

Compute Power Market: Towards a Market-Oriented Grid

Rajkumar Buyya Sudharshan Vazhkudai
School of Computer Science Department of Computer and Science
Monash University, Melbourne, University of Mississippi, University,

 VIC 3145, Australia MS 38677, USA
rajkumar@csse.monash.edu.au chucha@john.cs.olemiss.edu

CPM Portal: http://www.computepower.com

Abstract

The Compute Power Market (CPM) is a
market-based resource management and job
scheduling system for grid computing on
Internet-wide computational resources,
particularly low-end personal computing
devices. It transforms the metacomputing
environment into a computational market
wherein one can solve problems by renting
computational power, storage, and special
services from idle resources (computers). The
CPM primarily comprises of markets, resource
consumers, resource providers and their
interactions. It supports various economic
models (commodity market model, contract-net/
tendering, and auction) for resource pricing and
mapping between service consumers and
providers. This paper proposes a decentralized
computation market with multiple markets and
numerous consumers and providers spread
across the grid environment. The paper further
discusses the basic architecture and the
components involved in markets, consumers and
providers namely, a Market Server, a Market
Resource Agent, a Market Resource Broker and
a Market Trader and scheduler used for
negotiation and job deployment.

Keywords: Grids, Computational Economy,
Markets, Internet Computing

1. Introduction

The recent technological advances in

high-performance networking and computing,
coupled with their availability as commodity
components, have revolutionized the way we do
computing. The trend in high-performance
computing is to move away from proprietary
supercomputers to those based on commodity
hardware and software components. This has led
to the popularity of clusters of computers,

interconnected through local/system-area
networks, as a platform for solving large-scale
compute intensive problems. Today, the
Internet/Web has become pervasive and millions
of computers and users are online. Most of the
time, of these users are browsing the Web,
carrying out word processing tasks, or reading
emails that consume less than 25% of computing
power. Also, when machines are idle, they are
mostly running screen savers. This unused and
idle computational power available on machines
across the Internet can be utilized for solving
resource intensive applications.

A number of projects such as
SETI@Home [16] and distributed.net [21] have
successfully exploited this paradigm for solving
specific application areas. They have adopted
custom design and system architecture for
computing on volunteer resources. Recently,
several commercial ventures have begun to
extend this concept a step further for business
advantage [4] and they include ProcessTree [12],
Popular Power [13], Mojo Nation [14], United
Devices [15], Entropia [11], and Parabon [10].

 Although using volunteer computers’
idle CPU cycles for solving supercomputing
problems appears simple, realizing a flexible and
widely acceptable resource management,
scheduling, re-programmable machinery, and
general-purpose paradigm for application
programming is a complex task. This is mainly
due to resources’ geographic distribution,
heterogeneity, distributed ownership with
different policies and priorities, varying loads,
reliability, and availability conditions. Another
key issue that these systems need to address is a
regulation of resource demand and supply for
creating a computational marketplace, which is
missing in most of these systems software
infrastructure. We propose a market-based
economic paradigm for resource management
that helps in addressing all of these issues in a
simplified manner, since economic institution

has been proven to be the best mechanism for
regulating demand and supply. Furthermore, it
offers incentives for volunteers to share their
computational resources and encourages
consumers to optimally utilize resources by
balancing timeframe and access-costs. Even the
profit can be shared with a market for
coordinating users. The Scientific American also
highlights the importance of computational
economy in metacompututing and suggested that
without it, metacomputing may arrive with
whimper, not a bang [3]. In this paper we
propose a Compute Power Market (CPM) system
that adopts economic paradigm for resource
management and scheduling of computations
across Internet-wide volunteer resources.

In the rest of the paper, we discuss a
brief comparison with related systems and
present CPM system architecture and its
components comprising of a set of decentralized
Markets, Market Information Services, Market

Resource Agents and Brokers. We present the
design issues to be considered during the
implementation and then conclude with future
work.

2. Related Work

Using idle computers to perform useful

processing is not a new concept. The idea came
into the limelight largely due to the success of
the SETI@Home project, which distributed huge
scientific datasets, collected from observatories,
to millions of home computers in order to
perform computations on them. Recently, a
number of commercial ventures have originated
that extend this concept a step further. Examples
of such endeavors are ProcessTree, Popular
Power, Mojo Nation, United Devices, Entropia,
and Parabon. These systems allow the home
computer owner to specify the kind of research
for which they wish to allocate their computers.
Yet another category is the metacomputing
systems such as Globus [5] and Legion [6] that
concentrate on high-end resources such as
supercomputers and clusters managed using
queuing systems and offer infrastructures for
distributing high-end application loads on them.
None of these, including commercial grid
systems adopt economic paradigm for resource

management and scheduling. In [2], we
presented Grid Architecture for Computational
Economy (GRACE) for high-end Grid
computing systems and we believe that it can be
adopted for low-end machines for global
computing with suitable changes in
implementation architecture and the underlying
infrastructure. The key changes will be in terms
of replacing those middleware services by CPM

Download / Update

Provider #1

Market Agent

Get Seller Information /
Download

Consumer #m

Market Broker

Figure 1: The Compute Power Market

Consumer #1

Market Broker

Download / Update

Provider #n

Market Agent

Market #i Market #n Market #x

services targeted for personal computing devices
or machines.
 A few other systems such as Java
Market [17], Popcorn [20], and JaWS [19] build
market-oriented environments to harness the
processing power of a small network-of-
computers configuration or Web-based systems.
Our approach blends the basic idea behind these
attempts with computational economy principles
to build a true market-oriented Internet-scale
computational Grid (software CPU).

3. CPM Architecture
3.1. Overview

 The Compute Power Market is
primarily composed of three entities, namely: a
Market, a Resource consumer and a Resource
provider. The market works in the following
simple manner: consumers and providers
announce their desire to buy or sell compute
power from the market. As part of expressing
their desire to contribute to the market or to
benefit from the market, they register with the
market. We will look at the details involved
while discussing the structure of the market.

When resource providers register with
the market, they obtain/download a "Market
Resource Agent" (MRA) from the market and
deploy on their resource; consumers obtain a
"Market Resource Broker" (MRB) from the
market. These agents help synchronize and
maintain the flow of interaction amongst the
three entities. The intent of the Market Resource
Agent is to update the Market with the latest
information about the resource provider and to
accept, deploy and launch the job; the intent of
the Market Resource Broker is to help the
consumer find an appropriate provider based on
the information provided by the Market (Figure
1). The resource information provided by Market
agents is maintained in the CPM database for
providing Market Information Services (MIS).

Various economic models (such as
commodity market, contract net/tenders,
auctions) need to be supported for resource
trading and establishing prices in the CPM grid
marketplace. It should also be noted that both
resource providers and consumers would prefer
to maximize their own objectives, i.e.,
consumers would like to execute their
applications within minimum cost/budget and
providers would like to increase their profit (by
charging high or attracting rich consumers like in
the real marketplace). We also need to have a

provision for the Market to charge its users for
serving as a mediator between them, i.e., some
percentage of resource provider’s benefit or
consumer’s price-quote can be credited to the
market for maintaining its business like in real
exchanges (stock market).

Let us look at these entities more
closely by discussing their design and
architecture.

3.2. The Market

One can perceive the market to be a

passive agent in the CPM, in that it acts as a
mediator between consumers and providers, by
providing the following services:

• Repository of information on providers
• Agents for consumers and providers
• Mechanisms for updating the

information
• Interaction with other markets

 The CPM can comprise of a number of
markets supporting their own consumers and
providers. This facilitates decentralization of
control and adds to the stability of the CPM.
Markets can communicate and interact among
themselves to synchronize information. Let us
now look at the various components of a market.

A market in the CPM consists of the
following components (Figure 2):

1. A Market Entry Index
2. Provider Domain
3. Consumer Domain
4. Market Control Unit
5. Communication Unit

3.2.1. Market Entry Index

 The Market Entry Index is a repository
that consists of information about providers and
consumers within the market's domain. Each
provider within the domain of Market #i would
typically have an entry (if they registered with
the market) in the Market Entry Index. This entry
is a record comprising of information supplied
by the Market Resource Agent in that particular
provider. The Market Entry Index is updated
whenever resource providers change their
preferences and is used when a decision has to be
made while matching consumer requirements
with provider capabilities.
 The Market Entry Index also contains
information about other markets. This
information includes details such as: addresses of
markets, capabilities, etc. Thus, this information

can be treated as a link to other markets.
 The Market Entry Index could easily be
a database holding information about all
providers that could be queried upon.

3.2.2. Provider Domain

 The provider domain, as the name
suggests, is concerned with resource providers in
the CPM. The provider domain primarily
comprises of:

1. Market Resource Agent Download Unit

The Market Resource Agent Download Unit
is responsible for keeping track of the download
of market resource agents by providers.
Providers contact the market to register and
download the market resource agent, a program
using which they let the market know the status
of their resources, preferences, or pricing rules.
The download unit presents a simple information
sheet, which providers complete before they
download the agent. Upon completion of the
download, the unit initializes an entry in the
market entry index for that particular provider. It
is also responsible for tracking duplicates, i.e.,
limiting one market resource agent per host, etc.

2. Update Unit

The update unit is concerned with updating
the entry corresponding to a particular provider.
Whenever the provider specification changes, the

Market Resource Agent sends information about
its resource to the market. This information is
gathered by the update unit, which updates the
particular provider’s entry with the latest
information. The update unit is also responsible
for de-registering a resource provider from the
market.

3.2.3. Consumer Domain

 The consumer domain is similar to the
provider domain but is concerned with
consumers in the market. It, similar to the
provider domain, comprises of a "Market
Resource Broker Download Unit" and an
"Update/Query Unit". These two units perform
the actions of monitoring downloads and
updating information on consumers, similar to
their counterparts in the provider domain. The
one thing that is slightly different in the
update/query unit is that, it does not have to
update the market entry index with information
about consumers, but instead has to query it
about provider details whenever such a request
arrives. The querying process could sometimes
lead to searching through multiple markets in
order to obtain provider information. It can
achieve this by following the link (to other
markets) in the market entry index.

3.2.4. Market Control Unit

 The Market Control Unit is the brain of
each market in the CPM. It controls the behavior
of the market by:

1. Channelizing/Regulating requests

The market control unit acts as a conduit for
directing requests to particular domains in the
market. For example, it redirects download
requests to relevant agents and update requests to
relevant update units. Requests can be
differentiated based on their ids.

2. Monitoring the market behavior

The control unit is further concerned with
monitoring the behavior of the market. For
example, it could monitor the kinds of requests
from consumers and providers, and over a period
of time be able to predict the kinds of requests
that arrive at the market. This information can be
used as an indication for prospective consumers
and providers. Consumers and providers can buy
and sell from/to markets that have a demand
(market tendencies) for requests that match their
preferences.

Market #n

Communication

Market
Entry
Index

seller #1
seller #2
buyer#1

seller #i

Market Control

Provider
Domain

Consumer
Domain

Market
Resource
Agent
download

Update
Unit

Market
Resource
Broker
download

Update
Unit

Figure 2: Market Architecture

It is further concerned with monitoring the
timely servicing of each request. If any one of
the market units is temporarily dysfunctional, it
dispatches relevant messages and generates
necessary timeouts and further attempts to restart
failed units, thereby contributing to the fault
tolerance of the market.

3. Synchronizing with other markets

The control unit is also responsible for
synchronizing with other markets; maintaining
information and pointers to other markets and
their tendencies. This is useful while having to
redirect requests to relevant markets, etc.

3.3. The Market Resource Agent

A potential provider, after deciding to

contribute his resource to the CPM, contacts the
market to download a Market Resource Agent.
The agent primarily comprises of the following
components (Figure 3):

1. A GUI Front End
2. A Backend

3.3.1. GUI Front End – Active Screensaver

The GUI front end provided as part of

the Market Resource Agent is responsible for
providing an interface for the user, facilitating
the user to provide details on his resource. As
part of the details, the user specifies the policies
under which his resource might be used, system
configuration, pricing details, and various other

details.
 Yet another functionality of the front
end is to provide a screen saver utility, which is
activated during the resource’s idle time. This
screen saver, through the back end, acts as an
intermediary that communicates with the
resource consumer for executable deployment
and launching.

3.3.2. Back End

The backend primarily comprises of
Push, Pull units and an Executable Management
Unit. The Exe Mgmt unit handles the necessary
details involved in consumer executable
deployment and launching. The Pull unit is
concerned with extracting dynamic information
from a resource, for example: available memory,
idle time, number of processes, etc; while the
Push unit is concerned with flushing this data to
the Market using the communication unit.

3.3.1. The Market Resource Broker

The consumer uses Market Resource

Broker (MRB) (Figure 4) services for interacting
with CPM grid. The resource broker acts as a
mediator between the user application and CPM
resources. It is responsible for the management
of the whole experiment on the CPM grid. We
would like to provide resource brokers for the
following types of applications:

• Sequential applications (for both Java-
based and legacy applications).

• Parallel Applications including tightly
coupled master-worker type
applications.

• Parameter Sweep applications (by
providing tools like Nimrod/G [1]).

Broker Functions
When the user submits these applications with
their requirements to a suitable resource broker,
it performs the following:

1. Resource Discovery
2. Matching job requirements against

provider capabilities
3. Perform trading between matched entities

depending on suitable economic model for
establishing service access cost.

4. Select resources that fit user requirements
5. Match jobs to resources
6. Deploy jobs on resources
7. Monitor and Steer computations
8. Perform load profiling for future usage

Provider

User

Market Resource Agent

System
Resources

GUI
Front
End

Backend

Push/Pull
Unit

Exe
Mgmt

comm

Figure 3: Market Agent Architecture

9. Perform rescheduling, if required.
10. When job execution is finished, gather

results back to the user home machine.
11. Record all resource consumption details

for payment processing purpose.
12. Perform cleanup and post-processing, if

required.

Broker Components
The resource broker is made up of following
components:

• Job control agent
• Market explorer
• Resource Trader
• Scheduler
• Deployment Agent

The job control agent is a persistent central

component responsible for shepherding a job
through the system by interacting with all other
components of the broker. It accepts application
requirements of the form: job requires x amount
of memory, runs for y duration, etc. These
requirements are specified in terms of attributes.
A client for each class of application can help
formulate user requirements and communicate
them to the job control agent.

The components that are specifically
responsible for managing economy of
computations in CPM Grid are the schedule
adviser, trade manager, and trader server. The
schedule adviser uses services of grid explorer

for resource discovery (using the Market
information services), trade server for
negotiating access costs from trader server, and
scheduling algorithms for identifying mappings
(jobs to resources) that meet user requirements
(deadline and cost minimization). The trade
server decides access costs based on resource-
owner defined charging algorithms/policies and
interacts with accounting system for recording
usage details and billing the user as per
negotiation.

4. Design Issues

In this section, we will discuss a few

key design issues involved in the realization of
the architecture explained. These design issues
are primarily a few basic questions regarding the
CPM:

1) Is the Market an LDAP server?

The most vital question concerns the
protocol involved in the exposure of resource
(provider) capabilities, i.e., the mechanism with
which the Market server would publish provider
details. Systems such as Globus use the
Lightweight Directory Access Protocol (LDAP)
[8], for Grid Information Services [7]. LDAP is
primarily designed to be used in services that
require lesser updates and could prove a
performance bottleneck [9]. Moreover, in our
case, having to use LDAP implies that each and
every consumer and provider is forced to install
LDAP servers.
 For these reasons, we use a traditional
database implementation, wherein the Market
Server maintains a database for consumer and
provider details. Application requirements and
provider details are represented as fields in
database entries. Extracting information on either
consumer or provider details results in the
formulation of typical database queries. We are
currently tending towards Java and JDBC for the
Market Server implementation.

2) How will the various CPM components

communicate?
Through out our discussion on CPM,

we have elaborated little on the communication
amongst its various components.
Communication amongst the various CPM
components is achieved using the Comm Unit. A
few scenarios of the necessary handshaking
between these components are:
a) The Market Resource Agent having to

Figure 4: Market Broker Architecture

Consumer

User/ Application

Market Resource Broker

Resource
Trader

Comm

Job Control Agent

Scheduler Deployment Agent

update the Market Server about the provider
details, whenever there is a change in the
provider specification.

b) Market Resource Broker, at the consumer
end, requiring to contact the Market Server
in order to obtain potential providers.

c) Consumer and provider communicating
among themselves to deploy the executable.

d) Market-to-Market interaction.
Mentioned above are amongst the few

basic, mandatory, handshaking involved in the
CPM grid system. Given the flexibility,
scalability and proliferation of Java, these tasks
can be achieved using Java sockets, remote
method invocation, and Java networking
packages.

3) Will the CPM be programmable?

The eventual success of any system
rests on its ability to be programmed and altered
according to user definitions. This requires the
definition and specification of programmable
APIs. We intend to provide a set of APIs for the
Market Server, the Market Resource Agent and
the Broker so that these components can be made
flexible enough.

4) What types of programs will the CPM

support?
An ideal environment would support the

execution of all possible executables. Our initial
prototype concentrates on Java based programs
to primarily prove the concept behind such a
large scale Internet computing platform.
However, trusted legacy applications can be
executed in the CPM environment.

5) What kind of information do resource

providers and resource consumers
advertise and how will they be mapped?

Yet another seemingly trivial task is
that of information discovery and mapping.
Listed below are a few issues:

a) A potential provider can advertise
details such as: machine architecture,
software availability, usage policies,
cost considerations, etc. The Market
resource agent should discover such
details and various others employing a
mix of dynamic and static strategies.

b) A consumer application that requires a
resource, can submit its requirements
such as: program requirements,
memory, disk, amount of time the
resource is required, cost willing to pay,
etc.

c) The Market resource broker performs a
mapping of these requirements against
optimal capabilities, attempting to
obtain a suitable mapping. Potential
candidates for performing such a
mapping are XML or the Classified
Advertisement matchmaking tool [18].

These are only a few of the vital, lingering
questions. As we proceed ahead with the
implementation specifics, we would be able to
comment further on our design decisions and
choices.

5. Security in CPM

In this section, we highlight a few security-
related issues in the CPM:
1. In the CPM, clients contribute their

resources voluntarily with an implicit trust.
In such a scenario, utmost care should be
taken to ensure client safety and security,
i.e., care should be taken to ensure that the
programs executed at the client end do not,
in any way, harm them. One way of
accomplishing such security is by executing
trusted code (code from parties that the
CPM can properly authenticate). Another
alternative is to execute programs within
secure sandbox emulation.

2. The highly diverse nature of the CPM
implies programs executed will also tend to
be varied with various levels of
confidentiality. In such a scenario,
maintaining the propriety of source
programs that are executed in client sites
becomes very relevant. A potential problem
arises when mischievous clients attempt to
decompile and reverse-engineer the logic
behind these programs. An initial step
against such security breach is incorporating
obfuscated code - logic in the programs is
purposefully convoluted to discourage
attacks (Examples: Entropia and Parabon).

3. Yet another aspect is that of sabotage
tolerance, a typical problem faced by highly
dynamic systems such as: Seti@Home,
wherein millions of client computers
perform calculations on datasets and return
their results to a central site. There is no
guarantee that these results are correct and
are not sabotaged. Seti@Home handles this
problem by dispatching each dataset to at
least two client sites. Moreover, the only
thing that is probed in Seti@Home is a
particular type of signal, which can be easily

verified given their client base. In a system
like CPM, where diverse applications can be
executed, there is not an easy method of
verifying results. In [22], work is being done
in areas of sabotage tolerance and result
verification.
Above mentioned are only but a few vital

issues with regards to building a complex
environment such as, CPM.

6. Conclusion

With the proliferation of the Internet,
efficient techniques to harness the processing
power of millions of computers, spread across
diverse administrative domains and geographic
distances, have emerged. Various approaches
have been initiated to achieve this goal –
community initiative such as SETI@Home,
metacomputing initiatives such as Globus,
Legion, GRACE, and commercial ventures such
as: Entropia and Parabon. In this paper, we
present a market-oriented grid environment that
applies economic initiatives to Internet
computing, thereby presenting a motivating
factor for computer owners to contribute their
resources. To this end, we have designed a
market-based architecture where consumers and
providers can buy and sell computing power
based on an underlying economic architecture.
Initiatives are underway to realize the
architecture described in this paper.

Acknowledgements

We would like to thank CPM project

members David Sanchez and Alvaro Suarez
(Departamento de Ingeniería Telemática, Spain)
for their design for implementing Market
Resource Agent and Christopher Nebergall for
his thoughts on CPM security.

References

[1] Buyya, R., Abramson, D., and Giddy, J.,

Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global
Computational Grid, HPC ASIA 2000, China,
IEEE CS Press, USA, 2000.

[2] Rajkumar Buyya, Jonathan Giddy, David
Abramson, An Economy Grid Architecture for
Service-Oriented Grid Computing, 10th IEEE
International Heterogeneous Computing
Workshop (HCW 2001), In conjunction with
IPDPS 2001, San Francisco, USA, April 2001.

[3] Gibbs W., Cyber View—World Wide Widgets,

Scientific American, San Francisco, USA-
http://www.sciam.com/0597issue/0597cyber.html

[4] R. Buyya, Grid Computing Infoware (Info
Centre) - http://www.gridcomputing.com/

[5] Foster I. and Kesselman C., Globus: A
Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer
Applications, 11(2): 115-128, 1997.

[6] S. Chapin, J. Karpovich, A. Grimshaw, The
Legion Resource Management System,
Proceedings of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing,
April 1999.

[7] Fitzgerald S., Foster I., Kesselman C., Laszewski
G.V., Smith W., and Tuecke S., A Directory
Service for Configuring High-Performance
Distributed Computations, Proceedings of the 6th
IEEE Symposium on High Performance
Distributed Computing, pp. 365-375, 1997.

[8] Howes T., and Smith M., LDAP: Programming
Directory Enabled Applications with Lightweight
Directory Access Protocol, Macmillan Technical
Publishing, 1997.

[9] Smith W., Waheed A., Meyers D., and Yan J., An
Evaluation of Alternative Designs for a Grid
Information Service, Proceedings of the 9th IEEE
Symposium on High Performance Distributed
Computing, pp. 185-192, 2000.

[10] Parabon — http://www.parabon.com
[11] Entropia Inc. - http://www.entropia.com/
[12] ProcessTree–http://www.processtree.com/,

Distributed Science Inc, Nov. 2000.
[13] Popular Power - http://www.PopularPower.com/
[14] Mojo Nation - http://www.mojonation.net/
[15] United Devices - http://www.uniteddevices.com/
[16] SETI@Home—

http://setiathome.ssl.berkeley.edu/
[17] Amir Y., Awerbuch B., Borgstorm B.S., The

Java Market: Transforming the Internet into a
Metacomputer, Technical Report CNDS-98-1,
Johns Hopkins University, 1998.

[18] Raman R., Livny M., Solomon M.,
Matchmaking: Distributed resource management
for high throughput computing, Proceedings of
the 7th IEEE Symposium on High Performance
Distributed Computing, 1998.

[19] Spyros Lalis and Alexandros Karipidis, An Open
Market-Based Framework for Distributed
Computing over the Internet, First IEEE/ACM
International Workshop on Grid Computing
(GRID 2000), Dec. 2000, Bangalore, India:
Springer Verlag, Germany.

[20] Noam Nisan, Shmulik London, Ori Regev, Noam
Camiel, Globally Distributed computation over
the Internet - The POPCORN project,
International Conference on Distributed
Computing Systems (ICDCS’98) 1998. Also a
poster in WWW6 - Sixth International World
Wide Web Conference, Santa-Clara, 1997.

[21] Distributed.net — http://www.distributed.net/
[22] Bayanihan —

http://www.cag.lcs.mit.edu/bayanihan/

