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Abstract 
 

The widespread use of broadband networks and the 
evolution of Peer-to-Peer systems changed dramatically 
the way Internet is used today. P2P file sharing networks 
are one of the most popular ways of sharing and 
distributing new content. But along with the benefits of 
these networks, certain patterns became apparent. It 
could take a long period of time for new, highly 
anticipated files to become available for download, due to 
high demand. Therefore, the use of such networks as a 
mean of file dissemination is not always successful, 
especially when the files are of considerable size. In this 
paper Peercast is presented, a P2P dissemination system, 
along with simulation results. Our focus in this paper is 
on how this and other P2P file sharing networks can be 
configured to optimize the dissemination process of highly 
anticipated files. 

 

1. Introduction 
 

As the average bandwidth capacity increases, users 
around the world demand shorter response time. While the 
servers are able to acquire more bandwidth, they can not 
keep up with the rapidly increasing requests of the users. 
When any file of considerable size has to be disseminated 
to a numerous amount of receivers, the network can be 
saturated quickly, clogging the host computer. Such is the 
case, for example, when any highly anticipated software is 
released and several people are trying to download it at the 
same time. This became known as the middle night 
madness problem [1] because that is the time new software 
are made available, in order to avoid congestion. 

As today's needs for data transfer steadily increase, 
traditional ways of making data available to the masses 
become obsolete. Conventional FTP servers can no longer 
serve as a way of distributing large amounts of data. For 
example, modern Linux distributions can span more than 
one CD. Assuming that the server's bandwidth is 1 
MBit/sec and the requested software is distributed in 2 

ISO CD images, the server could only serve about 50 
clients in a period of one week even in the theoretical case 
that no errors occur. Mirroring the required content on 
several dispersed servers, cannot always compensate for 
the rapid traffic increase. 

The main architecture used for casting data through the 
Internet is IP multicast, which mainly targets real-time 
non-reliable applications. It extends the IP architecture so 
that packets travel only once on the same parts of a 
network to reach multiple receivers. A transmitted packet 
is replicated only if it needs to, on network routers along 
the way to the receivers. 

Although it has been considered as the foundation for 
Internet distribution and it is available in most routers and 
on most operating systems, IP multicast has not so far 
lived up to early expectations. Its fundamental problem is 
that it requires that all recipients receive the content at the 
same time. The most popular solution to this problem was 
to multicast the content multiple times until all of the 
recipients obtain it. Some of the other drawbacks of IP 
multicast include small address space (26-bit), need of 
large routing tables and lack of congestion control and 
reliable transfer control. 

Several algorithms arise for membership management 
and packet replication to solve problems such as server 
implosion from client side NACKs (negative 
acknowledgments), server explosion from maintaining 
status of the download process for each client and 
managing downloads requests by users connected with 
different bandwidths. Forward Error Correction (FEC) has 
long been used for the dissemination of static data as it 
provides graceful degradation of performance in the 
presence of packet losses. Its greatest disadvantage is that 
it is very demanding on CPU and memory [2].  

Although IP multicast might be considered ideal for 
applications that require relatively high and constant 
throughput but not much delay, it is not suitable for 
applications that may tolerate significant delays but no 
losses. This is the case with file distribution. These days, a 
new way of disseminating files emerged. File sharing 
networks [3] are perhaps the most commonly used 
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Peer-To-Peer applications. P2P systems existed since the 
birth of the Internet, but as bandwidth, computational 
power and great storage capacity came to the masses, their 
popularity increased. Such systems have been used for 
diverse applications: combining the computational power 
of thousands of computers, forming collaborative 
communities, instant messaging, etc.  

P2P file sharing networks' main purpose is to create a 
common pool of files where everybody can search and 
retrieve any shared files. But along with their popularity 
several problems emerged. A study conducted at the 
Xerox Palo Alto Research Center showed that 70% of 
Gnutella users provided no files or resources to the system 
and that 1% of the users were providing half of the total 
system resources [4]. This created network bottlenecks 
causing further inter-domain jamming. 

File sharing networks had never been designed for file 
dissemination. Nevertheless, people turn to them to find 
highly anticipated software or even video files, when the 
official server stops responding due to high demand. 
Although extensive research has been done about how 
existing P2P networks operate over time and how they can 
be optimized [5, 6] the dissemination process of highly 
anticipated files over such networks remains unexplored. 
The purpose of this paper is to present Peercast, a network 
that is designed to assist in file dissemination and to show 
simulations and conclusions that could potentially benefit 
existing P2P file sharing networks. 

The structure of this paper is as follows. Section 2 
introduces PeerCaster, the agent based platform used. In 
section 3 the suggested approach is described. Section 4 
shows the simulation model of the system. The results and 
drawn conclusions are summarized in section 5 and 
finally, section 6 presents suggestions for further research. 
 

2. Background 
 

Software agents are programs that act on behalf of 
clients. They are able to perform predefined tasks that are 
assigned to them. This is done either with or without the 
supervision of the user, depending on the given job. 

Mobile agents have an additional property [7]. The 
ability to transport themselves on different systems after 
being executed, carrying with them their program code, 
current state of execution and any data which was 
obtained. This gives them the unique capacity of living on 
a distributed network rather than on a distant stationary 
system, and to take advantage of the services that each 
host has to offer locally. Furthermore, mobile agents allow 
proprietary code to be used on the hosts, allowing 
complete customization of the retrieved results. The 
unique properties of the mobile agents give them the edge 
in comparison to the traditional client-server paradigm. 
The hosts implement a specified environment that can 

authenticate the origin and credentials of the arriving 
mobile agents, provide for them the necessary execution 
machine and limit their access to system resources [8]. 

Mobile agents have been used in the past instead of 
protocols [9], for file transfer [10] and as a dynamic 
system for information discovery and retrieval [11]. There 
are many applications that would benefit from the use of 
mobile agents as a vehicle for getting around bottlenecks. 
PeerCaster [12] is a platform implemented in Java that 
uses mobile agents as a vehicle delivering great amount of 
static data to users on a heterogeneous network. This is 
done by splitting the data into small packets, loading them 
onto mobile agents and releasing them to the peers where 
the payload is delivered and continue according to their 
itinerary. The coordination and communication overhead 
is acceptable considering the scalability that can be gained 
by the nature of the agent based system. As they can 
operate asynchronously and independently of the process 
that created them, they do not need to report back to the 
server. 

In this paper, PeerCaster was used as a mean of 
distributing high-demand files without clogging the host 
computer. This system could be integrated as part of a P2P 
file transfer network, or it could be used as an alternative 
to multicast for large files with great demand, such as the 
release of a new version of popular software as depicted in 
[1]. 

  

3. The Network 
 

When a file needs to be downloaded by more clients 
than the server can handle, alternative algorithms have to 
be utilized. The naive way of avoiding retransmissions is 
to pipeline the file through all the clients. But this is not a 
viable solution because clients might have to indefinitely 
wait to be served.  

The proposed algorithm uses a dynamically changing 
tree of clients (figure 1) in order to avoid uneven flow of 
data and intersperse congestion points which can 
compromise inter-domain quality of service. The server 
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can upload the file to a certain number of clients 
simultaneously. When the server successfully uploads a 
file to a client, it keeps a reference of this client to a short 
(up to 100 entries) FIFO list. As new clients are served, 
the list is enriched with newer clients and older clients are 
removed in order to avoid server explosion. Although the 
server has a small queue (of up to 10 clients), most of the 
clients are expected to find this queue filled. This is the 
case especially at the beginning of the dissemination 
process, as clients arrive more rapidly than the server can 
handle. When this happens, the server sends to the client 
the list of clients that already downloaded the file. This 
way, the new client can download the file from a client 
that was already served, removing the congestion from the 
server. 

When a client finishes the download, it acts as a server 
for other clients. Similarly to the server, the clients have a 
short queue. If a client A requests the file from a client B 
that has it, and that client B can not serve client A 
immediately, A is queued. If the queue is full, client B 
sends its own list of served clients (up to 20 entries) to 
client A, so that it can continue searching. If a client is not 
able to be served or queued, it retries after a certain period 
of time to contact the server. 

Several issues arise about the performance of this 
algorithm in a heterogeneous network. For example, what 
is the benefit of allowing several clients to download from 
a single peer? It will reduce the average waiting time, but 
what consequences will it have on the downloading speed 
and in the long run on the total number of served clients? 
How can the size of the queue in each client affect the 
dissemination process? 
 

4. Simulation model 
 

In this section details are presented about the 
simulation model for the proposed network, and it is 
shown how different strategies might affect the 
dissemination process. The system was populated with 
clients arriving according to the exponential distribution. 
The simulation period was set to be 2 weeks (1209600 
seconds). During the first week the mean interarrival time 
was incremented linearly from 5 to 20 sec in order to 
simulate demand on a highly anticipated file. For the 
second week the exponential distribution was used with 20 
sec mean interarrival time. The file size was set to be 
650MB (the size of a full CD). 

All the clients that populated the system were set to 
have broadband connections to the Internet, resembling 
cable modems and DSL. This is done in order to use a 
realistic model. As in many cases, such connections have 
different download and upload speeds, four different 
categories of users were used. The first category (10% of 

the clients) had download and upload speed of 256 Kbps, 
the second (40% of the clients) had 384 Kbps and 128 
Kbps respectively, the third (20% of the clients) had 384 
Kbps download and 384 Kbps upload speed, and the 
fourth (30% of the clients) had 1.5 Mbps and 384 Kbps 
respectively. This configuration is a theoretical model, and 
is used to compare how the same network performs under 
different conditions. 

These kinds of clients are always on-line. However, 
they are not expected to share the file for ever. Therefore 
they were set to leave the dissemination network with 
exponential distribution and mean time of four days. 
Additionally, some clients are expected to refuse to share 
the file. Therefore, 10% of the clients were set to leave the 
dissemination network immediately after they download 
the file.  

The server was set to be a DSL user as well; having 1.5 
Mbps download / 384 Kbps upload connection (fourth 
category) to the net and never to going off-line. As the 
server is only uploading files, the simulation would have 
given the same results if the server had 384/384 
connection to the net (third category). An additional 
difference between the server and the clients is that the 
server keeps a more extensive list (100 entries) of clients 
that it served, whereas the clients have a relatively shorter 
list (20 entries).  

The actual connection speed between two clients is 
calculated at the beginning of each session, taking into 
consideration the theoretical maximum speed they could 
achieve and an exponentially distributed surcharge, in 
order to simulate additional network traffic and sparse 
bottlenecks. If a new client cannot be served or queued 
immediately, it waits for 600 seconds and retries. 

Our focus is on how to use the server's and the clients' 
resources in an optimum way to serve as many clients as 
possible in a certain period of time. As it was mentioned 
earlier, the behavior of this network can change 
dramatically under certain conditions. The system’s 
performance is investigated at the beginning (2 weeks) of 
the dissemination, under different conditions. 

When a client is serving only one peer at a time, the 
mean response time is expected to decrease. But by not 
allowing multiple uploads, the mean response time will 
increase as new clients enter the system. On the other 
hand, a client’s bandwidth is best utilized when serving 
multiple peers simultaneously. This will definitely increase 
the mean service time as the bandwidth of a serving client 
will have to be shared among several peers.  But in the 
long run, more clients will be served within the same 
period of time. In order to determine how the number of 
simultaneous uploads can affect the system, four 
simulations were carried out where 1, 2, 4 and 8 clients 
respectively were served by each peer at a time.  
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Another parameter that could affect the dissemination 
process is the size of each client’s queue. Shorter queues 
can increase the mean response time. That’s because 
arriving clients that find an available peer to be queued on, 
will be served in a shorter amount of time if the queue is 
smaller. But in that case, at the beginning of the 
dissemination process most of the clients will not be able 
to be queued on a peer. This will cause them to enter in 
several timeout loops, leading to unfair treatment in some 
cases (a client that arrives later being served first). Again 
four tests were carried out, where the participating clients 
had queue sizes equal to 1, 2, 4 and 8. 

 

5. Results and conclusion 
 

As it is shown in figure 2, the number of simultaneous 
uploads affects significantly the population of the served 
clients. More specifically, at the beginning of the 
dissemination, using just one slot seems to speed up 
significantly the creation of a critical mass of served 
clients. The critical mass is the point where the rate of 
served clients in the system starts to decline. That happens 
when the rate of arriving and the rate of departing clients 
balance out. 

This can be explained because when serving just one 
client at a time, all the bandwidth is dedicated to serve 
faster that peer. As in theory the population of served 
clients is expected to increase exponentially, it is of great 
significance to have several served clients in the system as 
soon as possible. 

On the other hand, by using just one slot, a significant 
percentage of bandwidth might go to waste. As figure 2 
shows, serving 2 clients at once will not greatly diminish 
the performance of the system. Nevertheless, it delays the 
system from reaching the critical mass of clients. And in 

the case that even slower clients (dial-up users) join in, the 
clients would have to use more slots to utilize their full 
bandwidth. Figure 3 shows that using more uploading 
streams, increases the number of serving-clients needed to 
reach the critical mass. That’s because using multiple 
streams increase the mean response time at the beginning 
of the dissemination. However, as more clients are served 
simultaneously, the number of clients finishing the 
download increases rapidly. 

Additionally, figure 4 reveals that the size of the queue 
plays a significant role, especially after the critical mass is 
reached. At the beginning of the dissemination process, 
the system behaves better as the queue size increases. But 
when the number of clients reaches a certain point, the 
system’s performance seems to decrease. On the other 
hand, a smaller queue gives much better results in the long 
run. This behavior occurs because when an adequate 
number of served clients exist on the system, it is more 
favorable for an arriving client to keep searching for a free 
peer than to be queued on a long queue early on. As 
shown in figure 5, the size of the queue does not affect 
significantly the time period in which the balance occurs. 
That’s because the bandwidth utilization cannot be 
affected directly by the queue size.  

In order to compensate for these shortcomings, the 
Peercast system utilizes dynamically changing number of 
slots and queue size for the clients. As a mean of keeping 
track of the number of served agents, the server instructs a 
small percentage (5%) of the arriving clients, to send back 
a message when they finish downloading the file. This way 
the server can estimate when the critical mass will be 
reached. This information is then passed on to each 
arriving client so that they know, without contacting the 
server, when to increase the slot number and decrease the 
queue size. 
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Figure 2. Number of served clients over time, 
under different number of simultaneous uploads 
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Additionally, in Peercast a client uses as many slots as 
needed in order to utilize its full bandwidth, but it favors 
the fastest peer by giving it all the bandwidth that it can 
handle. This way clients use their full bandwidth and new 
serving clients are created with faster rate. Although this 
policy is proved to be unfair for slower clients, it can be 
used as a way to build quickly a vast backbone tree of 
clients at the beginning of the dissemination. When the 
critical point is reached, the queue size drops from 8 to 2 
entries, the slots become 4 and the peers are treated 
equally. Using more slots significantly increases the mean 
response time, as seen in table 1. A simulated 
representation of the population of clients at any given 
time in the first two weeks is depicted in figure 6. 

Table 1 and table 2 show that the mean response time is 
increased in all cases. That’s mainly because the clients 

that arrive early on the dissemination process have to wait 
for a long period of time to be served. When the rate of 
arrivals balances with the rate of clients being served, the 
mean response time stabilizes to lower levels. Therefore, 
clients arriving later in the system benefit from a faster 
service. This is depicted in figure 7. 

Further simulation results, not shown here due to space 
limitation, reveal that the size of the list of served peers 
that each client has, does not significantly affect the 
dissemination process. The same conclusion was reached 
about the timeout period each client has to wait before 
retrying to find a client to be queued on. However, the 
time period in which the critical mass is reached is highly 
depended on the mean interarrival time and the 
heterogeneity of the clients. Therefore it can only be 
estimated after an appropriate period of time. 

Existing P2P file sharing networks cannot obviously be 
rebuilt to optimize the dissemination of new files. 

Table 1. Mean response time (queue=10)  

 256/256 384/128 384/384 1.5/384
1 slot 221979 218498 216814 216232
2 slots 261779 249400 250301 227057
4 slots 387713 362996 363264 306762
8 slots 449403 415403 414127 334793
   

Table 2. Mean response time (slots=2) 
 256/256 384/128 384/384 1.5/384

queue=1 215911 203957 203612 181570
queue=2 226016 214102 213228 192832
queue=4 239629 229174 230197 207302
queue=8 255650 242378 239816 216147

  
  Figure 6. Status of the client population over 

time in the Peercast system 
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However, some changes to the application level are 
expected to increase their performance. For example, in 
the Gnutella network, each application could perform a 
search to determine which of the files that it currently 
shares are unique or they are only found on limited 
number of peers. By monitoring the search queries it can 
resolve which of those files are most popular. In case a file 
is found to be a “hot-spot”, priority over the bandwidth 
should be given to any peer that requests it. If multiple 
peers request it, it should be given to the one that shares 
the largest number of files as this peer would most likely 
share the file with other peers. Simulation results of this 
scenario are pending. 
 

6. Future Work 
 

For the current P2P network implementation we used a 
monolithic approach: all the data has to be sent to a client, 
before this client starts sending it to another peer. The 
PeerCaster platform is highly scalable because it was 
implemented using mobile agents. A new version that 
replicates groups of 256KB packets, to adjacent peers as 
they arrive, is under way. This is expected to alleviate the 
problems that are caused from peers that go off-line 
immediately or soon after they finish downloading the 
requested file. The synchronization between the peers is 
done in predetermined time intervals, called epochs [13]. 
The peers are segmented in virtual groups according to 
their bandwidth and the epoch size depends on an 
estimation of the minimum bandwidth between the peers 
that form each dissemination group. Simulation results 
from this network are expected to show alleviation of 
several issues raised in this paper such as the increased 
mean response time at the beginning of the dissemination. 
Additionally, distributions varying with time were 
incorporated for more realistic long-run simulations, as 

depicted in [14]. We are also working towards creating a 
version that uses prior knowledge of a peer's content to 
push newly arrived packets and utilize software FEC. 
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