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Abstract 
 

Recently, a server-less video-on-demand 
architecture has been proposed to eliminate costly 
dedicated video servers and yet is highly scalable and 
reliable. However, because of the potentially large 
number of user hosts streaming video data to a 
receiver for playback, the aggregate network traffic 
can become very bursty, leading to significant packet 
loss at the access routers. To tackle this problem, we 
propose a novel network-aware transmission scheduler 
called Least Schedulable First (LSF) to reduce the 
traffic burstiness. Simulation results show that LSF can 
reduce the congestion-induced packet loss from over 
95% to 0.05% in a 500-host system at 0.95 system 
utilization. Moreover, LSF can adapt to variations in 
the underlying network, is inherently distributed, and 
does not require synchronization among hosts in the 
system. 
 
1. Introduction 
 

Peer-to-peer (P2P) and grid computing have shown 
great promises in building high-performance and yet 
low cost distributed computational systems. By 
distributing the workload to a large number of low-cost, 
off-the-shelf computing hosts such as PCs and 
workstations, one can eliminate the need for a costly 
centralized server and at the same time improve the 
system’s scalability. Many of the current works on P2P 
and grid computing focus on computational problems 
[1-3] and on the design of middleware [4-6]. In this 
study, we focus on another application – video 
streaming systems, and in particular, investigate the 
problem of scheduling data transmission in such a 
distributed system. 

Unlike conventional video streaming systems, a 
decentralized video streaming system does not require 
video server at all [7-10]. Instead, video data are 
distributed to user hosts and these user hosts 
cooperatively serve one another’s streaming workload. 
This novel architecture, however, poses many new 
challenges not found in traditional video streaming 
systems. 

In particular, with potentially large number of nodes 
streaming data to one another, the aggregate network 
traffic can become very bursty. This could lead to 
substantial congestion at the access network as well as 
the user nodes receiving the video data. A previous 
study [11] has revealed that the packet loss due to 
congestion can exceed 95% if one does not explicitly 
schedule the data transmissions to avoid network 
congestion. 

In an earlier study [11] we have investigated two 
network-neutral schedulers, namely the staggered 
scheduler and the randomized scheduler, to tackle this 
problem. These network-neutral schedulers do not 
require knowledge of the underlying network but can 
still significantly reduce congestion-induced packet 
losses.  

Intuitively if the underlying network’s properties are 
known, we should be able to exploit the knowledge to 
reduce the congestion-induced packet loss even further. 
This is the focus of this paper, where we present a new 
network-aware transmission scheduler called Least 
Schedulable First (LSF) that exploits knowledge of the 
underlying network to outperform the previous two 
network-neutral schedulers.  

 
2. Background 
 



We review in this section the decentralized server-
less video streaming architecture [9] studied in this 
paper and formulate the transmission scheduling 
problem. Interested readers are referred to the original 
studies [9-10] for more details on the server-less video 
streaming architecture.  

 
2.1 Server-less Video Streaming Architecture 
 

A server-less video streaming system comprises a 
pool of user hosts, or called nodes, connected together 
by a network such as a broadband network or the 
Internet. Each node has a system software that can 
stream a portion of each video title to, and playback 
video data received from, other nodes in the system. 
Unlike conventional video server, this system software 
serves a much lower aggregate bandwidth and thus can 
readily run on today’s set-top boxes (STBs) and PCs.  

In this server-less architecture, a video title is first 
divided into fixed-size data blocks and then distributed 
to all nodes in the cluster. To start a video streaming 
session, a receiver node will first locate the set of 
sender nodes carrying blocks of the desired video title, 
the placement of the data blocks and other parameters 
(format, bitrate, etc.) through a directory service, and 
then send a request to all sender nodes to initiate 
streaming the video blocks to the receiver node for 
playback. For larger systems with potentially tens of 
thousands of nodes, we can further divide the nodes 
into independent and autonomous clusters to keep the 
control traffic overheads to acceptable levels.  

Let N be the number of nodes in the cluster and 
assume all video titles are constant-bit-rate (CBR) 
encoded at the same bitrate Rv. A sender node in a 
cluster may have to retrieve video data for up to N 
video streams, of which N-1 of them are transmitted 
while the remaining one played back locally. Note that 
as a video stream is served by N nodes concurrently, 
each node only needs to serve a bitrate of Rv/N for each 
video stream. With a round-based transmission 
scheduler, a sender node simply transmits a data block 
to each receiver node in each round. With multiple 
receiver nodes thus we need to determine the order of 
transmissions within a round. This is the transmission 
scheduling problem investigated in this work. 

 
2.2 Network Congestion 
 

In video streaming, video data are often assumed to 
be transmitted in a continuous, fluid-flow-like, data 
stream at a constant bit-rate to a receiver. However, in 
practice data are always transmitted in discrete packets 
(e.g. over RTP/UDP) and thus the data stream is 

inherently bursty in a small time scale. This burstiness 
is usually insignificant in traditional client-server video 
streaming systems because only a single video server 
will be transmitting video data to a client machine and 
thus the outgoing data packets will be evenly spaced 
out at constant time intervals.  

By contrast, nodes in a server-less video streaming 
system all participate in transmitting video data packets 
to a receiver node for playback. Thus without proper 
coordination, these multiple streams of data packets 
could combine into very bursty traffic that ultimately 
can lead to network congestion and packet losses. 

For example, in a previous work [11] we studied a 
straightforward transmission scheduler called the On 
Request Scheduler (ORS), which determines the 
transmission schedule simply based on the arrival time 
of the receiver’s request during admission. In particular, 
the sender nodes will schedule data transmission to 
begin from the first available timeslot within a round. 
Not surprisingly, this simple scheduler resulted in 
significant network congestion and packet losses 
exceeding 95%.  

The reason for the exceedingly poor performance is 
that despite variations in network delay, the arrival 
times of the receiver’s requests at the sender nodes are 
still highly correlated. Thus once transmission begins, 
the sender nodes in the system will all transmit video 
data packets to the receiver node at around the same 
time, leading to serious network congestion.  

Therefore the key to the solution is to decorrelate 
the packet transmission times. We investigated two 
such algorithms, namely the Randomized Scheduler 
(RS) and the Staggered Scheduler (SS), in a previous 
work [11]. The Randomized Scheduler decorrelates the 
data transmission times by randomizing the 
transmission order in each round. The Staggered 
Scheduler on the other hand explicitly spread out the 
transmission times of packets destined to the same 
receiver to smooth out the aggregate traffic. Simulation 
results showed that these two schedulers can both 
significantly reduce congestion-induced packet losses, 
e.g., from over 95% (ORS) to 9.3% (RS) and 0.16% 
(SS). Interested readers are referred to [11] for more 
details. 

 
3. A Model for Transmission Scheduling 
 

The two transmission schedulers presented in 
Section 2.2 are network-neutral, i.e., they do not make 
use of any knowledge of the underlying network 
properties (e.g. delay). The question then is whether we 
can reduce the packet loss even further by exploiting 
knowledge of the network. 



To this end we need to address three challenges. 
First, we need to formulate the transmission scheduling 
problem in terms of the network model. Second, we 
need to find a way to estimate properties of the 
underlying network. Finally, armed with knowledge of 
the network, we need to devise a transmission 
scheduling algorithm to exploit the knowledge to 
further reduce congestion-induced packet loss. We 
address the first two challenges in this section and then 
present a network-aware transmission scheduling 
algorithm in Section 4. 

 
3.1 A Matrix Representation 
 

Despite the complexity of the transmission 
scheduling problem, we can devise a very concise 
mathematical model to capture all the essential features 
of the system. We first define three N-by-N matrices S, 
D, and R, where their row i column j element, denoted 
by (i,j)th element, represents respectively the schedule 
time, network delay, and arrival time of the packet 
transmission from node i to node j. Next we introduce a 
fourth matrix C with its (i,j)th element representing the 
clock difference that node i lags behind node j. Using 
these four matrices, we can then describe the system in 
the following equation: 
 S+D+C=R (1) 
where + is matrix operation. In other words, the arrival 
time is equal to the schedule time plus network delay 
and clock jitter. 

Note that as transmission can occur only at the 
beginning of a timeslot, the elements in the matrix S 
must be integer multiples of the duration of a timeslot 
Ts. The elements in the matrices D, C, and R however, 
can take on any real number values. We employ three 
modifications to further simply this model. 

First, we introduce an apparent delay matrix, 
denoted by A, which is defined as A=(D+C). Since a 
summation of two constants is another constant, this 
substitution removes redundancy in the representation: 
 S+A=R (2) 

Second, we convert the matrices to integer matrices 
by quantizing the matrix elements with the timeslot 
duration Ts. In other words, we replace si,j, ai,j, and ri,j 
by round(si,j/Ts), round(ai,j/Ts), and round(ri,j/Ts) 
respectively. Thus with N timeslots in a round, the 
valid schedule time is si,j∈ {0,1,…,(N−1)}.  

Third, we observe that in case the sum of network 
delay and clock jitter is large, the packet arrival times 
for a particular receiver may span over multiple rounds. 
This can be easily compensated by starting the 
transmission in different rounds in different sender 

nodes to offset the delay variations. This can be 
modeled by applying (mod N) to (2): 
 S+A≡R (mod N) (3) 

With this technique we can always keep the arrival 
time to within a round’s duration, i.e., 
ri,j∈ {0,1,…,(N−1)}. 

Fig. 2 illustrates this model using a system with 
three nodes, i.e., N=3. Consider the (1,2)th elements of 
the matrices. From the schedule matrix S, node 1 has 
scheduled the transmission to node 2 at timeslot 2 
according to its own clock. From the apparent delay 
matrix A, the sum of network delay and clock 
difference between node 1 and node 2 is 2 timeslots. 
Thus packets transmitted from node 1 will arrive at 
node 2 at timeslot (2+2) mod 3 = 1, i.e., timeslot 1.  

 Using this matrix representation, we can formally 
define the constraints and the goal of the transmission 
scheduling problem. Specifically, assuming that each 
node can send a packet in each timeslot in each round, 
then the transmission schedule defined by the matrix S 
must not have repeating elements in any of the row. For 
example, with N=3, a row containing elements of 
values (0,2,1) is a valid schedule representing the 
schedule of transmission to node 0 in timeslot 0, to 
node 1 in timeslot 2, to node 2 in timeslot 3, and so on. 
This type of matrix is also known as row-latin matrix 
[12]. By contrast, the schedule (0,2,2) is invalid 
because transmissions to both node 1 and node 2 are 
scheduled in the same timeslot number 2. 

On the other hand, we want the arrival time matrix 
R to have non-repeating elements in any of the columns, 
also known as column-latin matrix [12]. As each 
column represents the arrival time of packets 
transmitted from the N sender nodes, repeating 
elements represent overlapping arrival times and hence 
could induce congestion/packet loss. 

Therefore our goal in the transmission scheduling 
problem is, given D and C, to find a transmission 
schedule S that is row-latin such that the arrival time 
matrix R is column-latin. We note that although related 
matrix problems, latin squares in particular, have been 
studied extensively in the literatures [12-16], no known 
solution exists for the specific problem in (3).  

 
3.2 Network Delay and Clock Jitter Estimation 
 

The previous discussions assume that the network 
delay matrix D and the clock jitter matrix C are known. 
Obviously we cannot assume a priori knowledge of 
these properties in a distributed system running on the 
Internet.  Thus in this section we address the second 
problem, namely to obtain estimates of the matrices D 
and C at run time. 



For network delay estimation, a well-known 
technique is to use echo messages. A node i will send 
an echo packet to another node j, which then 
immediately replies node i with a reply packet. The 
time from sending the echo packet to receiving the 
reply is the round-trip time (RTT) and the one-way 
delay can then be estimated from RTT/2. 

However, this echo technique implicitly assumes 
that the network path between the two nodes is 
symmetric, i.e., the network delay is the same for both 
directions of the path. However, previous studies [17-
18] have shown that in general network paths in the 
Internet are asymmetric, thus reducing the accuracy of 
this network delay estimation method. 

One way around this problem is to measure the one-
way network delay directly, i.e., by comparing the 
transmission time and the arrival time of a packet. 
However, if the clocks in the sender node and the 
receiver node are not precisely synchronized, then we 
simply cannot obtain the one-way delay by subtracting 
the transmission time, measured by the sender node’s 
clock, from the arrival time, this time measured by the 
receiver node’s clock. While in principle we can 
implement and deploy distributed clock-
synchronization protocols [19-20] to reduce the clock 
jitter to improve estimation accuracy, this nonetheless 
will create an additional hurdle to deploying such a 
decentralized system. 

Surprisingly, although it is not possible to measure 
the one-way network delay without node 
synchronization, we discover that we can measure the 
sum of one-way network delay and clock jitter in a 
single step – Jitter-Adjusted Delay Estimation (JADE). 

Consider the individual elements in A, denoted by 
ai,j. We can express it in terms of di,j and ci,j:  
 , , ,i j i j i ja d c= +  (4) 

To estimate the apparent delay ai,j, node i sends a 
message to node j at time xi,j according to an arbitrary 
time reference. After traversing the network link with a 
delay of di,j the message will reach node j at time 
yi,j=xi,j+di,j according to the same time reference. Let δi 
be the clock difference that node i lags behind the time 
reference. Thus we can compute ci,j from ci,j= δi−δj. 
Substituting xi,j, yi,j, δi and δj into (4) we can then obtain 

 
, , ,

, ,

( ) ( )

( ) ( )
i j i j i j i j

i j j i j i

a y x
y x

δ δ
δ δ

= − + −

= − − −  (5) 

Note that (yi,j−δj) is simply the packet reception time 
as measured by node j’s clock, and (xi,j−δi) is simply 
the packet transmission time as measured by node i’s 
clock. Now both entities can be measured 
independently by the sender node i and the receiver 

node j. Thus we can compute ai,j directly from (5) 
without the need for node or clock synchronization.  

 
 

4. Least-Schedulable-First Scheduler 
 

With the system model formulated and the network 
parameters estimated, our goal then is to find a row-
latin schedule matrix S such that the resultant arrival 
time matrix R is column-latin. The trivial method is to 
enumerate all permutations of S until we find a solution. 
However, given that a row-latin schedule matrix S can 
have (N!)N permutations, this brute force approach is 
clearly not practical. For example, enumerating S takes 
only a few CPU cycles for N=3, 124 milliseconds for 
N=4, but 2.7 hours for N=5 using a Pentium-4 class 
machine. 

On the other hand, it can be shown that the problem 
in general may not even have a solution. Thus instead 
of finding only the schedule matrix S that results in 
column-latin matrix R, we relax the goal to finding the 
schedule matrix S to reduce the number of colliding 
arrival times in the arrival time matrix R. 

In the following, we present a Least Schedulable 
First (LSF) scheduler that greedily selects a schedule to 
minimize the number of collisions for a new receiver. 
We present the admission and scheduling algorithm in 
Section 4.1 and analyze its performance in Section 4.2. 

 
4.1 Admission and Scheduling 
 

Suppose there are v active video streams running in 
a cluster of N nodes. Without loss of generality, let 
node j be the particular node that initiate the video 
session at this moment. When node j sends the requests 
to the other N-1 nodes, the other nodes will send back 
replies carrying the list of the N-v idle timeslots, 
denoted by Li, and the request reception time (pi,j−δi) 
for calculating the apparent delay ai,j.  

Using these information the receiver node can then 
compute the schedulability of the arrival timeslots, 
represented by an N-by-N Boolean matrix Θ with its 
(i,k)th element denoted by θi,k. Specifically, we set 
θi,k=1 if the arrival timeslot k is schedulable by node i, 
i.e.,  
 

,i j ik a L− ∈  (6) 

Otherwise we set θi,k=0.  
Physically, the number of 1’s in a column, say 

column k, in the matrix Θ indicates the number of 
nodes that can schedule their packets to arrive at the 
arrival timeslot k. We define the schedulability of 
arrival timeslot k as 



 
1

,
0

N

k i k
i

η θ
−

=

=∑  (7) 

The receiver node then schedules the arrival 
timeslots in order of increasing schedulability. Thus the 
next arrival timeslot to be scheduled, denoted by κ, is 
determined from  
 { }{ }: 0 , 0,1,..., 1k k Nκκ η η< ≤ ∀ ∈ −  (8) 

The intuition behind this algorithm is that there is a 
one-to-one mapping between sender and arrival 
timeslot. Thus for each arrival timeslot scheduled there 
will be one fewer sender for scheduling the remaining 
timeslots. Hence arrival timeslots with lower 
schedulability are more likely to become unschedulable 
when all suitable senders are assigned to other arrival 
timeslots. An unscheduled timeslot will have no packet 
arrival, which implies the packet will arrive at another 
scheduled timeslot, resulting in a collision. Thus the 
receiver node will always schedule the least 
schedulable arrival timeslot first to reduce the 
likelihood of collisions. 

This is illustrated in Fig. 3 with node 0 and node 1 
already streaming video and node 2 is requesting for a 
new video session. Using the JADE algorithm the 
apparent delay to node 2, i.e. ai,2 for i=0,1,2, are first 
estimated. Next, we compute the schedulability matrix 
Θ. Consider sender node 0 as an example, the 
transmission timeslot 1 is available and the arrival 
timeslot 1+a0,2=1+1=2 will be schedulable by node 0. 

To determine the next arrival timeslot to schedule, 
we then look for the arrival timeslot with the lowest 
and yet non-zero schedulability, i.e. arrival timeslot 2 
in Fig. 3. In this case there is only one sender 
schedulable and so we assign node 0 to schedule the 
transmission to node 2 at timeslot 2−a0,2=2−1=1. The 
matrix Θ is then updated by setting all elements in row 
0 (i.e., sender 0 is no longer available) and column 2 to 
zero (i.e., the arrival timeslot 2 has been scheduled).  

This process then repeats until all the elements in 
the matrix Θ become zero. If all sender nodes have 
been scheduled then this result in a transmission 
schedule with no collision. Otherwise, we need to re-
initialize the rows in the matrix Θ for the remaining 
sender nodes by restoring their original elements in the 
matrix Θ, i.e. (0,1,0) for node 2. The scheduling 
process is then repeated until all sender nodes are 
scheduled. 

 
4.2 Performance Analysis 
 

In the LSF algorithm the likelihood of scheduling 
collision increases when the number of schedulable 
timeslots decreases, i.e., when the system utilization 

increases. Thus a key factor to the algorithm’s 
performance is the system utilization. To investigate 
this factor we derive in the following the relation 
between system utilization and the availability of 
timeslots.  

Let v be the number of active video sessions in the 
system. Then there will be v distinct transmission 
timeslots in each node that are occupied and the 
corresponding v arrival timeslots are not schedulable. 
We assume that the v non-schedulable arrival timeslots 
are all randomly distributed in each row of Θ. 

Consider a row of the matrix Θ, the probability that 
w(≤v) particular elements are zero is given by 

 C
C

N w
v w

N
v

−
−  (9) 

Thus, the probability that w particular columns are 
zero, denoted by pw, is equal to 

 C
C

NN w
v w

N
v

−
− 

 
 

 (10) 

On the other hand, we can obtain the same 
probability in (10) by conditioning on the number of 
zero-columns in the matrix. Specifically, if there are 
exactly u, w≤u≤v, zero-columns, then the probability 
that the w particular columns are non-zero is: 

 C C
C C

N w u
u w w

N N
u w

−
− =  (11) 

By total probability theorem [21], we can get pw by: 

 C Pr[ ]
C

uv
w
N

u w w

u
=
∑  (12) 

where Pr[u] denotes the probability that the matrix Θ 
has exactly u columns. Thus equating (10) and (12), we 
can obtain 

 C C Pr[ ]
C C

NN w uv
v w w

N N
u wv w

u
−

−

=

 
= 

 
∑  (13) 

Finally, and surprisingly, by putting w=1 in (13) we 
can obtain the formula for the expected value of u: 
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Note that the expected value of u represents the 
expected number of non-schedulable arrival time slots. 
The existence of non-schedulable time slots implies 
there will be scheduling collisions in other time slots. 
Thus, (14) quantifies the extent of scheduling collision 
and relates that to the system utilization (i.e., v/N).  

For example, we can apply (14) to find the 
operating point at which E[u]=1: 



Table 1 - Default system parameters 
Parameters Values 
Cluster size 500 
Video block size 8KB 
Video bitrate 4Mbps 
Access network bandwidth 1.1Rv 
Router buffer size (per node) 32KB 
Mean propagation delay 0.005s 
Variance of propagation delay 10-6 

Mean router queueing delay 0.005s 
Variance of clock jitter 10-6 
Video length 7200s 
System Utilization 0.95 

 

 
1 1N

N Nvv N N
N

−
−

= ⇒ =  (15) 

In other words, if the system utilization exceeds (15) 
the expected number of collisions will increase beyond 
1. Thus by keeping the system utilization below this 
operating point (e.g. by rejecting new requests) we can 
maintain a low level of collision for existing video 
streams. We further illustrate this observation in 
Section 5.3. 

 
5. Performance Evaluation 
 

In this section, we evaluate and compare LSF with 
other scheduling algorithms studied in this paper using 
simulation. The simulator simulates a network with 500 
nodes. To generate a realistic network topology, we 
implement the extended BA model proposed by 
Barabási et al. [22] as the topology generator, using 
parameters measured by Govindan et al. [23].  

To model access routers in the network, we assume 
an access router have separate buffers for each 
connected node. These buffers are used to queue up 
incoming data packets for transmission to the 
connected nodes. When the buffer is full, then 
subsequent arriving packets for the node will be 
discarded and thus resulting in packet loss. 

To model the network links, we separate the end-to-
end delay into two parts, namely, propagation delay in 
the link and queueing delay at the router. While the 
propagation delay is primary determined by the link’s 
physical distance, queueing delay at a router depends 
on the utilization of the outgoing links. The 
propagation delay for a link is a constant drawn from a 
normally distributed random variable and the queueing 
delay at a router is modeled by an exponentially-
distributed random variable [21]. To model clock 
differences among nodes, we assume that the clock 
jitter of a node, defined as the deviation from the mean 

time of all hosts, is normally-distributed with zero 
mean. We can then control the amount of clock jitter 
by choosing different variances for the distribution. 

To model the dynamic activities of the system, we 
allow nodes to initiate videos in a stochastic fashion. 
Specifically, when a node initiates a video title, its 
stream will last for tvideo seconds. When the video stops, 
the node will be idle for an exponentially-distributed 
random duration with mean tidle seconds. Thus by 
adjusting the two parameters tvideo and tidle we can 
control the system utilization, ρ=tvideo/(tvideo+tidle). 

Table 1 summarizes the default values of various 
system parameters. We investigate in the following 
sections the effect of three system parameters, namely 
cluster size, network delay, and system utilization on 
the performance of the scheduling algorithms in terms 
of packet loss rate. Each set of results is obtained from 
the average results of 10 randomly generated network 
topologies. 
 
5.1 Sensitivity to Cluster Size 
 

Fig. 4 plots the packet loss rate versus cluster size 
ranging from 5 to 500 nodes. There are two 
observations. First, the loss rates of all schedulers 
decrease rapidly at smaller cluster size and become 
negligible for very small clusters. For example, for a 
10-node cluster the loss rate is only 6.6% even for the 
ORS algorithm. This confirms that the traffic collision 
problem is unique to a server-less video streaming 
system where the number of nodes is typically large.  

Second, comparing the three algorithms, ORS 
performs extremely poorly with loss rates as high as 
95%, which is clearly not acceptable in practice. RS 
performs significantly better with loss rates 
approaching 9.3% when the cluster size is increased to 
500. By exploiting knowledge of the network and 
making efficient use of idle timeslots, the proposed 
LSF scheduler performs best with a loss rate of only 
0.05% for a cluster size of 500 nodes. 
 
5.2 Sensitivity to Network Delay Variations 
 

Given that the transmission schedule computed from 
LSF is deterministic, random variations in the network 
delay will degrade its performance. To investigate this 
effect, we plot in Fig. 5 the packet loss rate against the 
mean network delay from 20-500ms. We vary the mean 
network delay by varying the mean queueing delay of 
the routers in the network. Thus increasing the mean 
network delay will also increase the delay variations.  

There are two interesting observations from this 
result. First, the performance of the RS algorithm is 



independent of the underlying network delay. This is 
because packet transmission times under RS are 
already randomized, and thus adding further random 
delay to the packet transmission times has no effect on 
the resultant traffic burstiness. 

Second, the performance of LSF converges to that 
of RS when the mean network delay is very large (e.g. 
500ms). This is because the large variations in the 
network delay effectively randomize the packet arrival 
times at the access router. However, according to a 
recent study [24] the Internet have far lower delay and 
delay variations, with mean delay in the range of 20-
40ms. Thus the LSF scheduler will likely perform 
significantly better than the other algorithms in practice.  
 
5.3 Sensitivity to System Utilization 

 
As mentioned in Section 4.2, system utilization is a 

key element in determining the performance of LSF. 
Therefore, we plot in Fig. 6 the packet loss rate versus 
system utilization, ρ, ranging from 0.8 to 0.99 for 
different cluster sizes under LSF.  

We again have two observations from this result. 
First, LSF performs consistently for almost the whole 
range of system utilization, but only deteriorates 
drastically at extremely high system utilization. For 
instance, for N=300, the packet loss rates for ρ=0.8, 0.9 
and 0.99 are 0.040%, 0.046% and 0.70% respectively. 
Since the instantaneous utilization of a video system is 
usually moderate, LSF can be deployed for low packet 
loss rate. To guarantee the performance of LSF, one 
can limit the system utilization by simply blocking 
requests as suggested in Section 4.2.  

Second, the critical points for which LSF starts its 
sharp deterioration increase with cluster size. Since 
critical points cannot be easily defined, we show in the 
same plot the bounds of system utilization obtained 
from (15), i.e. ρ=0.955, 0.981 and 0.988 for N=100, 
300 and 500 respectively. These results show that a 
larger system can support higher utilization. Besides, 
the plot has also indicated the strong relation between 
the congestion-induced packet losses and the expected 
number of collisions – cases with the same expected 
number of collisions will have similar packet loss rate 
for any cluster size, N. 

 
6. Conclusions and Future Work 

 
In this study, we investigated the transmission 

scheduling problem in a server-less video streaming 
system. Specifically, we formulated the transmission 
scheduling problem as a matrix mathematical model 
and discovered that it is possible to perform one-way 

network delay estimation with clock jitter accounted 
for in a single step. This discovery led to the 
development of the Least Schedulable First (LSF) 
scheduler that exploits knowledge of the network 
properties to reduce the congestion-induced packet loss 
to negligible levels. The LSF algorithm is inherently 
distributed and hence does not require synchronization 
among hosts in the system.  

Our results have shown that the LSF algorithm will 
likely perform very well in the Internet, where delay 
and delay variations are modest. With the rapid growth 
in wireless and even ad-hoc networks, medium-term 
variations in the network delay may increase 
substantially. Further study is thus warranted to 
investigate adaptive scheduling algorithms for these 
highly-dynamic mobile and wireless networks. 
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Fig. 1 A N-node server-less video streaming system 
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Fig. 2 The transmission scheduling model for a 3-
node system (The (1,2)th elements are circled and used 
as an example in Section 3.1) 
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Fig. 3 Illustration of the LSF algorithm in computing 
the schedulability matrix for receiver node 2 
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Fig. 4 Packet loss rate versus cluster size 
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Fig. 5 Packet loss rate versus mean network delay 
(numbers in brackets are the variance of network delay) 
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Fig. 6 Packet loss rate versus system utilization for 
different cluster sizes under LSF 
 


