5 minutes that makes total number of readings equal to 

3906 [19].  

It is obvious from Fig. (2-6) that the predicted 

value follows the actual value with small error. Error 

between the predicted value and actual value has been 

calculated in terms of MAPE and shown in Fig. 7. Our 

proposed algorithm is compared with four existing 

techniques of Linear Regression, SVM with RBF 

kernel, Decision tree regression, and random forest 

regression as shown in Fig. 7.  

We have compared the performance of 

several variants of SVR and finally SVR with adaptive 

sliding window for training dataset and adaptive 

prediction horizon was chosen as underlying 

regression algorithm. It is clear that our proposed 

algorithm shows 2% of MAPE which is less than that 

of other existing four regression techniques. It 

validates the effectiveness of the proposed algorithm.   

 

 

Fig. 2 Actual and predicted load forecast of Capital Zone 
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Fig. 3 Actual and predicted load forecast of Central Zone 

 

Fig. 4 Actual and predicted load forecast of Dunwodie Zone 

 

Fig. 5 Actual and predicted load forecast of Genesee Zone 

V. CONCLUSION 

         In this paper, we solved the problem of power 

load forecasting of multi area power system. To 

incorporate the dynamic nature of power load demand, 

we have proposed a sliding window to train the 

regression model. We have also proposed to find an 

optimum size of prediction horizon to improve the 

accuracy of regression model. The proposed algorithm 

has been tested on multi-area power system of New 

York ISO where we have selected 5 zones to test of 

algorithm. Simulation results are then compared with 

various regression techniques of Linear Regression, 

SVM with RBF kernel, Decision tree regression, and 

random forest regression. Simulation results show that 

our proposed algorithm forecast the load demand data 

with less MAPE error than the existing algorithms in 

terms of percentage error of MAPE. 

 

 

Fig. 6 Actual and predicted load forecast of Valley Zone 

 

 

Fig. 7 Comparison of proposed algorithm with existing forecasting 

schemes in terms of MAPE. 
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