
A Decentralized Scheduler for Distributed Video Streaming
in a Server-less Video Streaming System1

C. Y. Chan and Jack Y. B. Lee
Department of Information Engineering
The Chinese University of Hong Kong

{cychan2, yblee}@ie.cuhk.edu.hk

1 This work was supported in part by the Hong Kong Special Administrative Region Research Grant Council under a Direct

Grant, Grant CUHK4211/03E, and the Area-of-Excellence in Information Technology.

Abstract

Recently, a server-less video-on-demand
architecture has been proposed to eliminate costly
dedicated video servers and yet is highly scalable and
reliable. However, because of the potentially large
number of user hosts streaming video data to a
receiver for playback, the aggregate network traffic
can become very bursty, leading to significant packet
loss at the access routers. To tackle this problem, we
propose a novel network-aware transmission scheduler
called Least Schedulable First (LSF) to reduce the
traffic burstiness. Simulation results show that LSF can
reduce the congestion-induced packet loss from over
95% to 0.05% in a 500-host system at 0.95 system
utilization. Moreover, LSF can adapt to variations in
the underlying network, is inherently distributed, and
does not require synchronization among hosts in the
system.

1. Introduction

Peer-to-peer (P2P) and grid computing have shown
great promises in building high-performance and yet
low cost distributed computational systems. By
distributing the workload to a large number of low-cost,
off-the-shelf computing hosts such as PCs and
workstations, one can eliminate the need for a costly
centralized server and at the same time improve the
system’s scalability. Many of the current works on P2P
and grid computing focus on computational problems
[1-3] and on the design of middleware [4-6]. In this
study, we focus on another application – video
streaming systems, and in particular, investigate the
problem of scheduling data transmission in such a
distributed system.

Unlike conventional video streaming systems, a
decentralized video streaming system does not require
video server at all [7-10]. Instead, video data are
distributed to user hosts and these user hosts
cooperatively serve one another’s streaming workload.
This novel architecture, however, poses many new
challenges not found in traditional video streaming
systems.

In particular, with potentially large number of nodes
streaming data to one another, the aggregate network
traffic can become very bursty. This could lead to
substantial congestion at the access network as well as
the user nodes receiving the video data. A previous
study [11] has revealed that the packet loss due to
congestion can exceed 95% if one does not explicitly
schedule the data transmissions to avoid network
congestion.

In an earlier study [11] we have investigated two
network-neutral schedulers, namely the staggered
scheduler and the randomized scheduler, to tackle this
problem. These network-neutral schedulers do not
require knowledge of the underlying network but can
still significantly reduce congestion-induced packet
losses.

Intuitively if the underlying network’s properties are
known, we should be able to exploit the knowledge to
reduce the congestion-induced packet loss even further.
This is the focus of this paper, where we present a new
network-aware transmission scheduler called Least
Schedulable First (LSF) that exploits knowledge of the
underlying network to outperform the previous two
network-neutral schedulers.

2. Background

We review in this section the decentralized server-
less video streaming architecture [9] studied in this
paper and formulate the transmission scheduling
problem. Interested readers are referred to the original
studies [9-10] for more details on the server-less video
streaming architecture.

2.1 Server-less Video Streaming Architecture

A server-less video streaming system comprises a
pool of user hosts, or called nodes, connected together
by a network such as a broadband network or the
Internet. Each node has a system software that can
stream a portion of each video title to, and playback
video data received from, other nodes in the system.
Unlike conventional video server, this system software
serves a much lower aggregate bandwidth and thus can
readily run on today’s set-top boxes (STBs) and PCs.

In this server-less architecture, a video title is first
divided into fixed-size data blocks and then distributed
to all nodes in the cluster. To start a video streaming
session, a receiver node will first locate the set of
sender nodes carrying blocks of the desired video title,
the placement of the data blocks and other parameters
(format, bitrate, etc.) through a directory service, and
then send a request to all sender nodes to initiate
streaming the video blocks to the receiver node for
playback. For larger systems with potentially tens of
thousands of nodes, we can further divide the nodes
into independent and autonomous clusters to keep the
control traffic overheads to acceptable levels.

Let N be the number of nodes in the cluster and
assume all video titles are constant-bit-rate (CBR)
encoded at the same bitrate Rv. A sender node in a
cluster may have to retrieve video data for up to N
video streams, of which N-1 of them are transmitted
while the remaining one played back locally. Note that
as a video stream is served by N nodes concurrently,
each node only needs to serve a bitrate of Rv/N for each
video stream. With a round-based transmission
scheduler, a sender node simply transmits a data block
to each receiver node in each round. With multiple
receiver nodes thus we need to determine the order of
transmissions within a round. This is the transmission
scheduling problem investigated in this work.

2.2 Network Congestion

In video streaming, video data are often assumed to
be transmitted in a continuous, fluid-flow-like, data
stream at a constant bit-rate to a receiver. However, in
practice data are always transmitted in discrete packets
(e.g. over RTP/UDP) and thus the data stream is

inherently bursty in a small time scale. This burstiness
is usually insignificant in traditional client-server video
streaming systems because only a single video server
will be transmitting video data to a client machine and
thus the outgoing data packets will be evenly spaced
out at constant time intervals.

By contrast, nodes in a server-less video streaming
system all participate in transmitting video data packets
to a receiver node for playback. Thus without proper
coordination, these multiple streams of data packets
could combine into very bursty traffic that ultimately
can lead to network congestion and packet losses.

For example, in a previous work [11] we studied a
straightforward transmission scheduler called the On
Request Scheduler (ORS), which determines the
transmission schedule simply based on the arrival time
of the receiver’s request during admission. In particular,
the sender nodes will schedule data transmission to
begin from the first available timeslot within a round.
Not surprisingly, this simple scheduler resulted in
significant network congestion and packet losses
exceeding 95%.

The reason for the exceedingly poor performance is
that despite variations in network delay, the arrival
times of the receiver’s requests at the sender nodes are
still highly correlated. Thus once transmission begins,
the sender nodes in the system will all transmit video
data packets to the receiver node at around the same
time, leading to serious network congestion.

Therefore the key to the solution is to decorrelate
the packet transmission times. We investigated two
such algorithms, namely the Randomized Scheduler
(RS) and the Staggered Scheduler (SS), in a previous
work [11]. The Randomized Scheduler decorrelates the
data transmission times by randomizing the
transmission order in each round. The Staggered
Scheduler on the other hand explicitly spread out the
transmission times of packets destined to the same
receiver to smooth out the aggregate traffic. Simulation
results showed that these two schedulers can both
significantly reduce congestion-induced packet losses,
e.g., from over 95% (ORS) to 9.3% (RS) and 0.16%
(SS). Interested readers are referred to [11] for more
details.

3. A Model for Transmission Scheduling

The two transmission schedulers presented in
Section 2.2 are network-neutral, i.e., they do not make
use of any knowledge of the underlying network
properties (e.g. delay). The question then is whether we
can reduce the packet loss even further by exploiting
knowledge of the network.

To this end we need to address three challenges.
First, we need to formulate the transmission scheduling
problem in terms of the network model. Second, we
need to find a way to estimate properties of the
underlying network. Finally, armed with knowledge of
the network, we need to devise a transmission
scheduling algorithm to exploit the knowledge to
further reduce congestion-induced packet loss. We
address the first two challenges in this section and then
present a network-aware transmission scheduling
algorithm in Section 4.

3.1 A Matrix Representation

Despite the complexity of the transmission
scheduling problem, we can devise a very concise
mathematical model to capture all the essential features
of the system. We first define three N-by-N matrices S,
D, and R, where their row i column j element, denoted
by (i,j)th element, represents respectively the schedule
time, network delay, and arrival time of the packet
transmission from node i to node j. Next we introduce a
fourth matrix C with its (i,j)th element representing the
clock difference that node i lags behind node j. Using
these four matrices, we can then describe the system in
the following equation:
 S+D+C=R (1)
where + is matrix operation. In other words, the arrival
time is equal to the schedule time plus network delay
and clock jitter.

Note that as transmission can occur only at the
beginning of a timeslot, the elements in the matrix S
must be integer multiples of the duration of a timeslot
Ts. The elements in the matrices D, C, and R however,
can take on any real number values. We employ three
modifications to further simply this model.

First, we introduce an apparent delay matrix,
denoted by A, which is defined as A=(D+C). Since a
summation of two constants is another constant, this
substitution removes redundancy in the representation:
 S+A=R (2)

Second, we convert the matrices to integer matrices
by quantizing the matrix elements with the timeslot
duration Ts. In other words, we replace si,j, ai,j, and ri,j
by round(si,j/Ts), round(ai,j/Ts), and round(ri,j/Ts)
respectively. Thus with N timeslots in a round, the
valid schedule time is si,j∈ {0,1,…,(N−1)}.

Third, we observe that in case the sum of network
delay and clock jitter is large, the packet arrival times
for a particular receiver may span over multiple rounds.
This can be easily compensated by starting the
transmission in different rounds in different sender

nodes to offset the delay variations. This can be
modeled by applying (mod N) to (2):
 S+A≡R (mod N) (3)

With this technique we can always keep the arrival
time to within a round’s duration, i.e.,
ri,j∈ {0,1,…,(N−1)}.

Fig. 2 illustrates this model using a system with
three nodes, i.e., N=3. Consider the (1,2)th elements of
the matrices. From the schedule matrix S, node 1 has
scheduled the transmission to node 2 at timeslot 2
according to its own clock. From the apparent delay
matrix A, the sum of network delay and clock
difference between node 1 and node 2 is 2 timeslots.
Thus packets transmitted from node 1 will arrive at
node 2 at timeslot (2+2) mod 3 = 1, i.e., timeslot 1.

 Using this matrix representation, we can formally
define the constraints and the goal of the transmission
scheduling problem. Specifically, assuming that each
node can send a packet in each timeslot in each round,
then the transmission schedule defined by the matrix S
must not have repeating elements in any of the row. For
example, with N=3, a row containing elements of
values (0,2,1) is a valid schedule representing the
schedule of transmission to node 0 in timeslot 0, to
node 1 in timeslot 2, to node 2 in timeslot 3, and so on.
This type of matrix is also known as row-latin matrix
[12]. By contrast, the schedule (0,2,2) is invalid
because transmissions to both node 1 and node 2 are
scheduled in the same timeslot number 2.

On the other hand, we want the arrival time matrix
R to have non-repeating elements in any of the columns,
also known as column-latin matrix [12]. As each
column represents the arrival time of packets
transmitted from the N sender nodes, repeating
elements represent overlapping arrival times and hence
could induce congestion/packet loss.

Therefore our goal in the transmission scheduling
problem is, given D and C, to find a transmission
schedule S that is row-latin such that the arrival time
matrix R is column-latin. We note that although related
matrix problems, latin squares in particular, have been
studied extensively in the literatures [12-16], no known
solution exists for the specific problem in (3).

3.2 Network Delay and Clock Jitter Estimation

The previous discussions assume that the network
delay matrix D and the clock jitter matrix C are known.
Obviously we cannot assume a priori knowledge of
these properties in a distributed system running on the
Internet. Thus in this section we address the second
problem, namely to obtain estimates of the matrices D
and C at run time.

For network delay estimation, a well-known
technique is to use echo messages. A node i will send
an echo packet to another node j, which then
immediately replies node i with a reply packet. The
time from sending the echo packet to receiving the
reply is the round-trip time (RTT) and the one-way
delay can then be estimated from RTT/2.

However, this echo technique implicitly assumes
that the network path between the two nodes is
symmetric, i.e., the network delay is the same for both
directions of the path. However, previous studies [17-
18] have shown that in general network paths in the
Internet are asymmetric, thus reducing the accuracy of
this network delay estimation method.

One way around this problem is to measure the one-
way network delay directly, i.e., by comparing the
transmission time and the arrival time of a packet.
However, if the clocks in the sender node and the
receiver node are not precisely synchronized, then we
simply cannot obtain the one-way delay by subtracting
the transmission time, measured by the sender node’s
clock, from the arrival time, this time measured by the
receiver node’s clock. While in principle we can
implement and deploy distributed clock-
synchronization protocols [19-20] to reduce the clock
jitter to improve estimation accuracy, this nonetheless
will create an additional hurdle to deploying such a
decentralized system.

Surprisingly, although it is not possible to measure
the one-way network delay without node
synchronization, we discover that we can measure the
sum of one-way network delay and clock jitter in a
single step – Jitter-Adjusted Delay Estimation (JADE).

Consider the individual elements in A, denoted by
ai,j. We can express it in terms of di,j and ci,j:
 , , ,i j i j i ja d c= + (4)

To estimate the apparent delay ai,j, node i sends a
message to node j at time xi,j according to an arbitrary
time reference. After traversing the network link with a
delay of di,j the message will reach node j at time
yi,j=xi,j+di,j according to the same time reference. Let δi
be the clock difference that node i lags behind the time
reference. Thus we can compute ci,j from ci,j= δi−δj.
Substituting xi,j, yi,j, δi and δj into (4) we can then obtain

, , ,

, ,

() ()

() ()
i j i j i j i j

i j j i j i

a y x
y x

δ δ
δ δ

= − + −

= − − − (5)

Note that (yi,j−δj) is simply the packet reception time
as measured by node j’s clock, and (xi,j−δi) is simply
the packet transmission time as measured by node i’s
clock. Now both entities can be measured
independently by the sender node i and the receiver

node j. Thus we can compute ai,j directly from (5)
without the need for node or clock synchronization.

4. Least-Schedulable-First Scheduler

With the system model formulated and the network
parameters estimated, our goal then is to find a row-
latin schedule matrix S such that the resultant arrival
time matrix R is column-latin. The trivial method is to
enumerate all permutations of S until we find a solution.
However, given that a row-latin schedule matrix S can
have (N!)N permutations, this brute force approach is
clearly not practical. For example, enumerating S takes
only a few CPU cycles for N=3, 124 milliseconds for
N=4, but 2.7 hours for N=5 using a Pentium-4 class
machine.

On the other hand, it can be shown that the problem
in general may not even have a solution. Thus instead
of finding only the schedule matrix S that results in
column-latin matrix R, we relax the goal to finding the
schedule matrix S to reduce the number of colliding
arrival times in the arrival time matrix R.

In the following, we present a Least Schedulable
First (LSF) scheduler that greedily selects a schedule to
minimize the number of collisions for a new receiver.
We present the admission and scheduling algorithm in
Section 4.1 and analyze its performance in Section 4.2.

4.1 Admission and Scheduling

Suppose there are v active video streams running in
a cluster of N nodes. Without loss of generality, let
node j be the particular node that initiate the video
session at this moment. When node j sends the requests
to the other N-1 nodes, the other nodes will send back
replies carrying the list of the N-v idle timeslots,
denoted by Li, and the request reception time (pi,j−δi)
for calculating the apparent delay ai,j.

Using these information the receiver node can then
compute the schedulability of the arrival timeslots,
represented by an N-by-N Boolean matrix Θ with its
(i,k)th element denoted by θi,k. Specifically, we set
θi,k=1 if the arrival timeslot k is schedulable by node i,
i.e.,

,i j ik a L− ∈ (6)

Otherwise we set θi,k=0.
Physically, the number of 1’s in a column, say

column k, in the matrix Θ indicates the number of
nodes that can schedule their packets to arrive at the
arrival timeslot k. We define the schedulability of
arrival timeslot k as

1

,
0

N

k i k
i

η θ
−

=

=∑ (7)

The receiver node then schedules the arrival
timeslots in order of increasing schedulability. Thus the
next arrival timeslot to be scheduled, denoted by κ, is
determined from
 { }{ }: 0 , 0,1,..., 1k k Nκκ η η< ≤ ∀ ∈ − (8)

The intuition behind this algorithm is that there is a
one-to-one mapping between sender and arrival
timeslot. Thus for each arrival timeslot scheduled there
will be one fewer sender for scheduling the remaining
timeslots. Hence arrival timeslots with lower
schedulability are more likely to become unschedulable
when all suitable senders are assigned to other arrival
timeslots. An unscheduled timeslot will have no packet
arrival, which implies the packet will arrive at another
scheduled timeslot, resulting in a collision. Thus the
receiver node will always schedule the least
schedulable arrival timeslot first to reduce the
likelihood of collisions.

This is illustrated in Fig. 3 with node 0 and node 1
already streaming video and node 2 is requesting for a
new video session. Using the JADE algorithm the
apparent delay to node 2, i.e. ai,2 for i=0,1,2, are first
estimated. Next, we compute the schedulability matrix
Θ. Consider sender node 0 as an example, the
transmission timeslot 1 is available and the arrival
timeslot 1+a0,2=1+1=2 will be schedulable by node 0.

To determine the next arrival timeslot to schedule,
we then look for the arrival timeslot with the lowest
and yet non-zero schedulability, i.e. arrival timeslot 2
in Fig. 3. In this case there is only one sender
schedulable and so we assign node 0 to schedule the
transmission to node 2 at timeslot 2−a0,2=2−1=1. The
matrix Θ is then updated by setting all elements in row
0 (i.e., sender 0 is no longer available) and column 2 to
zero (i.e., the arrival timeslot 2 has been scheduled).

This process then repeats until all the elements in
the matrix Θ become zero. If all sender nodes have
been scheduled then this result in a transmission
schedule with no collision. Otherwise, we need to re-
initialize the rows in the matrix Θ for the remaining
sender nodes by restoring their original elements in the
matrix Θ, i.e. (0,1,0) for node 2. The scheduling
process is then repeated until all sender nodes are
scheduled.

4.2 Performance Analysis

In the LSF algorithm the likelihood of scheduling
collision increases when the number of schedulable
timeslots decreases, i.e., when the system utilization

increases. Thus a key factor to the algorithm’s
performance is the system utilization. To investigate
this factor we derive in the following the relation
between system utilization and the availability of
timeslots.

Let v be the number of active video sessions in the
system. Then there will be v distinct transmission
timeslots in each node that are occupied and the
corresponding v arrival timeslots are not schedulable.
We assume that the v non-schedulable arrival timeslots
are all randomly distributed in each row of Θ.

Consider a row of the matrix Θ, the probability that
w(≤v) particular elements are zero is given by

 C
C

N w
v w

N
v

−
− (9)

Thus, the probability that w particular columns are
zero, denoted by pw, is equal to

 C
C

NN w
v w

N
v

−
− 

 
 

 (10)

On the other hand, we can obtain the same
probability in (10) by conditioning on the number of
zero-columns in the matrix. Specifically, if there are
exactly u, w≤u≤v, zero-columns, then the probability
that the w particular columns are non-zero is:

 C C
C C

N w u
u w w

N N
u w

−
− = (11)

By total probability theorem [21], we can get pw by:

 C Pr[]
C

uv
w
N

u w w

u
=
∑ (12)

where Pr[u] denotes the probability that the matrix Θ
has exactly u columns. Thus equating (10) and (12), we
can obtain

 C C Pr[]
C C

NN w uv
v w w

N N
u wv w

u
−

−

=

 
= 

 
∑ (13)

Finally, and surprisingly, by putting w=1 in (13) we
can obtain the formula for the expected value of u:

1

1
1 1

1

C[] Pr[] C
C

NN Nv
Nv

N N
u v

vE u u u
N

−
−

−
=

 
= = = 

 
∑ (14)

Note that the expected value of u represents the
expected number of non-schedulable arrival time slots.
The existence of non-schedulable time slots implies
there will be scheduling collisions in other time slots.
Thus, (14) quantifies the extent of scheduling collision
and relates that to the system utilization (i.e., v/N).

For example, we can apply (14) to find the
operating point at which E[u]=1:

Table 1 - Default system parameters
Parameters Values
Cluster size 500
Video block size 8KB
Video bitrate 4Mbps
Access network bandwidth 1.1Rv
Router buffer size (per node) 32KB
Mean propagation delay 0.005s
Variance of propagation delay 10-6

Mean router queueing delay 0.005s
Variance of clock jitter 10-6
Video length 7200s
System Utilization 0.95

1 1N

N Nvv N N
N

−
−

= ⇒ = (15)

In other words, if the system utilization exceeds (15)
the expected number of collisions will increase beyond
1. Thus by keeping the system utilization below this
operating point (e.g. by rejecting new requests) we can
maintain a low level of collision for existing video
streams. We further illustrate this observation in
Section 5.3.

5. Performance Evaluation

In this section, we evaluate and compare LSF with
other scheduling algorithms studied in this paper using
simulation. The simulator simulates a network with 500
nodes. To generate a realistic network topology, we
implement the extended BA model proposed by
Barabási et al. [22] as the topology generator, using
parameters measured by Govindan et al. [23].

To model access routers in the network, we assume
an access router have separate buffers for each
connected node. These buffers are used to queue up
incoming data packets for transmission to the
connected nodes. When the buffer is full, then
subsequent arriving packets for the node will be
discarded and thus resulting in packet loss.

To model the network links, we separate the end-to-
end delay into two parts, namely, propagation delay in
the link and queueing delay at the router. While the
propagation delay is primary determined by the link’s
physical distance, queueing delay at a router depends
on the utilization of the outgoing links. The
propagation delay for a link is a constant drawn from a
normally distributed random variable and the queueing
delay at a router is modeled by an exponentially-
distributed random variable [21]. To model clock
differences among nodes, we assume that the clock
jitter of a node, defined as the deviation from the mean

time of all hosts, is normally-distributed with zero
mean. We can then control the amount of clock jitter
by choosing different variances for the distribution.

To model the dynamic activities of the system, we
allow nodes to initiate videos in a stochastic fashion.
Specifically, when a node initiates a video title, its
stream will last for tvideo seconds. When the video stops,
the node will be idle for an exponentially-distributed
random duration with mean tidle seconds. Thus by
adjusting the two parameters tvideo and tidle we can
control the system utilization, ρ=tvideo/(tvideo+tidle).

Table 1 summarizes the default values of various
system parameters. We investigate in the following
sections the effect of three system parameters, namely
cluster size, network delay, and system utilization on
the performance of the scheduling algorithms in terms
of packet loss rate. Each set of results is obtained from
the average results of 10 randomly generated network
topologies.

5.1 Sensitivity to Cluster Size

Fig. 4 plots the packet loss rate versus cluster size
ranging from 5 to 500 nodes. There are two
observations. First, the loss rates of all schedulers
decrease rapidly at smaller cluster size and become
negligible for very small clusters. For example, for a
10-node cluster the loss rate is only 6.6% even for the
ORS algorithm. This confirms that the traffic collision
problem is unique to a server-less video streaming
system where the number of nodes is typically large.

Second, comparing the three algorithms, ORS
performs extremely poorly with loss rates as high as
95%, which is clearly not acceptable in practice. RS
performs significantly better with loss rates
approaching 9.3% when the cluster size is increased to
500. By exploiting knowledge of the network and
making efficient use of idle timeslots, the proposed
LSF scheduler performs best with a loss rate of only
0.05% for a cluster size of 500 nodes.

5.2 Sensitivity to Network Delay Variations

Given that the transmission schedule computed from
LSF is deterministic, random variations in the network
delay will degrade its performance. To investigate this
effect, we plot in Fig. 5 the packet loss rate against the
mean network delay from 20-500ms. We vary the mean
network delay by varying the mean queueing delay of
the routers in the network. Thus increasing the mean
network delay will also increase the delay variations.

There are two interesting observations from this
result. First, the performance of the RS algorithm is

independent of the underlying network delay. This is
because packet transmission times under RS are
already randomized, and thus adding further random
delay to the packet transmission times has no effect on
the resultant traffic burstiness.

Second, the performance of LSF converges to that
of RS when the mean network delay is very large (e.g.
500ms). This is because the large variations in the
network delay effectively randomize the packet arrival
times at the access router. However, according to a
recent study [24] the Internet have far lower delay and
delay variations, with mean delay in the range of 20-
40ms. Thus the LSF scheduler will likely perform
significantly better than the other algorithms in practice.

5.3 Sensitivity to System Utilization

As mentioned in Section 4.2, system utilization is a

key element in determining the performance of LSF.
Therefore, we plot in Fig. 6 the packet loss rate versus
system utilization, ρ, ranging from 0.8 to 0.99 for
different cluster sizes under LSF.

We again have two observations from this result.
First, LSF performs consistently for almost the whole
range of system utilization, but only deteriorates
drastically at extremely high system utilization. For
instance, for N=300, the packet loss rates for ρ=0.8, 0.9
and 0.99 are 0.040%, 0.046% and 0.70% respectively.
Since the instantaneous utilization of a video system is
usually moderate, LSF can be deployed for low packet
loss rate. To guarantee the performance of LSF, one
can limit the system utilization by simply blocking
requests as suggested in Section 4.2.

Second, the critical points for which LSF starts its
sharp deterioration increase with cluster size. Since
critical points cannot be easily defined, we show in the
same plot the bounds of system utilization obtained
from (15), i.e. ρ=0.955, 0.981 and 0.988 for N=100,
300 and 500 respectively. These results show that a
larger system can support higher utilization. Besides,
the plot has also indicated the strong relation between
the congestion-induced packet losses and the expected
number of collisions – cases with the same expected
number of collisions will have similar packet loss rate
for any cluster size, N.

6. Conclusions and Future Work

In this study, we investigated the transmission

scheduling problem in a server-less video streaming
system. Specifically, we formulated the transmission
scheduling problem as a matrix mathematical model
and discovered that it is possible to perform one-way

network delay estimation with clock jitter accounted
for in a single step. This discovery led to the
development of the Least Schedulable First (LSF)
scheduler that exploits knowledge of the network
properties to reduce the congestion-induced packet loss
to negligible levels. The LSF algorithm is inherently
distributed and hence does not require synchronization
among hosts in the system.

Our results have shown that the LSF algorithm will
likely perform very well in the Internet, where delay
and delay variations are modest. With the rapid growth
in wireless and even ad-hoc networks, medium-term
variations in the network delay may increase
substantially. Further study is thus warranted to
investigate adaptive scheduling algorithms for these
highly-dynamic mobile and wireless networks.

7. References

[1] A. Oram, Peer-to-Peer: Harnessing the Power of

Disruptive Technologies, O’Reilly Press, USA, 2001.
[2] C. Padgett, and K. Kreutz-Delgado, “A grid algorithm

for autonomous star identification,” IEEE
Transactions on Aerospace and Electronic Systems,
Vol.33(1), Jan. 1997, pp.202-213

[3] SETI@home. http://setiathome.ssl.berkeley.edu/.
[4] M. Baker, R. Buyya, and D. Laforenza, “The Grid:

International Efforts in Global Computing,”
International Conference on Advances in
Infrastructure for Electronic Business, Science, and
Education on the Internet, Rome, Italy, 31 July, 2000.

[5] Condor Project. http://www.cs.wisc.edu/condor/.
[6] The Globus Project. http://www.globus.org/.
[7] M. Hefeeda, A. Habib, D. Xu, and B. Bhargava,

“CollectCast: A Tomography-Based Network Service
for Peer-to-Peer Streaming,” ACM SIGCOMM'03,
Karlsruhe, Germany, August 2003.

[8] T. P. Nguyen, and A. Zakhor. “Distributed Video
Streaming over the Internet,” Multimedia Computing
and Networking (MMCN), January 2002.

[9] Jack Y. B. Lee, and W. T. Leung, “Study of a Server-
less Architecture for Video-on-Demand Applications,”
Proc. IEEE International Conference on Multimedia
and Expo., Lausanne, Switzerland, 26-29 Aug 2002.

[10] Jack Y. B. Lee, and W. T. Leung, “Design and
Analysis of a Fault-Tolerant Mechanism for a Server-
Less Video-On-Demand System,” Proc. 2002
International Conference on Parallel and Distributed
Systems, Taiwan, 17-20 Dec, 2002.

[11] C. Y. Chan, and Jack Y. B. Lee, “On Transmission
Scheduling in a Server-less Architecture,” Proc.
International Conference on Parallel and Distributed
Computing, Klagenfurt, Austria, August 26-29, 2003.

[12] C. F. Laywine, and G. L. Mullen, Discrete
Mathematics Using Latin Squares, New York: Wiley,
1998.

[13] J. Denes, and A. D. Keedwell, Latin Squares: New
Developments in the Theory and Applications, New
York: North Holland, 1991.

[14] D. Donovan, “The Completion of Partial Latin
Squares,” Australasian Journal of Combinatorics, 22,
2000, 247-264.

[15] G. G. Chappel, “A Matroid Generalization Of A
Result On Row-Latin Rectangles,” Mathematics
Subject Classification, 1991.

[16] B. D. McKay, and I. M. Wanless, “Most Latin squares
have many subsquares,” J. Combinatorial Theory (A),
vol.86, 1999, pp.323-347.

[17] K. Claffy, H.-W. Braun, and G. Polyzos.
“Measurement considerations for assessing
unidirectional latencies,” Internetworking: Research
and Experience, vol.4(3), September 1993, pp. 121-
132.

[18] A. Wolman, G. Voelker, and C. A. Thekkath,
“Latency Analysis of TCP on an ATM Network,”
Proceedings of the USENIX Winter '94 Technical
Conference, San Francisco, CA, Jan. 1994, pp.167-
179.

[19] D. L. Mills, “Internet Time Synchronization: The
Network Time Protocol,” IEEE Transaction on
Communications, vol.39(10), Oct. 1991, pp.1482-
1493.

[20] Simple Network Time Protocol.
http://www.faqs.org/rfcs/rfc2030.html.

[21] D. Gross, and C. M. Harris, Fundamentals of
Queueing Theory, 3rd ed. New York: Wiley, 1998.

[22] R. Albert, and A.-L. Barabási, “Topology of Evolving
Networks: Local Events and Universality,” Physical
Review Letters, vol.85, 2000, pp.5234-5237.

[23] R. Govindan, and H. Tangmunarunkit, “Heuristics for
Internet Map Discovery,” IEEE Infocom 2000, Tel
Aviv, Israel, Mar. 2000, pp.1371-1380.

[24] G. Hooghiemstra and P. Van Mieghem, 2001, “Delay
Distributions on Fixed Internet Paths,” Delft
University of Technology, Report20011020.

Playback

Internet(N - 1) nodes

Access router

Playback

Internet(N - 1) nodes

Access router

Fig. 1 A N-node server-less video streaming system

102
210
120

020
201
110

122
111
200

(mod 3)S + A R

2

(

102
210
120

020
201
110

122
111
200

(mod 3)S + A R

2

(

Fig. 2 The transmission scheduling model for a 3-
node system (The (1,2)th elements are circled and used
as an example in Section 3.1)

0
1
2

2
0
0

0
2
1

20
01
10

S A

010
010
100

Θ

0
1
2

2
0
0

0
2
1

20
01
10

S A

010
010
100

Θ

Fig. 3 Illustration of the LSF algorithm in computing
the schedulability matrix for receiver node 2

10-6

10-4

10-2

1

0 100 200 300 400 500 600

Cluster Size (nodes)

Pa
ck

et
 L

os
s R

at
e

LSF

RS

ORS

10-6

10-4

10-2

1

0 100 200 300 400 500 600

Cluster Size (nodes)

Pa
ck

et
 L

os
s R

at
e

LSF

RS

ORS

Fig. 4 Packet loss rate versus cluster size

10-8

10-6

10-4

10-2

1 ORS

RS

LSF

(5.85)

(2340.91)

(146.30)

(36.57)

(585.26)

(14630.2)

0 100 200 300 400

Mean Network Delay (ms)

Pa
ck

et
 L

os
s R

at
e

10-8

10-6

10-4

10-2

1 ORS

RS

LSF

(5.85)

(2340.91)

(146.30)

(36.57)

(585.26)

(14630.2)

0 100 200 300 400

Mean Network Delay (ms)

Pa
ck

et
 L

os
s R

at
e

Fig. 5 Packet loss rate versus mean network delay
(numbers in brackets are the variance of network delay)

10-4

10-2

0.8 0.85 0.9 0.95 1

System Utilization

Pa
ck

et
 L

os
s R

at
e

0.955 0.981 0.988

N=500
N=300
N=100

10-4

10-2

0.8 0.85 0.9 0.95 1

System Utilization

Pa
ck

et
 L

os
s R

at
e

0.955 0.981 0.988

N=500
N=300
N=100

Fig. 6 Packet loss rate versus system utilization for
different cluster sizes under LSF

