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Abstract

The initially unrestricted host-to-host communication
model provided by the Internet Protocol has deteriorated
due to political and technical changes caused by Inter-
net growth. While this is not a problem for most client-
server applications, peer-to-peer networks frequently strug-
gle with peers that are only partially reachable. We describe
how a peer-to-peer framework can hide diversity and ob-
stacles in the underlying Internet and provide peer-to-peer
applications with abstractions that hide transport specific
details. We present the details of an implementation of a
transport service based on SMTP. Small-scale benchmarks
are used to compare transport services over UDP, TCP, and
SMTP.
Keywords: peer-to-peer framework, transport layer, secu-
rity.

1 Introduction
Peer-to-peer networks are typically overlay networks

that are built on top of the existing Internet infrastructure. In
an ideal overlay network, every node can communicate with
every other node. However, this is not always the case with
the modern Internet. Firewalls, network-address translation
(NAT) devices, and dynamic IP assignment via DHCP are
create obstacles that global peer-to-peer applications need
to overcome. One central design goal for a peer-to-peer
framework must thus be to virtualize the network and give
the application a view of a uniform address space and com-
munication model. While it may not always be possible to
guarantee connectivity from every node to every other node,
the details about the implementation of the transport layer
should clearly be hidden from the application.

Another important problem with communications over
the Internet is the increasing interference of governments in
the activities of their citizens. China, for example, blocks
access to some news sites hosted outside the country [5]. It
is desirable for a peer-to-peer system to offer transport pro-
tocols that can be used in spite of these circumstances. UDP

and TCP can easily be blocked based on the port number as-
sociated with a specific application; on the other hand, some
protocols, such as SMTP, cannot be conveniently blocked
without interfering with a significant portion of users.

It should be clear from the discussion above that one of
the most important design requirements for a peer-to-peer
system is the support for a wide variety of transport mech-
anisms. The goal is that a transport abstraction should sup-
port the full spectrum of transport services. These services
may be unidirectional or bidirectional, stream-oriented or
record-oriented, reliable or unreliable, and low-latency or
high-latency. In particular, it is desirable to support a mix-
ture of these different features in the same peer-to-peer net-
work. In fact, two peers A and B may want to use different
modes of communication on the same link. For example,
suppose nodeB is behind a NAT box and cannot be reached
directly via UDP or TCP. In a system with multiple trans-
port protocols, A could initiate a connection by sending an
e-mail to B (SMTP) and then have B contact A via TCP,
allowingA to continue further communication on a bidirec-
tional TCP connection.

We will use GNUnet as our reference peer-to-peer sys-
tem, but it should be clear that the idea of a transport ab-
straction can be applied to other systems. GNUnet is a peer-
to-peer framework whose main focus is on security [2, 7].
The goal of the GNUnet project is to become an important
tool for free information exchange in a world which is hos-
tile toward uncontrolled communication. GNUnet’s primary
design goals are to protect the privacy of its users and to
guard itself against attacks or abuse. GNUnet does not have
any mechanism to control, track or censor users. Instead,
the GNUnet protocols aim to make it as hard as possible to
identify specific network activities or to disrupt operations.

In this paper, we present a transport layer abstraction for
GNUnet and benchmarking results that evaluate the perfor-
mance of the corresponding UDP, TCP and SMTP transport
implementations. We will describe the SMTP transport im-
plementation in more detail, since this is the less conven-
tional choice.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 



2 GNUnet and The Transport Layer

GNUnet is a peer-to-peer framework that can support
multiple applications [7]. It has a layered design (see Figure
1), and normally runs as a daemon. The applications talk to
the GNUnet daemon (gnunetd) in a client-server manner
using TCP connections. Current examples of applications
are anonymous file sharing (AFS) and a message exchange
program (Chat). In GNUnet, the server gnunetd is respon-
sible for accounting, routing and link encryption. The core
relies on implementations of the TransportAPI for the
actual transport of messages.

In GNUnet, peers are identified by node identities, which
are the hash codes of their public keys. The GNUnet core
provides link-to-link encrypted transmission of messages to
other nodes that are identified by this node identity. The
core binds each node identity to an address in the underly-
ing Internet. The nature of these network addresses depends
upon which transport mechanism that is used. For example,
for UDP and TCP, IP address and port number are used.
For SMTP, an e-mail address is used. The core is respon-
sible for link-to-link encryption, binding of node identities
to routable addresses, and peer discovery. This leaves the
peer-to-peer applications concerned only with node identi-
ties. Due to space limitations, we refer the reader to [7] for
more details about GNUnet and its various protocols; for the
remainder of this paper, we will concentrate on the transport
abstraction.
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Figure 1. GNUnet layers.

Node to node communication in peer-to-peer networks is
inherently unreliable. In contrast to client-server architec-
tures, node failure is part of the normal mode of operation.

But even if nodes do not fail, the transport layer may be built
on top of an unreliable communication protocol such as IP
or UDP. The design question in this case is whether or not
the transport layer implementation should hide this fact and
guarantee delivery if the other node is reachable. In other
words, the question is whether or not the transport layer or
core should provide reliable communication like TCP and
hide the unreliability of the network, or if all network prob-
lems should be exposed to the application.

In peer-to-peer systems, it is better to expose the unreli-
ability of the transport layer to applications or higher-level
abstractions that go beyond the scope of a simple link-level
transport. There are multiple reasons for this. Links in a
peer-to-peer overlay network are bound to be even less reli-
able than the physical links that IP is concerned with. Con-
nections with asymmetric bandwidth and P2P protocols that
require forwarding messages to multiple other peers fre-
quently force peers to drop messages. Congestion control
would be difficult for a generic transport abstraction that
has to deal with one-to-many or even many-to-many con-
nections. Application specific solutions that can take the
specifics of the protocol and potential security problems
into account are needed. Another reason is that many ap-
plications may not require reliable communications; for ex-
ample, a flooding search may send out 12 queries in par-
allel, and if one of them is lost on the transport layer, it
is still possible that the remaining 11 queries will return a
sufficient number of results. Adding retransmission on the
transport layer in these cases merely increases the overhead
without providing any major benefit.

The same rationale applies to the question of ordered de-
livery. Choosing the weaker semantics (no guarantee for or-
der of delivery) makes the transport layer cheaper and more
resilient. For example, an adversary that changes the mes-
sage order or delays messages would have no impact. Of
course, these less strict semantics also make the implemen-
tation of the transport over UDP (no order preservation) or
SMTP (high latency) easier. The transport layer implemen-
tation may still use an underlying protocol such as TCP that
has stronger semantics; this might happen, for example, be-
cause the network or the host configuration does not allow
the use of cheaper protocols such as IP or UDP.

In order to allow using any common transport protocol as
the basis for the transport layer, the size of the messages ex-
changed between the core and the transport layer must be ei-
ther fixed (and in this case equal to the smallest value among
the transport MTUs) or communicated from the transport
layer to the core. While UDP can technically support data-
grams of up to 64KB, the operating system may impose
a smaller MTU (see RFC 1122 [4], for example). Frag-
mentation considerations often dictate even smaller mes-
sage sizes, such as 1472 bytes on ethernet. Other protocols,
like SMTP, have no restrictions on the message size but may
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t y p e d e f s t r u c t f
TSes s ion � t s e s s i o n ;
H o s t I d e n t i t y s e nde r ;
p2p HEADER � msg ;
unsigned i n t s i z e ;
i n t i s E n c r y p t e d ;
i n t c r c ;

g MessagePack ;
t y p e d e f s t r u c t f

unsigned i n t v e r s i o n ;
H o s t I d e n t i t y � my I d e n t i t y ;
vo id (� r e c e i v e ) ( MessagePack � mp ) ;

g CoreAPIForT r anspo r t ;

Figure 2. Data structure used in the interface
core/transport layer.

have a high per-message overhead. Therefore, we advocate
the idea that the transport layer should advertise a transport-
specific MTU to the core. The core is then responsible for
queuing multiple application messages into a larger mes-
sage (which must be smaller than the MTU) and using the
transport layer to transmit this message. The smallest MTU
should ideally be larger than the largest single application
message, but if this is impossible, the core could provide
fragmentation and reassembly.

2.1 The core API

The GNUnet core provides a very simple interface, the
CoreAPIForTransport data structure, to the transport
layer. It consists of the method receive which is invoked
by the transport layer whenever a message is received. The
core API data structure also contains a version number and
the identity of the local node. Figure 2 shows the data struc-
ture. A pointer to this data structure is passed to an initial-
ization method (inittransport) that the transport layer
implementation must implement. The inittransport
method then returns a data structure with the methods that
the core can invoke on the transport layer (see section 2.2).

The receivemethod from the core interface takes one
message as its argument. The message contains a transport
session handle (TSession). This handle is used to identify
a transport session (e.g. a TCP stream). The TSession con-
tains the type id of the transport and an opaque handle that
the transport layer is free to define. The transport layer can
pass NULL for the session handle if the specific transport
implementation has no notion of sessions.

The second field (sender) is the node identity of the
sender of the message. The transport layer must communi-
cate this information, but the means by which this is com-
municated are up to the transport implementation. For ex-
ample, UDP messages contain the sender identity in every
message, whereas in the TCP implementation, the client

t y p e d e f s t r u c t f
unsigned s h o r t pro toco lNumber ;
unsigned s h o r t mtu ;
unsigned i n t c o s t ;
i n t (� v e r i f yH e l o ) ( HELO Message � he l o ) ;
i n t (� createHELO ) ( HELO Message �� he l o ) ;
i n t (� conne c t ) ( HELO Message � he l o ,

TSes s ion �� t s e s s i o n ) ;
i n t (� s end ) ( TSes s ion � t s e s s i o n ,

vo id �msg ,
unsigned i n t s i z e ,
i n t i s E n c r y p t e d ,
i n t c r c ) ;

i n t (� a s s o c i a t e ) ( TSes s ion � t s e s s i o n ) ;
i n t (� d i s c o n n e c t ) ( TSes s ion � t s e s s i o n ) ;
i n t (� s t a r t T r a n s p o r t S e r v e r ) ( vo id ) ;
i n t (� s t o pT r a n s p o r t S e r v e r ) ( vo id ) ;

g T ran s po r tAP I ;

Figure 3. The transport API.

sends its identity only when the connection is established
(but never thereafter).

The remaining four arguments describe the message it-
self. They are all passed to the transport layer by the core.
They consist of a pointer to the message itself, the size of
the message, a flag specifying whether the message is in
plain text or encrypted, and the CRC32 checksum of the
plain text message. The transport layer is not concerned
with encryption or with verification of the checksum; it is
only concerned with transmitting these four pieces of infor-
mation. The details about how this information is commu-
nicated are again transport-specific and not specified.

2.2 The Transport Interface

The TransportAPI is again a data structure contain-
ing a list of function pointers, see Figure 3. It provides ac-
cess to three fields and nine methods which extend GNUnet
with a new transport service. A new transport mechanism
can be integrated into GNUnet by building a dynamic li-
brary libgnunettransport XXX that exports a func-
tion inittransport XXX. If GNUnet finds a command
to load the transport named XXX in the configuration file, it
will load this dynamic library and invoke theinittrans-
port XXX method passing the core API described in the
previous section. inittransport XXX is then supposed
to return a pointer to the TransportAPI data structure, or
NULL on error.

The transport API data structure contains three fields.
The first field is the protocol number, which is a unique,
small number that can be used to identify the transport pro-
tocol inside of GNUnet. The second field is the maximum
transfer unit (MTU) supported by the transport implemen-
tation. If a GNUnet transport implementation is stream-
oriented (like TCP) and has no obvious limit on the mes-
sage size, the MTU should be chosen such that a reasonable
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trade-off between per-message overhead, IP-level fragmen-
tation and latency is achieved. The third field defines the
cost of using this transport mechanism compared to other
services. For example, UDP is typically cheaper than TCP,
and TCP is much cheaper than SMTP. Given the choice, the
GNUnet core will choose the cheapest available transport
mechanism to send a message.

The first function that GNUnet will typically call on the
transport API is startTransportServer. This func-
tion is called when GNUnet is ready to receive messages
from the transport layer. It should be used to start a server
thread that, for example, listens on some port for incoming
messages. When GNUnet is stopped, it calls stopTrans-
portServer in order to give the transport a chance to
shutdown properly.

GNUnet uses so-called HELO messages to notify other
nodes about available transports. A HELO message con-
tains, among other things, the transport protocol number
and the address of the transport endpoint. Since the GNUnet
core does not know anything about the addressing scheme
used by the transport mechanism (it could be anything,
from an IP address and port number to an e-mail address
or an IPv6 address), it calls createHELO on the trans-
port mechanism in order to obtain this information. HELO
messages are of variable size with the transport-layer ad-
dress being the variable-length field senderAddress at
the end of the message. createHELO is supposed to fill in
the fields senderAddressSize, protocol, MTU and
senderAddress. createHELO returns OK on success.
createHELO can fail; for example, it may fail if the trans-
port service is unidirectional (send only) and cannot be ad-
vertised as an address under which the local node can be
reached. This might, be the case, for example, with a TCP
service behind a NAT box. If the TCP implementation is
aware of the NAT problem, it may decide to always return
SYSERR in createHELO and thus ensure that other nodes
will never attempt to initiate a TCP connection. In this case,
the TCP service would only be used for outbound connec-
tions by GNUnet.

The function verifyHelo is a counterpart to cre-
ateHELO. It is invoked whenever GNUnet receives aHELO
message with the same transport protocol id. verifyH-
elo is supposed to check whether the sender address spec-
ified in the HELO conforms to the standards set for sender
addresses in the specific transport mechanism. verify-
Helo does not have to verify if the rest of the HELO is
well-formed or if the address is actually reachable. veri-
fyHelomay check if the user has configured the transport
mechanism to specifically deny sending messages to that
address (a blacklist mechanism: this may, for example, pre-
vent attempts to connect to a 10.0.0.0 IP network).

The remaining four methods are the ones actually con-
cerned with sending messages. connect is used to estab-

lish a connection to a remote node. connect is passed
a HELO message and, if successful, is supposed to set its
second argument to the transport session (TSession) that
was established. The TSession handle is used by the core
in calls to send to identify where to send the message. The
other arguments to send are the message itself, the size of
the message, the indication of whether the information is
encrypted, and the checksum of the message in plain text.
These provide the transport mechanism with all four argu-
ments that must be passed to the receive function of the
core at the receiver node. The disconnect method does
the opposite of connect; it shuts down a connection and
deallocates the resources associated with it. In particular,
the transport implementation must free the TSession data
structures that were created in connect.

While it seems that the set of functions described so far
would be sufficient, we need one additional method, as-
sociate, in order to handle bidirectional transport mech-
anisms. The problem with bidirectional transports is that
a session is not always initiated by the local GNUnet core
calling connect, but may instead have been started by a
remote node. The GNUnet core first sees the session when
the transport layer calls receive. At this point, two things
may happen. Either the core decides to use the bidirectional
session to send replies, or the core uses another (potentially
cheaper) transport mechanism to answer, if it answers at all.
If the core wants to use the existing session to send replies,
it must retain the transport session handle. Without asso-
ciate, this would cause problems because the transport
layer would not know when to close the connection and free
the resources. Thus, we require the core to invoke asso-
ciate if it decides to use the transport session for further
communication. associate is similar to connect in
that it ensures that the session handle is valid until the core
calls disconnect. The implementation of associate
is similar to reference counting in garbage collection. con-
nect and associate increment the reference counter;
disconnect decrements it.

Another important detail in the implementation of bi-
directional transports is that they must time out stale con-
nections. The current interface would allow nodes to estab-
lish a connection that would last indefinitely without being
used. For example, the core of nodeAmay decide to estab-
lish a cheaper way to communicate and not to associate
with an inbound connection. The transport of node A can-
not instantly close the session since the other node B may
still be using it to send data. But B may keep the connec-
tion open for the same reason; it may expect to receive data
fromA on that connection. Thus, the transport service must
time out sessions that are not associated with the core for
writing.
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:0:
* \ˆX-mailer: GNUnet
/tmp/gnunet.smtp
:0:
/var/spool/mail/$USER

Figure 4. Example procmail configuration
with “X-mailer: GNUnet” as the filter line and
“/tmp/gnunet.smtp” as the name of the pipe.

2.3 Security Considerations

An interesting security problem in peer-to-peer networks
arises when malicious nodes advertise invalid or incor-
rect peer addresses. For example, it would be possible in
Gnutella [8] to advertise example.com as a peer; even
the port can be freely chosen in the advertisement. If peers
spread this advertisement and frequently attempt to connect
to this host, the peer-to-peer network could become a tool
for a distributed denial of service attack. On the other hand,
without a central server, the ability of peers to advertise
other peers cannot be avoided.

Our solution to this problem is that every peer A that re-
ceives an advertisement for another peer B must check that
the advertised address is valid by sending a PING message
containing a challenge (a randomly chosen integer) to the
advertised peer B. If B receives the PING, it responds with
a PONG message which also contains the challenge, con-
firming that it can be reached under this address. Only after
this protocol has been run shouldA notify other peers ofB’s
existence. This prevents a malicious nodeM from advertis-
ing a non-participating third party T on the network since
T would not properly respond to A’s PING.M also cannot
easily fabricate a PONG for T because the message sent to
B contains a challenge which is unknown to M . While M
has tricked A into sending a single message (the PING) to
T , this cannot be used to seriously attack T sinceM had to
send a message to A first. If M had sent the message di-
rectly to T , it would have caused an equal amount of traffic.
The only gain thatM has potentially achieved is that it was
able to hide its identity from T .

3 Example: SMTP Implementation

When GNUnet starts running, it loads all the transport
modules defined in its configuration file. During this pro-
cess, the initialization code of the SMTP transport opens a
connection to an SMTP server (sendmail, qmail, etc.) that is
running either on the local host or remotely; this connection

will be used to send messages to the other peers. Observe
that GNUnet does not establish a direct SMTP connection to
the other peers, but relies instead on existing mail transfer
agents (MTAs) to send the messages.

3.1 Sending E-mail

When the SMTP transport service receives a message
from the GNUnet core, the message is extended with a
header that contains the node identity of the sender and
the meta-information provided in the parameters of send.
The resulting message is base64 encoded, encapsulated ac-
cording to the MIME conventions [6], and sent to the MTA
over the pre-existing TCP connection. Most MTAs store
the mail on the drive before sending an acknowledgement
to the client in order to ensure guaranteed delivery even af-
ter a crash. While this is not required for GNUnet mail (es-
pecially since the semantics only specify unreliable com-
munications), this disk I/O is a significant overhead for the
SMTP transport. The MTA then resolves the destination ad-
dress using DNS (MX record) and contacts the remote mail
server, which again receives the message via SMTP and ini-
tiates delivery.

3.2 Receiving E-mail

In order for GNUnet to receive an inbound e-mail, the
mail must first be delivered to the local machine. If the
local machine is the receiving host according to the MX
record for the e-mail address, this step is handled by the
SMTP protocol. But in the case where the GNUnet node
runs behind a NAT box, the mail will typically be stored on
the mail server at the ISP. In this case, the host will peri-
odically poll for new mail, for example using a POP client.
Under this last configuration, the polling interval will be a
major contributor to the delay in the SMTP transport. For
GNUnet to work properly, we assume that one minute is a
reasonable interval. Polling with POP can easily be auto-
mated using fetchmail, a tool that is available for most
UNIX systems.

In many cases, this is not the only problem. Normally
users will have only one e-mail account available. Thus it is
necessary to filter the inbound GNUnet messages from the
other messages that are destined for the user. Since we do
not want to tag all GNUnet e-mails with a uniform header
(this would make it too easy for adversaries to filter and ef-
fectively censor GNUnet traffic), the advertisement for the
SMTP address of the peer does not only contain an e-mail
address but also a filter line. The sender is required to add
this line to the header. Since the receiver of the e-mail spec-
ified which filter to use, procmail can be used to distin-
guish mails that have the appropriate filter line. The user can
change the filter line whenever he wants; it will, of course,
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take some time to propagate the new address information
into the network.

Finally, procmail needs to be informed of how to de-
liver the GNUnet mail to the gnunetd process. The easiest
way is to use a named pipe (fifo). The user specifies in
the GNUnet configuration the name of the pipe, and proc-
mail writes the filtered mail into that pipe. The SMTP
transport then reads the mail, decodes the base64 encoded
body and forwards the message to the GNUnet core. An
example .procmailrc configuration file is given in Fig-
ure 4.

3.3 Security considerations for SMTP

The primary security problem with SMTP is the poten-
tial for harassment of users. Other transports (UDP, TCP,
HTTP) have this problem to a much lesser extent. While
sending massive amounts of traffic can become an attack
with every transport protocol, fairly moderate amounts of
data can become a problem when sent to a user via e-mail,
especially if the user is not educated enough to filter the
spam. Still, it is possible to use SMTP as one possible
transport mechanism for peer-to-peer networking. Since
GNUnet is completely decentralized, a solution to the secu-
rity challenge requires that peers be able to advertise e-mail
addresses of other peers on the network.

In order to prevent attacks, every peer first validates the
advertisements before using the e-mail address for actual
transmission or advertising it further. The validation proce-
dure requires the peer to send an e-mail message containing
a GNUnet PING message together with advertisements for
its own transports to the peer. If the peer responds with
a proper GNUnet PONG message, the address is consid-
ered valid. Every PING message contains a random num-
ber (challenge) that the responding peer must copy into the
PONG message. This makes it impossible to send a fake
PONG reply for anybody that does not control a router on
the path between the two peers. Note that the PONG mes-
sage does not have to use the SMTP transport mechanism;
any known transport for the peer will do.

This mechanism ensures that a malicious peer that sends
an advertisement for an invalid (non GNUnet) e-mail address
will trick the receiving peer into sending at most one small
message to that address. The bandwidth that the adversary
spends on sending advertisements is thus proportional to
the amount of e-mail that the victim receives. More im-
portantly, the adversary is not anonymous. While the vic-
tim does not receive the mail directly from the attacker, it is
clear that the attacker is the node sending the advertisements
since no honest node will send advertisements without hav-
ing received the PONG confirmations. Thus, it is possible
to track down the attacker.

A more sophisticated attack involves mailing lists. The

Transport UDP TCP Purdue RH 8.0 qmail

11 bytes 31ms 55ms 781s 89s 24s
407 bytes 37ms 62ms 789s 98s 25s

1,221 bytes 46ms 73ms 804s 98s 25s

Figure 5. Time to send 1000 messages (trans-
port only).

problem here is, that an adversary could subscribe to a mail-
ing list and then advertise the address of the mailing list on
GNUnet. Peers would send mail to the list and the adver-
sary could send responses to the PING messages since he
is one of the recipients. Since the peers can confirm that
the address is valid, they would now start advertising the
address, causing even more traffic for the list. In this way,
an adversary could anonymously drown any open mailing
list in unsolicited traffic. The solution to this problem is
to ensure that GNUnet SMTP traffic will not be forwarded
by any modern mailing list software. This can be achieved
by making every GNUnet e-mail look like a bounce message
[11]. Bounce messages are used to notify the sender of an e-
mail about an invalid or unavailable receiver address. Since
mailing lists often have the problem that one of its members
is unavailable, it is safe to assume that bounces are always
filtered.

4 Performance Measurements

For the measurements, GNUnet was configured to only
use one transport service for the benchmarks; automatically
switching to a more efficient protocol was thus impossi-
ble. In a first benchmark, the latency of the UDP, TCP
and SMTP transport services was measured. For this, the
service was called to send a message to itself. This gives
a network-independent approximation of the overhead of
the service on the peer itself. The loopback measurements
of the SMTP transport were performed on three different
machines spanning a range of modern SMTP configura-
tions. We used a Pentium III 800MHz running RedHat 7.3
with the Purdue Computer Science configuration which in-
cludes filters for spam. We also used a Xeon 2GHz with a
vanilla RedHat 8.0 sendmail configuration. Furthermore,
we used qmail on a Pentium III 1GHz running Sorcerer
GNU Linux (SGL). The numbers for UDP and TCP are
provided using the SGL configuration. The qmail bench-
mark uses qmail’s internal filtering whereas the sendmail
benchmarks use procmail to filter and deliver the mail.
We used the transport layer to send a message of b bytes
(excluding transport protocol headers) directly to the local
machine. This way, network latency and packet losses on
the wire have no impact on the time measurements. n mes-
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sages were sent sequentially over the transport layer, send-
ing message i + 1 after the i-th message was received. All
messages were sent over the same connection and the time
to establish the connection was not taken into account since
this overhead is minuscule in practice – as long as a con-
nection is used for a significant number of messages. The
benchmarks show that UDP and TCP are, as expected, both
significantly faster compared with any of the SMTP ser-
vices, even when compared with the qmail benchmark that
was run on the same machine and is recognized to be much
faster than sendmail. Among the SMTP implementations,
there can be significant differences depending on the SMTP
configuration. Filtering with an external tool like proc-
mail that needs to reload and parse its configuration for
each mail can be very expensive. Applying spam filters can
also significantly impact the performance of the underlying
SMTP implementation. The micro benchmark shows that
SMTP can be a viable solution for initiating peer-to-peer
sessions: a few seconds to connect to a peer will probably
not even be noticed by users.
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Figure 6. Sending 1,000 messages of 1,200
octets payload with the unreliable UDP and
TCP transports without spacing.
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Figure 7. Sending 1,000 messages of 1,200
octets payload with hand-optimized spacing
between message-trains.

The second set of benchmarks measures the possible
throughput for a transport. Throughput can be measured by
sending multiple messages in parallel and measuring packet
loss. Note that not only UDP but also the TCP transport
can actually lose messages, since the TCP implementation
drops messages if the write to the socket blocks. For this
benchmark, we report the message loss after allowing t sec-
onds for sending m messages. If messages were not sent
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Figure 8. SMTP throughput (with hand-
optimized spacing to avoid thrashing) for the
same total payload with different MTUs and
with/without RAM-disk for the mail spool.

(or received) after t seconds, they were considered lost. The
benchmarkwas performed using two Xeon 2 GHz machines
running RedHat 8.0 with sendmail. The machines were
connected via a direct 100 MBit ethernet connection. Fig-
ure 6 shows the percentage of 1,000 messages with a pay-
load of 1,200 octets that could be received after t seconds
if the messages were passed to the kernel without any artifi-
cial delays. The maximum throughput in this case is about
4,169 kilobytes per second (kbps) for UDP. Since the appli-
cation does not limit the transmission rate, the Linux kernel
starts dropping messages shortly after the start of the bench-
mark. This allows the application to finish sending all the
messages earlier – the processing time of a dropped packet
is smaller – but the loss rate can become quite dramatic, of-
ten exceeding 70%. For TCP, the situation is the same, only
that due to the inherent protocol overhead, the throughput
is slightly worse with at most 3,627 kbps. The high packet
loss that occurs in this naive design can be avoided by re-
ducing the rate at which the application sends messages.
Figure 7 shows the results that can be achieved if the appli-
cation sends the packets in trains with hand-tuned spacing
between the trains. Conceptually, the delays are equivalent
to congestion control in TCP, but since the timers available
to the application are more coarse grained, the performance
is worse than in real TCP, even if hand-tuned for a static
testbed. Note that TCP is a bit easier to tune since the TCP
windows with the better timers available to the OS can help
leverage the coarse-grained application level timers. Thus,
with up to 3,310 kbps throughput, TCP throughput is (while
more random) a bit better than the 2,343 kbps of UDP.

For SMTP, we only show the rate-controlled numbers.
Figure 8 shows that the SMTP throughput for messages of
size 1,200 octets is 6 kbps. The high per-message overhead
can be alleviated by increasing the message size to 12,000
octets, resulting in 13 kbps throughput. A major bottleneck
in this case is sendmail writing every message onto the drive
when the message is queued. By using a RAM-drive for
the mail queue (violating SMTP reliability in the case of a
machine crash), the throughput can be increased to 51 kbps,
which is still about 50 times slower than UDP with spacing.
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As shown by the loopback-benchmark, other MTAs may
have different performance characteristics.

5 Related Work

Encapsulating one networking protocol in another pro-
tocol and tunneling the traffic is a well-known technique
that has been used for a long time (e.g. IP over X.25 [10]).
Asynchrony, high-reliability and universal availability have
made the encapsulation of various services in e-mail a pop-
ular choice [3]. The high latency and the low efficiency of
SMTP are for many applications not a problem. Research
has instead mostly focused on addressing the security issues
inherent in the protocol, mainly attempting to allow users to
filter unwanted mail [12, 13, 1].

Infranet [5] steganographically hides traffic in HTTP re-
quests to provide users with a high level of security. While
HTTP itself has a fairly low overhead compared to other
protocols, the steganographic encryption increases the traf-
fic requirements by at least an order of magnitude. The
peer-to-peer framework JXTA [9] is another example of a
networking protocol that can encapsulate traffic in HTTP
requests. JXTA allows the traffic to be encrypted but does
not use steganography. JXTA supports peers that use net-
work address translation (NAT [14]). If two peers that use
NAT want to communicate, their traffic is routed via a peer
that is globally addressable.

Another approach to establish connections with ma-
chines behind NAT boxes was described by Dan Kaminsky
explained at DefCon.1 Both hosts synchronously send the
messages of the initial TCP handshake to the other hosts
using a very small value for the TTL in the IP header. The
NAT boxes see the outbound connection and start routing
future messages. The small TTLs cause the handshake-
messages to be dropped at a router between the NAT boxes
and thus the ICMP connection refused messages are never
returned. The problem with this approach is that it still
needs a way for both peers to synchronize. Furthermore,
it assumes that the NAT box ignores ICMP TTL expired
messages.

6 Conclusion

We have presented the design of a transport abstrac-
tion for peer-to-peer systems. The abstraction can sup-
port a wide range of underlying transport mechanisms and
we have implemented service modules for UDP, TCP and
SMTP. While the benchmarks clearly show that SMTP is
significantly worse in terms of performance, the service can
still be useful to initiate connections and negotiate the use of

1http://www.defcon.org/html/defcon-10/defcon-
10-speakers.html#dankaminsky

a cheaper service. We have addressed security concerns that
arise with the use of SMTP and argued why a peer-to-peer
transport abstraction should have unreliable semantics.
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