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Abstract—In this paper, we show how practical the little
theorem of witness functions is in detecting security flaws in
some category of cryptographic protocols. We convey a formal
analysis of the Needham-Schroeder symmetric-key protocol in
the theory of witness functions. We show how it helps to teach
about a security vulnerability in a given step of this protocol
where the value of security of a particular sensitive ticket
in a sent message unexpectedly plummets compared with its
value when received. This vulnerability may be exploited by an
intruder to mount a replay attack as described by Denning and
Sacco.

Index Terms—Security, Needham-Schroeder symmetric-key
protocol, witness functions.
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I. INTRODUCTION

Cryptographic protocols are distributed programs that

aim to secure communications in an unsecured network by

means of cryptography. They are used wherever the security

matters, for example, in electronic commerce, military

communications, electronic voting, etc. A security breach in

a protocol often causes significant and irreparable damage.

Indeed, a flaw in an online sales protocol can cause huge

losses for a remote seller. The victim, on the other hand, may

end up with a bad credit record and a tarnished reputation.

The use of cryptography, while necessary, cannot guarantee

the security of a protocol. Indeed, the history of protocols [1],

[2] teaches us that an intruder is capable of manipulating the

rules of a given protocol to infer a secret, usurp an identity,

alter the integrity of data or deny his participation in a given

communication after committing an unhealthy act.

Formal methods have therefore emerged [3]–[9] as a

preferred means of verifying whether a protocol meets the

security properties for which it was intended. As a result, a

number of methods have sprung up, and have demonstrated

distinct performance. Others were withdrawn after a period

of glory due to unfortunate deficiencies, several years after

their release.

In recent years, a new generation of analytical functions,

called witness functions [10]–[13], has been proposed to

analyze cryptographic protocols. These functions assign a

security value to each message component exchanged in

the protocol, then examine whether this value increases or

not between two reception-sending steps. If throughout the

protocol, all security values are observed increasing, then the

protocol itself is said to be increasing and hence declared

correct for the property of secrecy. If, on the other hand, a

decreasing value is found, these functions refuse to certify

the correctness of the protocol. This way of approaching

and handling security in cryptographic protocols stems from

the fact that increasing protocols are correct, proven in [11].

These functions have been a good way to demonstrate the

correctness of several protocols. They were also able to

teach about security vulnerabilities in other protocols. More

recently, in [14], the author proposed a reduced form of the

general theorem of protocol correctness by witness functions

[13] for analyzing tagged protocols. The author adopts a very

broad definition of tagged protocols and considers tagged any

protocol whose messages are distinguishable, one by one by

a receiving agent, either by inserting a particular syntactic

element in a message, or thanks to the position of identities

or nonces, or by any other means.

In this paper, we provide an analysis of the Needham-

Schroeder symmetric-key protocol [15] using this reduced

theorem that we refer to by the little theorem of witness

functions as opposed to the general theorem. We show that

this protocol does not respect this theorem and gets stuck

in a critical step in the protocol where a value of security

unexpectedly goes down which may be interpreted as a security

vulnerability. We also show that this latter can be exploited by

an intruder using a Denning and Sacco attack scenario [16].

II. PAPER ORGANIZATION

The paper is organized as follows:

http://arxiv.org/abs/1903.00499v1


• in Section III, we briefly present the role-based specifica-

tion in which a protocol is specified;

• in Section IV, we shortly review the foundation of witness

functions;

• in Section V, we present the little theorem of witness

functions;

• in Section VI, we give a formal analysis of the Needham-

Schroeder symmetric-key protocol using this theorem;

• in Section VII, we discuss the results of our analysis;

• in Section VIII, we compare our approach with other

related approaches;

• in Section IX, we conclude.

III. ROLE-BASED SPECIFICATION

A cryptographic protocol is a set of programs that can

communicate over the network. Each program corresponds

to a role of the protocol. Agents, who are actually servers

or people who can implement the protocol, can play several

roles simultaneously. When an honest agent takes on a role,

an instance of the program corresponding to the role runs

on the agent’s machine using its various personal data, for

example its identity and secret keys. A session is an instance

of a program executed by an agent. A dishonest agent, or

intruder [17], is not required to follow a protocol role. It

can execute any number of sessions. It has other capacities

like intercepting messages, concatenating or de-concatenating

messages, encrypting or decrypting messages with keys that

it knows, etc.

A role-based specification [18], [19] is an abstraction of

all these facts. It focuses on a single agent at a time and

represents what, how, and to/from whom it sends and receives

messages. If a component of a given message is not intelligible

for that agent, it is replaced by a variable. In that case, we talk

about generalized roles. An exponent is added to represent the

session.

IV. WITNESS FUNCTIONS

A. Reliable Function

Let’s consider the following function F :

Definition 1: (Reliable Function)
1. F (α, {α}) = ⊥
2. F (α,M1 ∪M2) = F (α,M1) ⊓ F (α,M2)
3. F (α,M) = ⊤, if α /∈ A(M)
4. F (α,m1.m2) = F (α, {m1,m2})
5. F (α, {m}k) = F (α, {m}), if pk−1

q 6⊒ pαq
6. F (α, {m}k) = pk−1

q ∪ ID(m), if pk−1
q ⊒ pαq

A reliable function is a function that assigns to each atom

in a message a reasonable value of security. In the point 1.,

it assigns to a plain (clear) atomic message α the bottom

value of security (i.e. ⊥). In the point 2., it assigns for an

atomic message α that shows up in two sets of messages the

minimum (i.e. ⊓) of the two values calculated in each set

separately. In the point 3., it assigns to an atomic message

α that does not appear in a message (i.e. α /∈ A(M) where

A(M) is the set of all atoms of M ) the top value (i.e.

⊤). In the point 4., it assigns to an atomic message in a

concatenated message the minimum of the values calculated

in each message separately. In the point 5., F disregards

an encryption with an outer key of a lower level than the

analyzed atom (i.e. pk−1
q 6⊒ pαq) and seeks a deeper strong

key. In the point 6., F first ensures that α is encrypted with a

key k of a higher level (i.e. pk−1
q ⊒ pαq) and returns the set

of identities of agents that detain the reverse key (i.e. pk−1
q)

in addition to the set of identities in the neighborhood of α
under the same encryption in m (i.e. ID(m)).

Example 1: Say that we have a context such that: pαq =
{A,B, S}; k−1

ac = kac, k
−1

ab = kab, k
−1
as = kas; pkacq =

{A,C}, pkasq = {A,S}, pkabq = {A,B}. Say that m =
{{C.{E.α.D}kas

}kab
}kac

.

F (α,m) = F (α, {{C.{E.α.D}kas
}kab

}kac
)

{Definition 1, Point 5., since pk−1
ac q 6⊒ pαq}

= F (α, {C.{E.α.D}kas
}kab

)
{Definition 1, Point 6.}

= pk−1

ab q∪{E,C,D}
{Since pk−1

ab q = {A,B} in the context}
= {A,B,E,C,D}

In [11], [13] we prove that F is reliable and we define other

reliable functions that we do not mention here.

B. Derivative Function

The function F given in Definition 1 does not deal with

variables. In order to do so, we rather use its derivative form

F ′. This derivative function simply removes all variables

around any evaluated atom before applying F . The following

example explains how to use F ′ to assign values of security

to atomic messages in messages containing variables.

Example 2: Let us have the same context as Example 1. Say

that m = {{C.{X.α.D}kas
}kab

}kac
where X is a variable.

F ′(α,m) = F ′(α, {{C.{X.α.D}kas
}kab

}kac
)

{The variable X is first removed by derivation, then F is applied}
= F (α, {{C.{α.D}kas

}kab
}kac

)
{Definition 1, Point 5., since pk−1

ac q 6⊒ pαq}
= F (α, {C.{α.D}kas

}kab
)

{Definition 1, Point 6.}
= pk−1

ab q∪{C,D}
{Since pk−1

ab q = {A,B} in the context}
= {A,B,C,D}

The derivative function F ′ is good for analyzing generalized

roles (involving messages with variables) in the case of tagged

protocols. However, it may present some complexities in the

general case, which is beyond the scope of this paper. In the

context of tagged protocols, F ′ is called witness function.

We recall that tagged protocols in our own definition are all

protocols that generate messages such that they are one by

one distinguishable from a receiver point of view, meaning,

no regular message can be unified with a non regular one.



p= 〈1, A −→ S : A.B.Na〉
〈2, S −→ A : {Na.kab.B.{kab.A}kbs

}kas
〉

〈3, A −→ B : {kab.A}kbs
〉

〈4, B −→ A : {Nb}kab
〉

〈5, A −→ B : {Nb − 1}kab
〉

TABLE I
THE NEEDHAM-SCHROEDER SYMMETRIC-KEY PROTOCOL

V. LITTLE THEOREM OF WITNESS FUNCTIONS

Theorem 1: [Little Theorem of Witness Functions] Let p be

a tagged protocol. Let F ′ be a witness function. p is correct

for secrecy if: ∀R.r ∈ RG(p), ∀α ∈ A(r+) we have:

F ′(α, r+) ⊒ pαq ⊓ F ′(α,R−)

Theorem 1, which we call the little theorem of the witness

functions, uses the witness function F ′ to attribute a value

of security to every component in every single exchanged

message in the protocol, then, it examines if the value of

security of that component is increasing in the sent message

(i.e. in r+) compared with its value in either the context or

when it was received (i.e. in R−). If this is the case in all

the protocol steps, then the protocol is declared correct for

secrecy. Otherwise, the theorem refuses to certify the protocol

correctness and flags up a possible vulnerability that could

be exploited by an intruder. We will refer to this theorem by

LTWF in the following analysis of the Needham-Schroeder

symmetric key protocol.

VI. FORMAL ANALYSIS OF THE NEEDHAM-SCHROEDER

SYMMETRIC-KEY PROTOCOL

In this section, we analyze the Needham-Schroeder

symmetric-key protocol with Theorem 1 (LTWF) for secrecy.

This protocol is described in Table I and we refer to by p.

A. Context setting

The generalized roles of the protocol are RG(p) =
{AG ,BG ,SG} where:

AG = i.1 A −→ I(S) : A.B.N i
a

i.2 I(S) −→ A : {N i
a.X.B.Y }kas

i.3 A −→ I(B) : Y
i.4 I(B) −→ A : {Z}X
i.5 A −→ I(B) : {Z − 1}X

BG = j.1 I(A) −→ B : {T.A}kbs

j.2 B −→ I(A) : {N j
b }T

j.3 I(A) −→ B : {N j
b − 1}T

SG = n.1 I(A) −→ S : A.B.Q
n.2 S −→ I(A) : {Q.kab.B.{kab.A}kbs

}kas

Context :

pAq = ⊥; pBq = ⊥; pSq = ⊥; (i.e. three public identities)

pNaq = ⊥ (i.e. public nonce);

pNbq = {A,B} (i.e. nonce shared between A and B);

pkabq = {A,B, S}; (i.e. session key shared between A and

B and created by S)

pkasq = {A,S}; (i.e. shared key between A and S)

pkbsq = {B,S}; (i.e. shared key between B and S)

(L,⊒,⊔,⊓,⊥,⊤) = (2I ,⊆,∩,∪, I, ∅); (i.e. security lattice)

I = {I, A,B, S}; (i.e. intruder and regular agents participating

in the protocol)

Xp = {X,Y, Z, T,Q} is the set of variables. F ′ is the used

witness function and the derivative function of F given in

Definition 1.

It is wise to notice that all the generated messages by the

protocol cannot overlap one with another from a receiver point

of view, which means that we can use Theorem LTWF to

analyze the protocol.

B. Analyzing the generalized role of A

From the generalized role AG , an agent A may participate

in three receiving/sending steps. In the first step, it receives

nothing and sends the message A.B.N i
a. In the second step, it

receives the message {N i
a.X.B.Y }kas

and sends the message

Y . In the third step, it receives the message {Z}X and sends

the message {Z − 1}X . This is represented by the following

rules.

S1
A :

�

A.B.N i
a

; S2
A :

{N i
a.X.B.Y }kas

Y
; S3

A :
{Z}X

{Z − 1}X

1) Analyzing exchanged messages in S1
A:

1- For N i
a:

a- On sending: r+
S1

A

= A.B.N i
a

F ′(N i
a, r

+

S1

A

) = F ′(N i
a, A.B.N i

a)

{No variable in the neighborhood of N i
a to be removed by derivation}

= F (N i
a, A.B.N i

a)
{Definition 1 (no encryption)}

= ⊥ (1.1)

b- On receiving: R−
Si = ∅

F ′(N i
a, R

−
S1

A

) = F ′(N i
a, ∅)

{No variable in the neighborhood of N i
a to be removed by derivation}

= F (N i
a, ∅)

{Definition 1}
= ⊤ (1.2)

2- Concordance with Theorem LTWF:

From 1.2 and since pNaq = {A,B}, we have:

pN i
aq⊓F

′(N i
a, R

−
S1

A

) = ⊥⊓⊤ = ⊥ (1.3)

From 1.1 and 1.3, we have :

F ′(N i
a, r

+

S1

A

) ⊒ pN i
aq ⊓ F ′(N i

a, R
−
S1

A

) (1.4)

From 1.4, S1
A respects Theorem LTWF. (I)



2) Analyzing exchanged messages in S2
A:

1- For N i
a:

a- On sending: r+
S2

A

= Y

F ′(N i
a, r

+

S2

A

) = F ′(N i
a, Y )

{The variable Y is removed by derivation}
= F (N i

a, ∅)
{Definition 1}

= ⊤ (2.1)

b- On receiving: R−
S2

A

= {N i
a.X.B.Y }kas

F ′(N i
a, R

−
S2

A

) = F ′(N i
a, {N

i
a.X.B.Y }kas

)

{The variables X and Y are removed by derivation}
= F (N i

a, {N
i
a.B}kas

)
{Definition 1 and since pk−1

as q = {A, S}}
= {A,S,B} (2.2)

2- For X :

c- On sending: r+
S2

A

= Y

F ′(X, r+
S2

A

) = F ′(X,Y )

{The variable Y is removed by derivation}
= F (X, ∅)

{Definition 1}
= ⊤ (2.3)

d- On receiving: R−
S2

A

= {N i
a.X.B.Y }kas

F ′(X,R−
S2

A

) = F ′(X, {N i
a.X.B.Y }kas

)

{The variable Y is removed by derivation}
= F (X, {N i

a.X.B}kas
)

{Definition 1 and since pk−1
as q = {A, S}}

= {A,S,B} (2.4)

3- For Y :

e- On sending: r+
S2

A

= Y

F ′(Y, r+
S2

A

) = F ′(Y, Y )

{Definition 1}
= ⊥ (2.5)

f- On receiving: R−
S2

A

= {N i
a.X.B.Y }kas

F ′(Y,R−
S2

A

) = F ′(Y, {N i
a.X.B.Y }kas

)

{The variable X is removed by derivation}
= F (Y, {N i

a.B.Y }kas
)

{Definition 1 and since pk−1
as q = {A, S}}

= {A,S,B} (2.6)

4- Concordance with Theorem LTWF:

From 2.1, 2.2, we have directly:

F ′(N i
a, r

+

S2

A

) ⊒ pN i
aq ⊓ F ′(N i

a, R
−
S2

A

) (2.7)

From 2.3 and 2.4 we have directly:

F ′(X, r+
S2

A

) ⊒ pXq⊓ F ′(X,R−
S2

A

) (2.8)

However, from 2.5 and 2.6, we declare that:

F ′(Y, r+
S2

A

) 6⊒ pY q ⊓ F ′(Y,R−
S2

A

) (2.9)

since we have no idea about the variable Y , thus, we have no

idea about its value of security in the context (i.e. pY q ).

From 2.9, S2
A does not respect Theorem LTWF. (II)

We abort our analysis here and we declare that the whole

protocol does not respect Theorem LTWF.

VII. DISCUSSION

In our analysis, we have clearly established in 2.9 that the

value of security of the variable Y (which is an abstraction

of the ticket {kab.A}kbs
) goes down between the step 2 and 3

of the protocol. At this point, our witness function refused to

certify the security of the protocol and flagged up a possible

attack. In other words, the witness function pointed out that

the variable Y could fall in an intruder hands who may

exploit it illegally, which is in tandem with the replay attack

presented by Denning and Sacco in [16]. In fact, suppose an

employee executing the first two steps of the protocol several

times as a regular agent A and collecting all the tickets

{kab.A}kbs
, as well as the corresponding session keys kab. If

he is fired, as an external intruder I , he could still log on any

server B by playing the remaining steps of the protocol as

follows:

〈3, I(A) −→ B : {kab.A}kbs
〉

〈4, B −→ I(A) : {Nb}kab
〉

〈5, I(A) −→ B : {Nb − 1}kab
〉

To sum up, the Needham-Schroeder symmetric-key protocol

neglected the fact that the tickets {kab.A}kbs
is an important

component and allowed it to circulate in clear in the step 3,

which caused the described flaw to take place. This behavior is

strictly forbidden in an analysis using witness functions which

never allows any message component to have a non increasing

value of security even if it turns out that no actual flaw could

be found. However, we can understand that back to the time

when the protocol was designed, a few things were known

about protocols, and protocol designers mostly thought that

cryptography on its own was enough to ensure their security,

which turned out to be incorrect over time.

VIII. COMPARISON WITH RELATED WORK

The analysis of cryptographic protocols remains a constrain-

ing task [20] despite all the progress made in the field due

to the complexity and undecidability of the problem [21].

Witness functions, using the general theorem or the little

one, are beginning to gain ground and are proven to be a

powerful means of detecting security breaches or designing



correct protocols. They have outperformed other analytical

tools and methods such as interpretation functions [22], [23]

in terms of efficiency and accuracy [12]. The fact that these

functions allow a static analysis saves a lot of effort and time

compared to other dynamic methods based on Model-Checking

[24] or on program logics [25], for example. With that in mind,

neither the witness functions nor any other verification method

will deliver its optimal protocol protection if other dimensions

are neglected, especially security issues akin to the protocol

implementation and encryption primitive weaknesses of the

selected cryptographic system.

IX. CONCLUSION

In this paper, we have presented a detailed analysis of the

Needham-Schroeder symmetric-key protocol using the little

theorem of witness functions. We have proven its ability to help

detecting security vulnerabilities and inform about possible

flaws. In future work, we intend to address the problem of

compose protocols [26], [27] as well as E-voting protocols

[28]–[30] using these functions.
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NOTATIONS

pαq: initial value of security of an atomic message α in

a context of verification.

⊓: minimum operator (the union in the security Lattice)

⊒: greater than operator.

⊤: highest value in the security Lattice (top).

⊥: lowest value in the security Lattice (bottom).

r+: sent message in a generalized role.



R−: received message in a generalized role.

I: intruder; S: honest server; A,B, ...: principals.

Na: nonce belonging to A.

kab: key shared between A and B (and k−1

ab its reverse

form).

A(m): set of all atoms of a message m.

AG : generalized role of an agent A.

RG(p): generalized roles of the protocol p.

A −→ B : m: A sending a message m to B.

I(A): intruder impersonating (playing the role of) an

agent A.
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