UNIVERSITY OF WESTMINSTER

gRabh -

vvyy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Cluster infrastructure for biological and health related
research.

Sophia Corsava
Vladimir Getov
Harrow School of Computer Science

Copyright © [2003] IEEE. Reprinted from 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (Ccgrid 2003) pp.574-581.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Cluster Infrastructure for Biological and Health Related Research

Sophia Corsava and Vladimir Getov
Harrow School of Computer Science, University of Westminster, London, U.K.
Email: sophiac6@yahoo.com, V.S.Getov@ westminster.ac.uk

Abstract

Researchers in the biological and health industries need
powerful and stable systems for their work. These systems
must be dependable, fault-tolerant, highly available and
easy to use. To cope with these demands we propose the
use of computational and data clusters in a fail-over
configuration combined with the grid technology and job
scheduling. Our infrastructure has been deployed
successfully for running time-critical applications in
commercial environments. We also present experimental
results from this pilot implementation that demonstrate
the viability of our approach.

KEYWORDS: CLUSTER, BIOLOGICAL RESEARCH,
HIGH AVAILABILITY, DISTRIBUTED, PARALLEL.

1. Introduction

Researchers, analysts, scientists and engineers, need
reliable and powerful systems. Having the ability to run
multiple analyses, experiments and realistic simulations
can lead to new and more comprehensive discoveries.
Research scientists in any industry can properly
investigate new topics by performing experiments in a
trial and error mode. However, researchers are often led
to wrong conclusions as they are faced with processing
problems. To overcome them, they reduce sample
populations. Alternative scenarios cannot be investigated
thoroughly and creativity cannot be fully expressed.
Delivery of processing outputs and timing get adversely
affected as well. Opportunities get lost this way too, if it
takes months to determine which is the best molecular
model for drug design for example. Data mining
techniques cannot be put to their full use, as by nature
they are processing intensive. The majority of database
servers cannot withstand the load of running repeated
comparisons of large data groups against a set of possible
parameters and outcomes. Processing needs to be smooth,
transparent and efficient.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

Structured troubleshooting and fault correction
approaches are widely used in the application domain.
These techniques include recursive restarts [13], check
pointing [17], reboot [13] and undoing old configurations
[13]. The check-pointing technique allows applications to
recover from the last point of failure by copying on a
regular basis their status on stable storage and then
retrieving it. Application recursive restarts are based on
the principle of infrastructure-centric software design:
move intelligence from endpoints into the supporting
infrastructure. Reboot, restarts not only the application
but also the underlying operating system and undoing old
configurations involves restoring old backups and
overwriting current assumed “invalid” settings. A newer
approach is the N-layered architecture for application
development that allows for resiliency and better
performance [5].

A lot of important work has been done, in the areas of
fault diagnosis, performance and decision-making.
Current performance/diagnostic methods include: the
threshold analysis, the bottleneck analysis, the what’s
different analysis and the correlation analysis. In this area,
significant results have been reported by J. Hellerstein
[10, 11]. Closely related to our project is also the very
important work done by John Wilkes and R. Golding on
self-managing, self-configuring storage [9, 16]. In
addition, fault and/or decision trees are commonly used to
diagnose problems and action corrective measures.

This paper is organized as follows. In section 2 we
discuss current problems. In section 3 we present a
proposed building methodology for biological and health
related researches while section 4 presents results from
one of our commercial implementations.

2. Current Problems

Parallel and distributed applications consist of multiple
components. The sound inter-operability of these
components is important for the correct functionality of
the service as a whole. A common problem in large
systems is that component interdependencies are highly
complex and therefore difficult to maintain. These
components may be front-end web services or application

IFF.F.

COMPUTER
SOCIETY

GUIS, that users use to connect, and back-end processes
such as databases and other applications for transaction
processing. Very often, a component failure can have
catastrophic results. For example, if the front-end web
services fail, users cannot connect to the site and therefore
cannot access the back-end database. In some cases there
may be legal and ethical repercussions from distributed
component failures [2, 3, 13]. Current problems for
parallel and distributed applications could be summarized
in four main categories as follows: 1) Users unable to
access one or more service components. 2) Users can
access service components, but they do not function
properly (logical errors, bugs etc). 3) Users can access
services but performance is bad. 4) Work in progress gets
interrupted unexpectedly, because one or more service
components (server, application, network) crash mid-way.
Measuring performance and system availability is a
rather complicated task as collecting raw system
utilisation statistics is hardly adequate to determine if the
system has a performance problem or not and how
available it is. Currently problems include, determining
the optimum performance baseline per application/server,
determining the diagnostic method and decision process
to use, standardizing performance data collection,
deciding which measurements to use, where to keep them,
for how long and how to present them in a meaningful
manner so they can be assessed. Performance problems
can be classified in 4 main categories. 1) Progressive
performance degradation, 2) Recurrent performance
problems, 3) Expected Load spikes and 4) Unexpected
performance problems. To effectively troubleshoot any
problem, it is necessary to have correct input real data.
This seems to be surprisingly difficult as most uptime
claims are false [13], benchmarks are not realistic (as
most do not consider random faults) [13], support people
do not fully understand their systems and human experts
are expensive and difficult to find [2, 3, 13]. Finally, as
technology advances rapidly, more than one human
experts need to work together to determine the problem.

3. Building Methodology

3.1 Infrastructure Design

To cope with the large amounts of computations,
processing and data mining requirements in biological,
and health researches, we propose the following hardware
and software infrastructure design:
e The wuse of Unix-based
workstations or servers).
e The classification of applications in two major
categories, computational (front end) and data
processing (back end).

systems (PCs,

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

e The use of a high availability cluster software
such as Veritas Cluster Server (VCS) [15].

e The clustering of servers together in major
cluster groups using VCS, per operating system
and application type. Machines belonging to the
same cluster group should be built in exactly the
same manner, SO any one can be used if a
machine in the cluster becomes unavailable.
Floating IP addresses (Virtual IP addresses) per
machine, type of application and cluster group
can be used for additional fault-tolerance.
Cluster groups can be addressed by DNS naming
conventions to make them more easily
remembered.

e The use of network based disk storage for all
data and databases, so that data disks are
commonly accessible by all servers that belong
to the data processing group. These disks should
also be clustered together in a high-availability
fail-over configuration.

e The use of an additional network for backups
and administration purposes.

e The use of load balancing scheduling facilities
such as the Load Sharing Facility (LSF) [18], to
be used for all types of scheduling data
processing, data mining and batch jobs.

e The use of grid technology to make available

resources amongst biological and health
communities globally [7, 12, 18].
e The wuse of comprehensive performance

measurement tools and reporting mechanisms.

Unix-based hosts have been proven more stable and
more powerful than any other operating system type. For
example a PC running linux is much more powerful
compared to a PC running windows of the same hardware
specification.

Application segregation per type makes administration
and support much easier. In addition, security issues can
be handled more efficiently, by isolating homogeneous
hosts together, within a specified IP range or even an
entirely separate network segment. Load balancing can be
configured much easier amongst the members of an
application cluster. In one of our commercial
implementations for a database cluster, we had utilisation
thresholds set to: CPU util=95%, Memory util=85%, Disk
I/0 Util=90% and Network Util=95%. When these were
exceeded, an additional node automatically joined the
database cluster.

Commercial high-availability cluster software such as
Veritas Cluster server consists of the cluster agent
software and kernel modules that integrate it to the
operating system. Each cluster agent has 4 main
components; the monitor that looks after the cluster, the
cluster startup script, the cluster stop script and the cluster
clean script that stops cleanly the cluster software. For

YFF.F.

COMPUTER
SOCIETY

each group there is one cluster master. Any cluster Where

member can be made cluster master, if the active one Qs = Unreliability of the system,
fails. This is the default behaviour of the cluster software. X o Buent-of Gaikine of unit i

It does not allow any configuration changes while it is
running either on the application dynamically or on its
own static and dynamic files. It determines the clustered
application/host/resource/component status via the change
of the heartbeat transmission over a dedicated private
cluster network. The cluster heartbeat is determined by
probing that takes place every Z seconds over a pair of
dedicated network interface cards that cannot be used for
anything else. When the heartbeat is disrupted the cluster

P (i) = probability of failure of unit i.
Rs = cluster system reliability

In a cluster system as such, one node needs to succeed in
order for the cluster to be considered successful. Table 1
shows how reliability increases with the addition of nodes
based on the above formula.

. it =5 Number of cluster nodes Reliability
software classifies the condition as a critical fault and 1 0%
fails-over services (resources/applications/components) to D 84%
the next best available node. A fail-over is an action by 4 97%
which the next best host in a pre-configured list takes Table 1 (System Reliability)- System reliability as a
over the role of the failed one. In this way if a host or an function of the number of components/cluster
application fails, the next host in the list will be members.
nominated to start/restart clustered services with minimal
service interruption. Such a failover can take from 1 to 5 We can clearly see that the reliability of a cluster system
minutes on average each time. Cluster groups can have up increases as more nodes as added to it, even if these nodes
to 256 members. Clusters are inherently fault-tolerant by are not overly reliable themselves [14].
design. More information about the Veritas Cluster The use of network based disk storage ensures that if
software Suite can be found in [15]. hosts become unavailable, data will still be available as
Let us consider a system that has only one component they reside on different physical locations. Good
whose reliability is 60%. This means that the overall examples of this type of disks are Network Appliances
system reliability is also is 60%. If we have a cluster with [19]. Disk devices as such are representative of NAS
N number of members working in parallel, the formula architectures. NAS devices enhance scalability by
that would give us the cluster reliability would be [14]: eliminating shared controllers and enable direct host
_ » access to potentially thousands of shared devices [9]. All
e g data reside on shared disks and are accessible over the
' 5 network via the NFS protocol. In each cluster group, any
disk device can be used by any cluster member (see
i Figure 1). The SAN [16] technology is an even promising
Or one, but it is not stable for production at the moment and
v it requires a lot of support and configuration.
HOST HOST HOST HOST

CLUSTER HOST VIRTUAL IP ADDRESS -MANY HOSTS AS ONE

- 1 L 1

I COMMONPOOL VIRTUAL IP ADDRESS]

COMMON POOL OF LIVE RESOURCES -CLUSTERED

COMMON POOL VIRTUAL IP ADDRESS

VIRT Lip VIRTUAL IP RTU P VIRTUAL IP VIRTUAL IP VIRTUAL IP VIR
ADD ss ADDRESS ADDR ADDRESS ADDRESS ADDRESS L)

APPLICATION I APPLICATION I APPLICATION I APPLICATION I APPLICATION I APPLICATION I APPLICATION I

ANY HOST CAN RUN ANY APPLICATION

Figure 1. High Level view of a cluster with floating IP addresses (virtual IP addresses). Any host can use any
resource.

UA
RE

YFF.F.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03) COMPUTER
0--7695-1919-9/03 $17.00 © 2003 |IEEE SOCIETY

Using an additional network for administration and
backup/restore purposes lessens any performance/load
overheads onto production network(s).

The latest version of the LSF [18] application by
Platform is based on the grid technology. It is compatible
with most operating systems such as Solaris, HP-UX,
Linux, Windows, MAC-OS, etc. It allows the creation of
virtual organisations with support for more than 100
clusters, 200,000 CPUs and 500,000 active jobs [18]. It
comes with an easy to use user-friendly interface that
allows users to schedule and monitor processing-intensive
jobs. The grid engine, it is based on, enables users to
choose from a variety of available hosts and resources,
not only within a local site, but amongst different
geographical sites. A toolkit such as Globus [20] can be
used to present grid-enabled services and resources to
users from different geographical sites. Combined with a
high-availability cluster software such as Veritas Cluster
Server, hosts are almost always available and some of the
common problems (hosts disappearing in the middle of a

computation, load balancing, application failures etc) do
not affect computations and processing. Load balancing
can be controlled from within LSF and the cluster
software. They both allow the definition of load
thresholds that are server and application specific. If these
thresholds are exceeded, operators are notified and
services are automatically moved over to the next best
node or a new node joins the cluster [3, 4, 15, 18].
Network based common disks, allow for heterogeneous
clusters to co-exist. In one of our commercial
implementations, we had Linux and Windows clusters
accessing the same data disks. To enable communication
between the hosts, we used the SAMBA [6], utility so
linux machines could “talk” to windows machines and
vice versa. We developed software that could failover
services amongst heterogeneous clusters, as the restriction
of most commercial cluster software is that only hosts of
the same operating system type can be clustered together.

COMPUTE.SERVICE
VIP 19

“n

.COM
.113.2

PUBLIC NETWORK

—

TION NETWORK'

Host

PRIVATECLUSTER
NETWORK

DISK.SERVICES.COM

DATABASE.SERVICES.COM CLUSTER GROUP
VIP 193.113.214.56

VIP 193.113.214.61

Figure 2. Example of the proposed architecture for biological and health researches. Each application type
corresponds to a high-availability cluster group in a fail-over configuration. All hosts within the same cluster
group are built in the same way in terms of operating system capabilities. Any host in the cluster can run take
any role within the same cluster group. Applications can be distributed or parallel. Addressing is done with
Virtual IP addresses and service names to avoid dependencies to physical host IP addresses and names.

3.2 Automated Performance Collection

Performance log collection should be automated, so that
system behaviour can be observed accurately.
Performance measurement techniques should be
orientated towards workgroup aggregation. Measurements

should be divided into 5 main groups: 1) Operating
system, 2) Network, 3) Disks, 4) Application processes
and 5) User processes. Measurements should be kept in a
special logs directory and classified first by server name
and then by measurement group. All measurements
should be recorded in ASCII text files, so they can be
later processed by any tool.

YFF.F.

COMPUTER
SOCIETY

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

The following variables should be observed: 1) I/O rates
on disks and network devices, 2) processes per user name,
3) per command name and arguments, 4) per user and
command name, 5) per CPU and 6) the match between
network packets, port numbers and protocols.
Performance monitoring tools should be non-intrusive.
For each monitored resource type or workgroup, collected
performance logs should be compared against pre-
scripted baseline thresholds, in regular intervals (every 10
or 15 minutes). The frequency by which comparisons of
this type are made, should be dictated by the nature of the
monitored service. For very critical services performance
collection should be initiated every 5 minutes and last for
2-3 minutes. Every time a load threshold is exceeded
administrators should be notified accordingly.

Different types of measurements should be associated
together by matching their creation timestamps.
Measurements should be ordered by timestamp and
treated as a time series to produce graphical
representations of the system performance either as a
whole or by component/workgroup. Each file produced
by persistent state processes, should be managed as a
circular queue, the length of which is configurable. To
determine accurately the behaviour of each process,
microstate measurements should be wused where
applicable, as most modern CPUs and linux allow for
them. The accuracy of microstate measurements is
microsecond resolution and the overhead is sub-
microsecond (units are nanoseconds). In this way we can
obtain very accurate thread and process accounting. More
about microstate accounting can be found in [4].

Baselines must be set based on the hardware
configuration of each system and the application type it is
meant to be running. These baselines should be
determined with the help of hardware and OS experts,
application experts and personal observations. Every time
a baseline setting is not proven to be correct, it should be
adjusted accordingly. This is a common occurrence with
newly installed applications. The following measurements
should be considered:

e For the operating system: 1) Memory scan rate, page
out frequency, page faults and free memory
measurements to determine memory shortage, 2)
CPU run queue, to detect any processes waiting to be
served by any CPU, 3) Overall CPU idle time %, 4)
Blocked processes waiting for /0, 5) Per process
CPU and memory utilization, and 6) Disk I/O and
throughput in terms of read and write response times.

e For the network: 1) Network interface utilization
statistics and errors, 2) Network route utilization, 3)
NFES statistics, 4) TCP/IP bandwidth and end-to-end
round trip latency measurements, 5) Size of
incoming/outgoing network packets and TCP
windows, 6) Network connection time to live and 7)
Name server response (DNS, NIS, NIS+, LDAP).

e For databases: 1) Time taken for a request to connect
to the database, 2) Time taken for the request to be
served by the database, 3) Time taken for the
database to initialise, 4) Time taken for the database
to shutdown, 5) Time taken for the database backup
to complete, 6) Per process CPU and memory
utilization, 7) Number of users connected to the
database and for how long each, 8) Memory allocated
at startup, 9) Database checkpoints and 10) Memory
per transaction.

e For web servers and application GUIs: 1) Time taken
to connect to them, 2) Time taken for the process to
come back with the results of the query, 3) Per
process CPU and memory utilization, and 4) Number
of http/application connections and for how long
each.

e For distributed applications: the time taken for a request
to be served by the entire application from beginning to
end. Every 15 to 30 minutes a “dummy” process can be
initiated to run through all application components,
simulating a user and measure the total response time,
in addition to the “business-as-usual” requests.

4. Results

One of the sites our work was implemented was a
financial newspaper of a UK based international
customer. Servers included Sun, HP, IBM, Linux and
Windows computers. The breakdown of machines and
their functions were: 350 database servers, a mixture of
Oracle Sybase, Informix, MS Access and DB2 databases,
running on Sun, HP, IBM, and Windows servers. Please
note that these types of databases and applications are
used in many disciplines. The same kind of software is
currently being used in the telecommunication, banking
and defence industries. In addition, research, biomedical,
academic and governmental institutions use them for
data-mining and other heavy processing purposes.

About 40 web servers (a mixture of Linux and Sun
Solaris machines for Internet users reading the newspaper
online) and 200 transaction processing and application
servers a mixture of HP, Sun and Linux servers. Services
were distributed across these servers. All data resided on
local disks. The network was 100 Base/T ethernet for all
servers. The majority of data were relational database
records in database-specific SQL format. Data feeds were
mainly textual ASCII-based streams formatted in a
variety of configurations. There were some continuous
streams and other data were formatted in single or multi-
column configurations. There were also form-based data
feeds in HTML or SQL format originating from web
servers, Java and database interfaces. Whenever data
feeds are in binary format or another format, incompatible
with the processing engines, special Perl-based interfaces

YFF.F.

COMPUTER

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
SOCIETY

0--7695-1919-9/03 $17.00 © 2003 IEEE

are engaged to convert them to an appropriate compatible
format. Graphical representations are ported directly to
databases without additional interface processing. In these
cases, database developers have created specialised data
objects and schemas for each of the above mentioned
database types that are used to import and process them.

Images are similarly handled by specialised database

tables and schemas.

The newspaper decided to launch an internet based
facility to allow users to search through historic financial
articles in order to gather mainly investment related
information. We were asked to design the new site from
the beginning. In addition the customer reported that their
current system experienced serious outages and their load
balancing techniques were non-existent. On a daily basis,
the newspaper received market data feeds that needed to
be processed. Financial analysts used services for data-
mining, financial projections, financial model evaluations,
market data/trend simulations and analytical reports that
were given to journalists for publication. It was a high
pressure complex environment and downtime had big
impacts on service integrity, and business credibility.
Delays in financial data processing meant that articles
could not be included in the daily publication.

What was happening on a regular basis, was that various
application components would stop working altogether
and operators did not know where to start looking. Large
database jobs scheduled to run overnight would
frequently crash databases and calculations would not
complete. Human operators tried to resolve operational
problems and faults manually. The newspaper would
suffer loss of business trust because analysts and
researchers could not easily quantify and qualify financial
models and analyse market trends. Operators were under
immense pressure to resolve operational faults under
difficult circumstances and usually during the night and
the end of financial periods. In addition web servers
crashed very often and users could not access the online
newspaper site. To deal with the problems the end-users
reported we did the following:

e Redesigned the entire datacentre and grouped hosts
together per application and operating system type.

e We had Veritas Cluster server installed and
configured for each application group.

e We had load thresholds configured on per server and
per application basis, both in the LSF software and
the cluster software. These thresholds were
determined based on inputs from the hardware
manufacturers, application developers/providers, and
our own experience and observation.

e We had the customer purchase network based disk
storage and move all data to these disks.

e We installed our own custom made software to
monitor servers and automatically detect and correct
failures. We developed customised scripts to manage

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

and report on incoming market feeds, their status,
integrity, validity and processing. We used perl, and
Unix shell programs to achieve that. We have
developed a full suite of programs that manage
servers, clusters and resources, based on intelligent
agents and ontologies [2, 3, 8]. Due to space
restrictions we cannot analyse our software in this
paper. If any information is needed please contact the
authors directly.

e We installed an additional administration/backup
network to facilitate all administration and
maintenance tasks.

e We had the LSF application installed on all servers. It
was mainly used for scheduling jobs against
databases. Users via the LSF GUI manually selected
database servers to submit jobs or submitted them to
be processed at a latter time, using either native LSF
utilities, or Unix utilities like “cron” or “at” jobs. In
addition we automated the use of LSF for internet
users who where looking for online articles and had
to search a number of databases.

In the figures that follow, we can see the behaviour of
the entire system per application type for a total of 12
months (2 six month sets). We have measurements
provided by the customer that span for about 1 year; 6
months before any of our work was implemented and 6
months after.

Front-end applications (web servers) had total downtime
in hours from all reasons, 6 months prior to work, of 80
hours. After our work was implemented, the following 6
months there was 0 hours downtime (see Figure 3).

~—&—Before
reifffocnce After
25 P
£ 20 20
-
215
g 8
£ 5
o]
Months

Figure 3. Web server downtime 6 months before any
work was done and 6 months after our work. We can
see from the “After” series, that downtime was 0.
Our configuration ensured that services were always
up, although physical machines may had been
down. The floating IP addresses would be moved by
the cluster software to the next best node
automatically if a failure occurred. As data were on
commonly accessed disks, no service interruptions
occurred.

YFF.F.

COMPUTER
SOCIETY

Back-end applications, like databases, 6 months prior to
our work, had a total downtime, of 39 hours, while there
was only 1 hour of downtime after our work was
implemented (see Figure 4).

~——&— Before
woffff After
12

g 10 - 10

E 8 - 8 8

o

o 6

k] 5

g 4

3

A 2

3 4
Months

Figure 4. Database downtime in hours per month, 6
months before our work and 6 months after. We can
see 1 hour of downtime in month 4, which was
caused by a bad data feed to one of the databases.

Combined total downtime for both front and back-end
services was 104 hours 6 months prior to our work, as
opposed to 1 hour of total downtime after (see Figure 5).

—&@— Before
s Aftr
30
3 26
E 25
€ 20 20
g
- % 14
o
2 10 -
3
5
1 2 3 4 5 6
Months

Figure 5. Total downtime for end-customer facing
services (Internet users) 6 months before and 6
months after our work. This downtime was caused
by web and database unavailability combined. As
we can see from the “Before” series, sometimes web
servers were down at the same time databases
were down. Whenever databases were unavailable
however, the web-servers could not be used.

Internal facing customer applications 6 months before
any work was done, had 191 hours of total downtime, as
opposed to 0 hours of downtime the subsequent 6 months
our work was implemented (see Figure 6).

Performance problems were detected and dealt with
much faster, as from our automated performance
collection techniques we had detailed logs. From these

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

logs, we could understand what may have caused a
performance related problem.

As one can see from all the graphs, system uptime for
existing customer applications was significantly improved
after our work was implemented.

——&— Before
i After
60
g 50 50
=
§ 40 40
8 30
B - 25
g 18
£ 10
0 350 550 8 5
1 2 3 Sy 4 5 6

Figure 6. Total downtime for internal customer-
facing applications, such as databases used for
financial analysis, data feeds etc, i.e. systems used
by journalists and analysts on a daily basis. We can
see how unstable these services were 6 months
before our work was implemented and how stable (0
downtime) they became 6 months after our work.

5. Conclusions and Future Work

Our approach has experimentally improved distributed
service availability and uptime in real-time high-pressure
environments.

Our main conclusions can be summarized as follows. In
the case of complex multi-component applications local
application-specific ~ detection/correction mechanisms
work much better than generic troubleshooting
approaches. High availability cluster software needs to be
configured in a specific way to be effective, otherwise it
can cause significant problems. Automated error detection
and correction techniques improve quality of service as
errors are picked up faster than ever before. Methodical
and structured performance measurement and collection
techniques can help resolve performance related issues
and bottlenecks more efficiently and effectively.
Administrators can generate timelines of system
behaviour and observe similar behavioural patterns.
Extended logging of all system ensures that human
administrators have comprehensive information about all
infrastructure aspects and can narrow down their search
options when they do manual troubleshooting.

We make use of existing tested technologies and
combine them with application/server specific
troubleshooting approaches. We automate maintenance
and data related tasks. The latter involves, automation of
data feeds, verification, integrity checking and automation

YFF.F.

COMPUTER
SOCIETY

of data manipulation procedures. Parts of our approach
have also been used in a university environment during an
intensive image-processing project. For that project, all
pre and post processing image-related activities had been
fully automated with the use of Unix shell scripts, Perl, C
and C++ programs.

Our work can be used in all environments that have
high-availability, performance and dependability
requirements. Our building methodology can support
parallel and distributed applications equally well with
standalone.

Much work remains to be done, so that our automation,
error detection and correction techniques are further
improved and become more generic. Performance
modelling and dynamic troubleshooting of performance-
related problems need additional work. Load balancing
techniques and threshold setting need further work as
well. Our research continues in all these areas, in the hope
that we can improve our building methodology and
software further.

References

1. Candea George, Cutler James, Fox Armando, Doshi
Rushabh, Garg, Priyank, Gowda Rakesh, “Reducing
Recovery Time in a Small Recursively Restartable
System”, Proceedings of the International Conference
on Dependable Systems and Networks (DSN-2002),
Washington, D.C., June 2002.

2. Corsava Sophia, Getov Vladimir, “Self-Healing
Intelligent Infrastructure for Computational Clusters”,
Proceedings of SHAMAN Workshop at ACM ICS,
New York, June 2002.

3. Corsava Sophia, Getov Vladimir, “Intelligent Fault-
Tolerant architecture for cluster computing”, to appear
in Proceedings of PDCNO3, IASTED, Innsbruck,

Austria, Feb 2003.

4. Cockroft Andrew, “Sun Performance and Tuning”,
Talk, 2001.

5. Chartier Roger, “Application Architecture: An N-Tier
Approach- Part 1543 from

http://www.15seconds.com/issue/011023 htm,

6. Bckstein Robert, Collier-Brown David, *“Using
Samba”, O’Reilly, 1999.

7. Foster 1., Kesselman C., Tuecke S. “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations”.
International J. Supercomputer Applications, 15(3),
2001.

8. Gruber, T.A. “A Translation Approach to Portable
Ontology Specifications”, 1993.

9. Golding Richard, Borowsky, Elizabeth, “Fault-tolerant
replication management in large-scale distributed
storage systems”, Proceedings 18th IEEE Symposium
on Reliable Distributed Systems, 1999.

10. Hellerstein, Joseph, “A comparison of Techniques for
Diagnosing Performance Problems in Information

g

12:

135

14.

15;

16.

17:

18.
19;
20.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

Systems: Case Study and Analytic Models”, IBM
Research Division, 1994.

Hellerstein, J, Y. Diao, and S. Parekh, “A First-
Principles Approach to Constructing Transfer
Functions for Admission Control in Computing
Systems”, IBM T. J. Watson Resecarch Center, To
appear in the Conference on Decision and Control,
2002.

Hoschek, Wolfgang, Jean-Martinez Javier,Samar
Asad, Stockinger Heinz, Stockinger Kurt, “Data
Management in International Data Grid Project”, 1st
1EEE, ACM International Workshop on Grid
Computing (Grid'2000), Bangalore, India, 17-20
Dec2000.

Patterson, D.“A new focus for a new century:
availability and maintainability >> performance,”
Keynote speech at USENIX FAST, January 2002.
Papoulis, “A. Probability, Random Variables, and
Stochastic Processes”, 2nd ed. New York: McGraw-
Hill, 1984.

Veritas Cluster Server, release 1.3.0, Veritas Software
Corporation, 2000.

Wilkes, John and Keeton, Kimberly, ”Automating
data dependability”, 10th ACM SIGOPS European
Workshop, 2002.

Wong Kenneth F and Franklin Mark, “Checkpointing
in Distributed Computing Systems *, Journal of
parallel and distributed computing, vol. 35, 67-75,
1996.
http://www.platform.com/products/m/I. SF/index.asp
http://www.netapps.com

http://www.globus.org

YFF.F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

