
MAGNET: A Tool for Debugging, Analyzing and Adapting Computing Systems
�

Mark K. Gardner
�
, Wu-chun Feng

���
, Michael Broxton

���
, Adam Engelhart

�
, Gus Hurwitz

���
�
mkg, feng, mbroxton, adame, ghurwitz � @lanl.gov�

Los Alamos National Laboratory
Los Alamos, NM 87545

�
The Ohio State University
Columbus, OH 43210�

Massachusetts Institute of Technology
Cambridge, MA 02139

�
St. John’s College

Santa Fe, NM 87505

Abstract

As computing systems grow in complexity, the cluster
and grid communities require more sophisticated tools to
diagnose, debug and analyze such systems. We have de-
veloped a toolkit called MAGNET (Monitoring Apparatus
for General kerNel-Event Tracing) that provides a detailed
look at operating-system kernel events with very low over-
head. Using the fine-grained information that MAGNET
exports from kernel space, challenging problems become
amenable to identification and correction.

In this paper, we first present the design, implementation
and evaluation of MAGNET. Then, we show its use as a
diagnostic tool, an online-monitoring tool and a tool for
building adaptive applications in clusters and grids.

1 Introduction

The history of high-performance computing has had its
share of paradigm shifts driven by the fundamental tradeoff
between performance and cost. Monolithic supercomput-
ers, such as the Cray-1, have given way to clusters of sym-
metric multiprocessor clusters and clusters of PCs in order
to leverage commodity or near-commodity components to
achieve rapid increases in performance coupled with sub-
stantial decreases in relative cost.

Despite this trend, many important computations, e.g.,
“Grand Challenge Applications” [8], are still beyond reach.
Larger clusters yield diminishing returns as absolute cost
skyrockets. This dramatically reduces the number of insti-
tutions that can afford to build and maintain clusters. Hence,

	
This work was supported by the SciDAC Program within the U.S.

Dept. of Energy’s Office of Science through Los Alamos National Lab-
oratory contract W-7405-ENG-36. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DOE or Los Alamos National
Laboratory. Los Alamos Unclassified Report (LA-UR) 02-7170.

high-performance computing finds itself in the midst of an-
other paradigm shift to computational grids.

A computational grid is an aggregate of computing clus-
ters and other resources connected by a wide-area network,
such as the Internet. It provides computing power to a di-
verse community in much the same way that an electrical
power grid provides electricity to customers. Middleware,
such as the Globus Toolkit [14], provides common abstrac-
tions which allow a heterogeneous set of resources to ap-
pear as a logical supercomputer. Often the components of
a computational grid are acquired and maintained by inde-
pendent institutions. The institutions participate in order to
have more computing power than would otherwise be eco-
nomically feasible. The TeraGrid Project [15] is an example
of the largest computational grid to date.

Each paradigm shift brings new challenges along with
new capabilities. Although previous tools can sometimes
be adapted, fresh difficulties arise which require that new
tools be developed. This is particularly true for tools used
to debug, monitor, and analyze computing systems since a
paradigm shift often implies that the architecture of the sys-
tem and its applications have radically changed. In spite of
dramatic increases in computational power afforded by the
grid architectures, writing, debugging and tuning parallel
applications remains a painful task.

A large part of the problem stems from the highly asyn-
chronous nature of distributed computations. Applications
written to take advantage of large numbers of CPUs must
overlap computation and communication in order to effec-
tively use available resources. Not surprisingly, the causes
of performance problems in distributed applications are of-
ten distributed, and hence, extremely difficult to identify
without global knowledge of the execution history. Further-
more, the causes are often subtle issues of timing that make
accurate global histories more important yet more difficult
to obtain. A means for monitoring distributed applications
and the hosts on which they run is needed.

In proceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2003), Tokyo Japan, May 12-15, 2003.
http://www.lanl.gov/radiant/pubs/magnet/ccgrid2003.{ps|pdf}

Monitoring frameworks for collecting and presenting
significant events in the life of a distributed computation are
being developed as part of, or in conjunction with, frame-
works for writing such applications. For example, Autopilot
[11], NetLogger [4] and CODE [12] are monitoring frame-
works designed to work with the Globus [14] Toolkit.

One of the challenges faced by monitoring frameworks
is the selection of an appropriate level of detail needed to
identify a problem. For example, low performance can be
caused by messages arriving while their processes are wait-
ing for a time slice. To diagnose this problem, detailed
information concerning message arrival times and process
scheduling is required. Currently, the sensors in the above
frameworks are unable to provide this level of detail.

We have developed a tool called MAGNET, Monitoring
Apparatus for General kerNel-Event Tracing, which allows
the online monitoring of nodes of a cluster or grid. It is a
highly efficient mechanism for exporting operating-system
(OS) kernel events to user space. Not only can it monitor
the OS, but it can also monitor unmodified user applica-
tions. The information it provides can be used to develop
adaptive applications, applications which are aware of the
environment in which they execute and can adapt their be-
havior based on that awareness.

2 Design and Implementation

The primary design goals of MAGNET are transparency
to end users in a production environment and high-fidelity,
fine-grained monitoring of host events.

MAGNET delivers end-user transparency by incorporat-
ing its functionality into the OS kernel where it is available
to all applications without modification. As we will show,
the overhead of logging an event is so low that MAGNET
is also operationally transparent to users.

MAGNET achieves high-fidelity, fine-grained monitor-
ing by allowing any kernel event to be monitored and by
timestamping each event with the highest-resolution time
source available on most machines, the CPU cycle counter.
Optionally, additional information can be exported to give
a more detailed look at kernel operation. (For a detailed
description of the design and implementation of the previ-
ous version of MAGNET, see [1, 5]. See the appendix for a
discussion of the differences between the two versions.)

MAGNET is implemented as a patch to the Linux kernel.
It creates a circular buffer of event records in kernel memory
and provides a function, magnet add(), which inserts an
event record into the buffer. A call to magnet add() is
placed at each point where kernel information is desired.

In the networking subsystem, we have instrumented the
socket, TCP, UDP and IP layers, along with selected Ether-
net device drivers. In the task subsystem, we have instru-
mented task creation, termination and context switching.

To export kernel events to user space for use by applica-
tions, we provide magnet-read, a program which reads

Configuration
1 Linux 2.4.18
2 Linux 2.4.18 w/MAGNET
3 Linux 2.4.18 w/MAGNET, magnet-read on sender
4 Linux 2.4.18 w/MAGNET, magnet-read on receiver

Table 1. Test Configurations

event records from the circular buffer in kernel memory and
saves them to disk as a MAGNET trace. We also provide
a set of data-analysis tools that translates MAGNET traces
into human-readable form for post-processing. These tools
provide a simple yet effective way to obtain and utilize ker-
nel information.

While magnet-read provides a way to read event
records from the kernel, it does not allow multiple applica-
tions to access the event stream at the same time. In Section
5.1, we describe a more sophisticated tool which facilitates
the creation of adaptive applications — applications that
are aware of their environment and that can adapt to vary-
ing resource availability.

3 Performance Analysis

The overhead of running MAGNET is very low. To
demonstrate this, we measure the maximum transfer rate
between two hosts with and without MAGNET. The extra
cycles taken by magnet add(), as well as the overhead
of magnet-read, show up as a reduced transfer rate.

3.1 Test Setup

A total of four configurations, shown in Table 1, are com-
pared. The baseline configuration consists of two machines
with stock Linux 2.4.18 kernels. The second configuration
uses the same machines but with MAGNET installed. Al-
though present, MAGNET is inactive, i.e., no event records
are read from the circular buffer. The third configuration is
the same as the second except magnet-read runs on the
sender to drain the MAGNET buffer and write the records to
a trace file on disk. The fourth configuration is the same as
the third, but with magnet-read on the receiver instead.

In the results that follow, we configure MAGNET to
record socket, TCP, UDP, IP and Ethernet driver (network
interface) events. As a result, an application send or re-
ceive causes at least four events1 of 20 bytes each to be
recorded. The default 1 MB kernel buffer is used to store
event records.

Each of the tests transfers data between two ma-
chines containing dual 933 MHz Pentium III processors
and 512 MB of RAM. We present transfer rates for both
100 Mbps (Fast) and 1000 Mbps (Gigabit) Ethernet, as well
as for uniprocessor and symmetric multiprocessor (SMP)
kernels over 1000 Mbps Ethernet.

1The precise number of events is ����� ���	��

�������������� .

100 Mbps 1000 Mbps
Conf. Throughput (Mbps) Throughput (Mbps)

1 94.12 � 0.00 615.34 � 0.16
2 94.12 � 0.00 615.00 � 0.84
3 94.12 � 0.00 615.36 � 0.97
4 94.12 � 0.00 613.05 � 0.43

Table 2. Throughput vs. Network Speed

We use netperf [9] on the sender to flood the network
in order to measure the achievable bandwidth under worst-
case conditions.2 We minimize the amount of interference
in our measurements by eliminating all other network traffic
and minimizing the number of processes running on the test
machines to netperf and a few essential services. We
also conduct enough runs to ensure that the 95% confidence
intervals are all less than 5%.

3.2 Performance

Table 2 presents the throughput of the four configura-
tions as a function of the network speed for SMP kernels.
Along with the mean, the width of the 95% confidence in-
terval is given. For 100 Mbps Ethernet, the throughput is
network limited, as indicated by the high but constant values
in all four configurations. (The CPU utilization, as reported
by netperf, was below 12%.)

Except when MAGNET is active on the receiver, the re-
sults for the 1000 Mbps Ethernet tests are also not statis-
tically significant. Since the amount of processing on the
receiver is higher than on the sender, running MAGNET
on the receiver shows a greater effect. Even when MAG-
NET runs on the receiver, the throughput is only reduced by
0.4%. The CPU utilization does not change by a statistically
significantly amount in any of the configurations.

Table 3 presents the throughput of uniprocessor and sym-
metric multiprocessor kernels over 1000 Mbps Ethernet. In
general, the cost of mutual exclusion should be lower in the
uniprocessor kernel. (Lock contention can still occur due
to interrupt handler instrumentation.) Indeed, the through-
put of the uniprocessor kernel is slightly higher (+0.3%)
than the SMP kernel. On the other hand, the additional
load imposed by MAGNET should have a greater effect on
a uniprocessor system. The uniprocessor tests 2–4 show
a small but statistically significant reduction in throughput
compared with test 1, even when MAGNET is inactive.
However, the worst-case reduction in throughput (unipro-
cessor kernel with MAGNET active on the receiver) is still
only 3.3%.

In practice, the penalty imposed by MAGNET will be
much less since the previous tests attempt to saturate the
network to achieve worst-case conditions. To show more
typical conditions, we compare the measured throughput on
FTP transfers. The server runs wu-ftpd on a MAGNET-

2The command is “netperf -n2 -fk -cC -H <host>”.

Uniprocessor SMP (dual)
Conf. Throughput (Mbps) Throughput (Mbps)

1 617.30 � 0.13 615.34 � 0.16
2 614.02 � 0.21 615.00 � 0.84
3 613.33 � 0.46 615.36 � 0.97
4 596.63 � 1.53 613.05 � 0.43

Table 3. Throughput vs. Processors Count

0

100

200

300

400

500

600

1 32 1024 32K 1M 32M

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s

=
 1

06 b
ps

)
Transfer Size (bytes)

Baseline
MAGNET (inactive)

MAGNET (active)

Figure 1. FTP with and without MAGNET

ized uniprocessor kernel. (A uniprocessor kernel accentu-
ates performance differences.) The client machine runs a
standard FTP client on a stock kernel.

Figure 1 shows throughput as a function of message size.
(The spike at 4 KB is due to the way Linux device drivers al-
locate memory.) At a message size of 32 MB, the difference
in throughput is only 0.8%.

In summary, MAGNET generally imposes a negligible
overhead on the maximum achievable throughput. We ob-
serve the largest effects on configurations with MAGNET
on the receiver or on a MAGNET-ized uniprocessor kernel.
In the worst case, which occurred with the MAGNET-ized
uniprocessor kernel running on the receiver, the penalty was
only 3.3% for a saturated network. In normal usage, how-
ever, the overhead is less than 1%.

4 Using MAGNET as a Diagnostic Tool

Due to its low overhead and the fine-grained information
it exports, MAGNET makes a very useful diagnostic tool.
We give two examples in which MAGNET provides impor-
tant insights into the operation of the kernel. The first exam-
ple shows how we uncovered an anomaly in the Linux 2.4
scheduler. The second example shows how we used MAG-
NET to diagnose a performance problem in a 10-Gigabit
Ethernet driver.

4.1 Scheduling Anomaly

We instrumented the process subsystem by adding moni-
toring points for process creation (fork), scheduling and ter-

0

2

4

6

8

10

12

14

16

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

C
on

te
xt

 S
w

itc
h

T
im

e
(m

ic
ro

se
co

nd
s)

Time (seconds)

CPU #0
CPU #1

Figure 2. Context Switches “at Idle”

mination (exit) events. The modification consisted of 26
lines of code in four files.

The instrumentation generates two events during a
reschedule decision. The first event indicates the process
being deactivated along with the CPU upon which it was
running. The second event indicates the process being ac-
tivated and gives the CPU upon which it will run. The
time difference between the two events is the context-switch
time. During that time, the kernel saves the deactivated
state, decides which process to execute next and reloads the
newly activated state.

To test the instrumentation, we monitored the behavior
of the scheduler on a workload containing only the usual
system processes (the “idle” test). We also monitored the
behavior of the scheduler with a single user process execut-
ing a tight infinite loop (CPU-bound test).

Figure 2 shows the context-switch time for the “idle”
system test. The average context switch time for CPU #0
is around 2 � s corresponding to the fast path through the
scheduler with occasional excursions to approximately 4 � s
corresponding to the slow path through the scheduler. The
context-switch times for CPU #1, on the other hand, are 4-
6 � s likely due to contention on the spin lock protecting the
ready queue.

Figure 3 shows the same graph but with the CPU-
bound process running. The average context-switch time
for CPU #0 now oscillates between 2 � s and 6 � s. The pe-
riod of the oscillation is around 2 s. Likewise, the average
context-switch time for CPU #1 also oscillates but is 180
degrees out of phase.

Unable to explain the behavior of the CPU-bound test,
we searched the archives of the Linux kernel mailing list
and found that this curious behavior is due to a known prob-
lem in the Linux kernel scheduler which causes a process to
migrate to idle processors in a round-robin fashion [6]. The
problem is being addressed in the experimental 2.5 kernel
and will hopefully be fixed by the time the stable 2.6 ker-
nel is released. In this case, the information obtained using

0

2

4

6

8

10

12

14

16

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

C
on

te
xt

 S
w

itc
h

T
im

e
(m

ic
ro

se
co

nd
s)

Time (seconds)

CPU #0
CPU #1

Figure 3. Context Switches “under Load”

MAGNET exposed the scheduling anomaly which would
have been very difficult to directly observe otherwise.

4.2 Problem with Ten-Gigabit Ethernet Driver

In this section, we show how we used MAGNET to diag-
nose and fix a performance problem in a pre-release Linux
driver for a 10-Gigabit PCI Ethernet card.

The solid line in Figure 4, labeled “Baseline,” shows the
measured bandwidth, as a function of the message size, us-
ing the pre-release Linux driver. (The results shown are
for a standard 1500 byte maximum transfer unit (MTU),
although similar results are obtained for various “jumbo
frames” up to the largest supported MTU.) Usually the
bandwidth increases asymptotically to a maximum value.
Indeed, up to a message size of approximately 16 KB, the
bandwidth asymptotically increases as expected. However,
the bandwidth drops off dramatically after 32 KB and ex-
hibits tremendous variability. The results are repeatable.

We suspected that the problem was in the receiver’s pro-
tocol stack and inserted a number of magnet add() calls
throughout the receiver code. This allowed us to quickly de-
termine that an unexpected amount of time was being spent
in the receive handler.

Although not readily visible in Figure 4, we observed
periodic drops in performance of varying magnitudes for
message sizes that are multiples of 4 KB. Since the min-
imum unit of network buffer allocation is a 4 KB physical
memory page, we suspected a problem in performing buffer
allocations during interrupt handling.

High-performance drivers maintain a ring of free buffers
so that arriving packets can be moved off the card as quickly
as possible. Under heavy load, e.g., when measuring maxi-
mum achievable bandwidth, the ring begins to empty. This
forces the driver to refill the ring in the interrupt handler
rather than wait for a less time-critical moment. We hy-
pothesized that the dramatic performance drop for message
sizes over 32 KB occurs because the driver was attempting
to refill the ring from within the interrupt handler.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s

=
 1

06 b
ps

)

Message Size (KB = 1024 bytes)

Baseline
Improved

Figure 4. Ten-Gigabit Ethernet Performance

To test this hypothesis we placed magnet add()
calls at the beginning and end of the receive han-
dler. We also placed a magnet add() call before the
refill rx ring() function call. At each instrumenta-
tion point, we exported the number of free buffers in the pa-
rameter field of the MAGNET event record. As suspected,
the refill routine was consuming a large amount of time.
Furthermore, it was not able to refill the ring completely
every time it was called, further suggesting that something
was wrong with memory allocation.

The next step was a thorough review of the driver source.
We found that the target size of the ring was 1024 buffers.
Other high-performance drivers we are familiar with have
much smaller ring buffers. We reduced the size of the ring
to 64 buffers and ran the test again. The results are given by
the dashed line in Figure 4 labeled “Improved”.

Not only did the performance improve dramatically for
message sizes greater than 32 KB, but the bandwidth also
became much more stable. Additionally, the peak band-
width improved by approximately 2%. Clearly the drop in
performance occurred because the driver was having trou-
ble allocating so many buffers. (We are still investigating
the reason for the slight falloff in performance after a mes-
sage size of 32 KB. We are also investigating the cause of
the anomalies at message sizes of approximately 77 and 93
KB.) With additional tuning, large MTUs and PCI-X cards,
we have seen peak bandwidths of 4.02 Gbps. We are opti-
mistic that the bandwidth can be increased even more by the
time the card is ready for production.

To summarize, MAGNET was indispensable in diagnos-
ing the performance problem. Its low overhead did not per-
turb the behavior we were measuring. It also allowed spe-
cific segments of code within a function to be instrumented
instead of only providing function-level profiling, as is the
case with most profiling tools. Furthermore, it provided a
complete event history rather than a statistical summary. Fi-
nally, it allowed key kernel data to be exported along with
high-resolution timestamps.

5 Online Monitoring Using MAGNET

In this section, we provide two examples of how MAG-
NET, through a daemon process called magnetd, can be
used to monitor applications while they are running. In the
first example, we show how MAGNET can be used to mon-
itor a distributed application in a computational grid. In the
second example, we show how applications can use MAG-
NET to become resource-aware and adapt to changing con-
ditions. We call these adaptive applications.

5.1 The MAGNET Daemon

We have developed a daemon, called magnetd, which
collects MAGNET events and provides appropriate data to
applications. This strategy consolidates all monitoring ac-
tivity and amortizes the overhead across all applications
running on a host. It also facilitates the development of
adaptive applications.

While applications can request a copy of the complete
event stream from magnetd, the amount of information is
likely to be overwhelming. magnetd has the capability
to filter the event stream to just those events an application
needs. It can also perform computations on relevant events
within the stream, returning results periodically or on de-
mand. As an example, magnetd can compute a running
average bandwidth for a network connection which an ap-
plication can query as needed. Alternatively, the applica-
tion can request magnetd to periodically “push” the data
without the application’s involvement. Finally, we have de-
signed magnetd with an extensible architecture so trusted
users can augment its behavior without modifying the dae-
mon. (For more details, see [2].)

5.2 Monitoring Distributed Computations

Distributed systems, by nature, are very complex with
ample opportunities for subtle bugs and performance prob-
lems. The ability to visualize the execution history of a
distributed application could potentially save large amounts
of time and speed up the development and deployment of
such applications. In much the same way as a test engineer
uses an oscilloscope to observe the behavior of a complex
electronic circuit, MAGNET can be used to observe the be-
havior of complex distributed computations, such as those
found in computational grids.

As a proof of concept, we translate MAGNET event
records into the Universal Log Message (ULM) format used
by the NetLogger toolkit [4]. This allows us to use the Net-
Logger Visualization tool (NLV) to view an event stream
graphically. The translator establishes a connection with
magnetd, requests some subset of the event records, trans-
lates them to ULM format and appends them to the end of
a log file. NLV watches the tail of the file and updates the
display as new events appear.

Figure 5. Visualizing FTP Transfer with NLV

We have also developed a translator from MAGNET
event records to the format expected by GScope [3], an
open-source software oscilloscope library. The GScope li-
brary is easily incorporated into applications, which may be
more convenient in some circumstances than using a stand-
alone visualization application like NLV.

Figure 5 shows NLV displaying a segment of a FTP
transfer with magnetd monitoring both the client and the
server. The first cluster of three data points shows the
server sending a packet through the network stack and out
onto the network. The second cluster of three data points
shows the same packet traversing the network stack on the
client. Three of the remaining four points in the final clus-
ter show an TCP acknowledgment being sent back to the
server, while the fourth point shows the client receiving the
packet from the socket.

From the figure, we see that the packet traverses the
server’s stack quickly. (The packet was delayed slightly
before being sent by the Ethernet driver.) On the client,
however, the packet sat in a buffer for a time until the IP
layer was ready for it, after which the IP layer passed the
packet on to the TCP layer with less delay. The greatest de-
lay occurred waiting for the client to read the packet from
the socket. Visualizing the events of an FTP transfer quickly
provides insights into the overall behavior of the FTP trans-
fer, e.g., we identified at least one place, the TCP-socket
transfer, where time is potentially wasted.

Although this is a simple example, it serves to illustrate
how MAGNET can be used to monitor more complex dis-
tributed applications. We are working with the developers
of the Autopilot monitoring framework [11] to incorporate
MAGNET as a sensor (event source). Autopilot is one of
several frameworks which can be used to monitor applica-
tions executing on top of Globus [14].

0

1

2

3

4

5

0 200 400 600 800 1000

B
an

dw
id

th
 (

M
bp

s
=

 1
06 b

ps
)

Time (sec)

Short-Term Average (magnetd)
Overall Average (magnetd) 3.946 Mbps
Overall Average (FTP) 3.947 Mbps

Figure 6. Comparing Transfer Rates

5.3 Adaptive Grid Applications Using MAGNET

Adaptive applications are aware of the environment in
which they execute. Because of that awareness, they may
choose to adapt their behavior. Within the context of MAG-
NET, a adaptive application contacts magnetd to receive
pertinent information about the state of the system. In this
section, we discuss a adaptive application which is con-
cerned with the bandwidth that the network can provide.

Consider a distributed visualization application that
steers through a large data set. The application consists of a
renderer which is co-located with the stored data and a user
interface that executes on the scientist’s workstation. When
the available bandwidth is plentiful, the renderer sends raw
frames to the user interface for display. This provides the
maximum resolution to the scientist. If the network be-
comes congested, the renderer reduces the frame rate or
compresses the data to provide better response times. The
key capability for the application to respond appropriately is
awareness of what bandwidth is available from the network.
MAGNET, through magnetd, provides this capability.

To test the accuracy of magnetd bandwidth measure-
ments, we compare the transfer rate reported by magnetd
to the transfer rate reported by FTP on a 467 MB file trans-
fer from ftp.debian.org to our facility. Besides the
results for the complete transfer, Figure 6 also shows the
short-term average transfer rate, as reported by magnetd,
during the transfer. (The short-term average transfer rate
is computed over a sliding window of 1000 socket receive
events on the FTP data connection.)

The overall transfer rate reported by magnetd
(3.946 Mbps) is nearly identical to that reported by FTP
(3.947 Mbps). The slight difference occurs because FTP
computes the average over the time interval in which data is
being transfered while magnetd must wait for the socket
to be closed before it knows that no more data will be
sent. Hence magnetd will always underestimate the trans-
fer rate slightly.

300

350

400

450

500

550

600

650

14 15 16 17 18 19 20

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s

=
 1

06 b
ps

)

Time (seconds)

Figure 7. Bandwidth During Congestion

Figure 6 also shows that although the short-term aver-
age transfer rate is consistently over 4 Mbps, there are times
when the network is obviously congested and the transfer
rate drops. While the FTP client does not adapt to fluctuat-
ing bandwidth availability, the distributed visualization ap-
plication would reduce the frame rate or increase the com-
pression ratio in order to maintain responsiveness.

We next test the sensitivity of the bandwidth reported by
magnetd to abrupt changes in network load. We simulate
the transfer of frames from the renderer of the visualization
application to the display using netperf as the source of
network traffic. We simulate the adaptive subsystem by a
program which queries magnetd periodically and writes
the short-term average bandwidth to disk. The test begins
with an uncongested network. Another bandwidth-intensive
application, also represented by netperf, starts 14.3 sec-
onds into the test to cause congestion. The second appli-
cation finishes 5 seconds later after which the distributed
visualization application once again has uncontested access
to the network.

Figure 7 shows the short-term average bandwidth, re-
ported by magnetd, as a function of time. The bandwidth
is initially 583 Mbps without network congestion. At a time
14.3 seconds into the test, the bandwidth-intensive applica-
tion starts. The bandwidth of the visualization application
drops exponentially as the other application goes through
slow start. After the bandwidth intensive application ter-
minates 19.3 seconds into the test, the measured bandwidth
returns to what it was before.

Based on these encouraging results, we are working
with visualization researchers at our facility to modify
one of their distributed visualization applications to use
magnetd. The application will adjust the rate at which
it progressively refines images in order to adapt to changing
network conditions. When bandwidth is plentiful, full res-
olution images are transmitted. When bandwidth is scarce,
lower resolution images are initially sent, then gradually re-
fined to full resolution.

6 Related Work

Computational grids and other large distributed comput-
ing systems provide unique monitoring and tuning chal-
lenges. Tools, such as Autopilot [11], CODE [12], Su-
permon [13] and NetLogger [4] provide the infrastructure
to collect, correlate and present information about the state
of a computation and the resources being used. Addition-
ally, Autopilot and CODE provide a decision-making in-
frastructure to modify the behavior of a distributed appli-
cation based on measurements. Finally, Autopilot (through
the Pablo toolkit [10]) and NetLogger (through NLV) pro-
vide tools to visualize system behavior.

Rather than providing the infrastructure for collecting,
correlating or visualizing information about the behavior of
distributed applications, MAGNET provides an infrastruc-
ture for recording kernel events that occur while an appli-
cation executes. When coupled with magnetd, it is analo-
gous to the sensors which the above tools use to obtain the
state of a node.

MAGNET provides greater detail about the state of the
system than the sensors provided with the above tools.
Rather than coarse-grained or aggregate statistics, MAG-
NET records the occurrence of each event. Its timestamps
are also several decimal orders of magnitude more accurate.
If desired, the highly detailed event stream can be reduced,
using magnetd, to aggregate statistics. Thus, MAGNET
is complementary to the above tools.

Finally, Paradyn [7] can be used to monitor kernel
events. It accomplishes this task by parsing the binary exe-
cutable and dynamically inserting jumps to code segments
called trampolines into the running kernel. The trampolines
perform the monitoring, as well as execute the instructions
overwritten by the jump instruction. In contrast, MAGNET
instrumentation is statically compiled into a kernel. Be-
cause of this, Paradyn is much more flexible. The cost of
the flexibility is the need for more sophistication on the part
of the user. Unless the extra flexibility of Paradyn is needed,
MAGNET is likely to be of more immediate use to the av-
erage grid user.

7 Future Work

MAGNET provides basic infrastructure for monitoring
events in the operating system kernel. We are working to
get MAGNET accepted into the official Linux source tree.
With MAGNET incorporated, we expect that more kernel
subsystems will be instrumented. We also intend to instru-
ment other subsystems as we need them and as time permits.

Although we have shown that magnetd can be used
to create adaptive applications, we do not have sufficient
domain-specific knowledge to create more than toy appli-
cations in many domains. We welcome experts in all areas
to use MAGNET to develop adaptive applications.

We would like to incorporate support for MAGNET,
through magnetd, into distributed monitoring and deci-
sion middleware for computational grids. In particular, we
are looking into using magnetd as a sensor for the Autopi-
lot and CODE frameworks. We have already implemented
a translator which allows MAGNET traces to be used with
NetLogger’s visualization tool (NLV).

8 Conclusion

Along with increased capabilities, computational grids
also give rise to new difficulties in debugging, monitoring
and analyzing distributed systems. The MAGNET toolkit
facilitates online monitoring of nodes in computing clusters
or computational grids with low overhead, without modifi-
cation to distributed applications.

In the absolute worst case (network saturation), through-
put is reduced by less than 4% while monitoring events
throughout the network stack. With a more typical work-
load, throughput is reduced by only 0.8%. Even lower over-
head is possible by monitoring fewer events since it is un-
likely that grid applications will need to monitor within the
network stack.

Because of the variety and quality of the events it ex-
ports, MAGNET is a useful diagnostic tool for identify-
ing and correcting subtle intra- and inter-host performance
problems. It also enables the development of adaptive appli-
cations, e.g., grid applications that adapt to changing condi-
tions such as fluctuating bandwidth.

References

[1] W. Feng, J. R. Hay, and M. K. Gardner. MAGNeT: Monitor
for application-generated network traffic. In Proceedings of
the 10th International Conference on Computer Communi-
cation and Networking (IC3N’01), Oct 2001.

[2] M. K. Gardner, M. Broxton, A. Engelhart, and W. Feng.
MUSE: A software oscilloscope for clusters and grids. In
Proceedings of the 17th IEEE Internation Parallel and Dis-
tributed Processing Symposium (IPDPS 2003), Apr 2003.

[3] A. Goel. Gscope: A software oscilloscope library. http:
//gscope.sourceforge.net.

[4] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee.
NetLogger: A toolkit for distributed system performance
analysis. In Proceedings of the IEEE Mascots 2000 Con-
ference (Mascots 2000), Aug 2000.

[5] J. R. Hay, W. Feng, and M. K. Gardner. Capturing network
traffic with a MAGNeT. In Proceedings of the 5th Annual
Linux Showcase and Conference (ALS’01), Nov 2001.

[6] M. Kravetz. CPU affinity and IPI latency, Jul 2001.
http://www.uwsg.indiana.edu/hypermail/
linux/kernel/0107.1/0770.html.

[7] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The Paradyn parallel performance
measurement tools. In IEEE Computer, pages 37–46. IEEE,
Nov 1995.

[8] National HPCC Software Exchange. http://www.
nhse.org/grand_challenge.html.

[9] Netperf. http://www.netperf.org.
[10] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields,

B. W. Schwartz, and L. F. Tavera. Scalable performance
analysis: The Pablo performance analysis environment. In
Proceedings of the IEEE Scalable Parallel Libraries Con-
ference, Oct 1993.

[11] R. L. Ribler, H. Simitci, and D. A. Reed. The Autopilot
performance-directed adaptive control system. In Future
Generation Computer Systems, special issue (Performance
Data Mining), Sep 2001.

[12] W. Smith. A framework for control and observation in
distributed environments. Technical Report NAS-01-006,
NASA, Jun 2001.

[13] M. Sottile and R. Minnich. Supermon: A high-speed cluster
monitoring system. In Proceedings of IEEE Cluster 2002,
Sep 2002.

[14] The Globus Project. http://www.globus.org/.
[15] The TeraGrid Project. http://www.teragrid.org/.

A Appendix

Version 1.0 of the toolkit, entitled “Monitor for
Application Generated Network Traffic” (MAGNeT) [1,5],
was created to enable the capture of an application’s net-
work requests. Because the toolkit can monitor any ker-
nel event, the name has been changed in version 2.0 to
“Monitoring Apparatus for General kerNel Event Tracing”
(MAGNET) in order to emphasize the general purpose na-
ture of the toolkit.

Version 2.0 is an extensive rewrite. The most important
change ensures correct operation from within interrupt con-
texts and on symmetric multiprocessor (SMP) machines. A
SMP-safe spinlock now protects the critical section which
adds events to the kernel buffer.

The binary trace format now contains more information
needed to make use of the trace. For example, the second
(pseudo) event contains the number of seconds since epoch
allowing timestamps to be correlated with wall clock time.

More instrumentation points are now available. The
UDP layer, generic network device dispatch code and se-
lected Ethernet device drivers are instrumented. Context
switches are also instrumented.

Finally, kernel configuration of MAGNET is much eas-
ier. All options can now be individually configured at com-
pile time. (For performance reasons, we are resisting the
urge to make MAGNET configurable at run time through
sysctl() or the /proc file system.) The configura-
tion options have been relocated from the “Network Op-
tions” section to the “Kernel Hacking” section in keep-
ing with MAGNET’s ability to monitor any kernel event.
The MAGNET source code has also been relocated from
kernel/net/magnet to kernel/magnet.

