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Abstract

The simulation of large grids requires the generation of
grid instances and an approximation of grid components’
behaviour. To generate grid instances, this paper outlines
a set of high-level properties of grids and considers ways
to assign values to those properties. The paper also brings
together existing application-level network and host models
and discusses how they are used for the simulation of large
grids. A grid instantiation is described in detail as part
of a master-slave case study, and a large grid is simulated
for the evaluation of a variety of scheduling strategies. The
case study also motivates a performance prediction method,
which is assessed against simulation results.

1 Introduction

Discrete-event simulation (hereafter referred as simula-
tion) is a powerful means for comparative evaluation and
analysis of systems behaviour, performance prediction, and
identification and analysis of performance problems. As
such, simulation is often used in the context of grid com-
puting to assess hypotheses about a system’s behaviour. De-
spite the number of simulation studies of a variety of prob-
lems in the grid, and the availability of several simulation
toolkits, community effort has been mainly focused on rel-
atively small scale simulations. Modelling small grids can
be facilitated by relevant data from existing testbeds and
planned deployments. However, when the subject of mod-
elling is a grid of thousands of administrative domains with
hundreds of thousands of hosts then questions arise, such as
the latter’s distribution and characteristics, as well as how
these evolve over time.

This work is motivated by the need for a discrete-event
simulation testbed for the evaluation of a scalable grid mon-
itoring infrastructure [23], which is meant to form the basis
of large-scale grid information services (such as grid search
engines [8]). This paper contributes towards the simula-
tion of large grids, particularly on how to generate grid in-
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stances and approximate grid components’ behaviour. On
the generation of grid instances, the paper outlines a set
of high-level properties of grids and considers ways to as-
sign values to those properties. The paper also brings to-
gether application-level network and host models and dis-
cusses how they are used effectively for the simulation of
large grids. The above may be particularly useful to devel-
opers of custom grid simulators. These ideas are illustrated
in a master-slave case study, in which several scheduling
strategies are evaluated. A byproduct of the case study is a
method to predict the best strategy for any given setting.
The remainder of the paper is organised as follows. The
next section briefly introduces basic simulation concepts,
elaborates on the parts of the grid that are actually mod-
elled, and briefly considers related work. Section 3 out-
lines high-level grid properties and suggests ways to char-
acterise those properties to generate grid instances. Section
4 considers existing work for modelling the dynamics and
evolution of such grid instances, with a focus on hosts and
networks. Using our simulator, which follows the outlined
modelling approach, Section 5 presents evaluation results
of several scheduling strategies for a master-slave problem
in the context of a large grid. Section 6 concludes the paper.

2 Background and Related Work
2.1 Simulation Concepts

Simulation modelling refers to the abstraction of an oth-
erwise complex system for the purpose of studying its be-
haviour with respect to particular aspects of interest. For in-
stance, a host performance model has to account for relevant
properties (e.g., hardware configuration) and ignore those
that do not affect performance significantly. Application-
level models in particular capture a system’s specific aspect
(e.g., host availability) without explicitly modelling all the
reasons that may affect it (such as software or hardware fail-
ures, or network partitions.)

A discrete-event simulator implements a collection of
models, such that simulated entities have a specified state;
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entities’ state can change by the occurrence of events; and
events are defined with respect to an internal clock. In the
above example, a host’s state is defined by a set of proper-
ties, including compute capacity and current system load, is
affected by events such as an incoming request, and the exe-
cution of the request consumes some of the host’s resources
(and thus affects its state) for a particular set of time units.

An important tradeoff in simulation modelling is be-
tween complexity and accuracy. A simulator that imple-
ments detailed models is likely to deliver more accurate
results but also to have a higher computational complex-
ity, which means longer execution times. The complex-
ity/accuracy tradeoff is even more significant in problems
with large solution spaces, large model sizes (i.e., those in-
volving many simulated entities), or both. Itis in these cases
that the use of application-level models is of major impor-
tance.

2.2 The Grid

The core components of grids are: (i) on-line general- or
special-purpose computer devices and (ii) the network in-
frastructure that interconnects them. Thus, grid simulation
models need to capture the characteristics and behaviour of
those core components. Based on the needs of a specific
case study, more models may need to be added on top of
the core components to support data, software, services or
any other resource types or abstractions of interest.

A grid’s hosts and networks are structured in grid sites,
in the same fashion that the Internet is organised in Au-
tonomous Systems. An Autonomous System is one or more
networks under the same administrative entity and thus with
a single routing policy. Similarly, a grid site is one or more
networks and resources therein with a common sharing and
security policy.

Even given these assumptions, many modelling param-
eters depend on the type of the grid that is modelled. For
instance, whether the subject of modelling is a traditional
high-performance grid or a more diverse setting that, in ad-
dition to high-performance resources, includes commodity
resources, such as PCs. In the remainder of this paper, these
two types of grids will be referred as “traditional” and “di-
verse” respectively.

2.3 Related Work

Simulation is often used in the context of grids and peer-
to-peer networks, to study a variety of problems. Com-
mon problem domains include job scheduling (e.g., [21],
Bricks [22], SimGrid [13], HyperSim [17], GridSim [4]);
and data replication algorithms to achieve better perfor-
mance (ChicagoSim [18], OptorSim [5], GridNet [12]) and
or high availability of data ([19], [24]). Regardless of the

problem of interest, simulation studies have to model host
and network behaviour, particularly the duration of data
transfers and that of processing requests or jobs. For in-
stance, the practices for the estimation of a data transfer’s
duration, vary from a constant end-to-end bandwidth to a
consideration of the utilisation levels and bandwidth sharing
mode in all the links that are actually used in the transfer.

Despite the variety of studied problems and modelling
practices, the existing discrete-event simulation studies are
typically concerned with only a small number of grid sites,
and tenths or up to a few hundreds of hosts. In contrast, due
to the large-scale nature of our motivating use case [23], this
work is focused on application-level simulation of grids of
thousands or up to millions of hosts.

A notable exception is the work in [17], which illustrates
the scalability of HyperSim in a performance study that in-
cludes up to 16384 hosts. HyperSim uses an application-
independent method to reduce the number of simulation
events and hence computational complexity. The particu-
lar study, however, focuses mainly on hosts modelling and
entirely ignores network behaviour. On the other hand, our
work models both networks and hosts behaviour and at-
tempts to achieve this by using high-level models and mak-
ing simplifications that do not drastically affect accuracy.

In a broader context, packet-level network simulators,
such as NS [3], have been traditionally used by the net-
working community to study low-level network behaviour
to assess protocol enhancements. In contrast, the work in
this paper focuses at the application level and specifically in
grid settings.

3 Generating Grid Instances

3.1 Grid Configuration

From a high level perspective, a grid instance (i.e., a grid
at a particular point in time) is described along the follow-
ing parameters, collectively referred as a grid configuration:
(1) the number of grid sites; (2) the number of hosts that
are shared via the grid; (3) the distribution of Internet con-
nection capacity of grid sites; (4) the distribution of hosts
among grid sites; (5) the mapping of the set of Internet con-
nection capacities to that of grid sites; (6) the distribution
of host types, such as desktops, cluster hosts, parallel ma-
chines, on-line scientific and other special-purpose instru-
ments; (7) the distribution and characteristics of resource
types within hosts (e.g., the available storage within a host).

Depending on the problem considered, some of these pa-
rameters may be of minor or major importance, and thus
may be ignored or specified in more detail. The assignment
of values to these parameters and the generation of relevant
data for a particular case study is called a grid instantiation.



3.2 Grid Instantiation

Grid instantiation depends heavily on the type of grid
that is modelled. The number of grid sites and hosts should
obviously take into account the grid type and the character-
istics of the studied problem.

The distribution of Internet connection capacity of grid
sites and that of hosts among sites is modelled with uniform
and highly skewed, such as Zipf, distributions for traditional
and diverse grids, respectively. In traditional grids, most
grid sites are well-connected and have a considerable num-
ber of hosts; thus, a uniform distribution seems appropri-
ate. On the other hand, we can assume that in diverse grids
the norm will be low-end grid sites with a few hosts, and
a considerably smaller number of high performance sites.
This assumption is made on the basis that federations of
self-governed nodes (grid sites in this case) tend to evolve
into scale-free networks [1], which consist of a few nodes
of significant importance (hubs) and numerous insignificant
nodes. Examples of highly-skewed distributions in scale-
free networks are various Internet properties, such as the
connectivity degree in the Internet topology [10, 15] and in
peer-to-peer networks [20], and the number of pages and
visitors per web site [7]. On this basis, diverse grids may
have a large number of poorly connected grid sites with only
a few resources and a small number of highly connected
grid sites with a large number of resources.

The mapping of the set of Internet connection capaci-
ties to that of grid sites, is performed considering the num-
ber of local hosts. In particular, the largest site is assigned
the highest available bandwidth and so on, until all assign-
ments are in place. To account for real-world cases where
a site has less resources but more bandwidth than another
site, a number of swaps is performed between randomly se-
lected sites on the condition that the difference between the
two bandwidth values does not exceed a threshold. Using
this mapping method, a grid instance has reasonable grid
site bandwidth assignments with a few exceptions that have
smaller or larger bandwidth with respect to what one would
expect given the number of their local hosts.

The distribution of host types, and the distribution and
characteristics of resource types within hosts are defined
using conditional probability rules [15]. Particularly in di-
verse grids, we consider the former distribution as highly
skewed (e.g., Zipf) on the basis that commodity hosts are
far more common than high performance hosts.

4 Modédling Grid Dynamics and Evolution

Once a grid instance is in place, a discrete-event simula-
tor, that implements host and network models, can simulate
a grid throughout time. This section briefly describes ex-
isting models for this purpose, and discusses how they are

used in our simulator. The criterion for choosing these mod-
els is simplicity. Apart from the attributes that are defined
as part of grid instances, these models require little state in-
formation that is specific to entities (such as grid sites, links
or hosts).

4.1 Network Dynamics

Networks are immensely complex due to diversity at all
levels: end hosts with various implementations of a TCP/IP
protocol stack, communication via diverse network devices
over different mediums of various characteristics. Also, fea-
tures like asymmetric routing often result in counterintuitive
behaviour, such as considerably different transfer rates be-
tween the inbound and outbound channels of the same soft-
ware connection [11].

Because of the focus on application-level studies in large
grids, we model key features of network behaviour instead
of low-level activities such as packet switching. Our main
concern is the duration of data transfers, typically estimated
as the round trip time (RTT), plus the ratio of transfer size
over available bandwidth. In addition to RTT, estimations of
available bandwidth need to account for bandwidth sharing
in bottleneck hosts and current utilisation levels of the links
that are involved in a transfer.

RTT is the interval from a packet’s transmission until the
receipt of the corresponding TCP acknowledgement. RTT
appears to be described well by a shifted gamma distribu-
tion [16] with unit scale. In particular, if Z is a gamma
distributed random variable, RTT = mZ + ¢, where c is a
constant relating to the smallest observed RTT and m is the
gamma distribution’s scale parameter. RTT can vary signifi-
cantly during the course of a day (partly due to daily human
activity) and depending on the physical distance between
the two communicating ends. Fig. 16 in [16] shows indica-
tive parameter values to capture these variations. Note that
latency and RTT can be different for the two directions of a
software connection (due to asymmetric routing), thus sep-
arate values must be sampled. Our simulator implements
this RTT model because it introduces a small time overhead
that is proportional to the number of active network con-
nections, and it does not need any special entity attributes
(beyond the basic network information in grid instances.)

Another aspect of network behaviour is the way band-
width is shared in bottleneck nodes, for instance in a server
that is overwhelmed (bandwidth-wise) by downloads. The
intuitive, though naive, approach is to queue the requests,
so that bandwidth is used on a first come first serve ba-
sis. Casanova and Marchal [6] propose a bandwidth sharing
model for TCP where the bandwidth allocated to competing
transfers is inverse proportional to their RTT. Thus, for ev-
ery transfer ¢ with latency RT'T; that goes through a bottle-
neck node with nominal bandwidth capacity C, the effective
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where T is the set of competing transfers. It follows from
the equation that when all competing transfers have the
same RTT, the bandwidth is allocated in equal fractions.
This is the case for instance when hosts in a LAN compete
for bandwidth in the outgoing link.

Returning to our primary concern, the end-to-end band-
width of a data transfer is the minimum of all band-
width allocations for that transfer in all the involved nodes.
(Actually the reality is slightly more complicated due to
multi-pathing, i.e., a transfer’s packets may follow different
routes.) The outlined model combined with simple network
topologies is used in the SimGrid simulation framework
[13] to estimate end-to-end bandwidth, and hence transfer
durations. However, this model is too expensive for large
settings, where intermediate bottleneck links may be shared
among hundreds or thousands of network connections. Be-
cause our simulator is intended for significantly larger set-
tings than SimGrid, we assume a network topology without
intermediate bottlenecks and thus bandwidth sharing is ap-
plied only to end hosts.

Finally, despite the existence of generation methods for
self-similar traffic [14], our simulator does not currently ac-
count for routine load due to their high computational com-
plexity, which is further exaggerated by the large number of
network links.

4.2 Host Dynamics

Host properties of interest may vary among different
studies; this section is limited on host availability. Host
availability refers to whether a host is operating properly
and is reachable over the Internet (i.e., “up and running”).
A host may be unavailable for a variety of reasons, includ-
ing software, hardware, or network failures. Based on em-
pirical evidence, Douceur [9] formulates a model, in which
the logarithm of hosts availability (i.e., the duration of up-
time periods) is uniformly distributed in the ranges [0, b]
and [0, ¢], where b < ¢. The first class corresponds to hosts
that are turned off on a regular basis (e.qg., daily or weekly);
the second class is about hosts that do not exhibit a routine
availability behaviour. The distribution of hosts in the two
classes is indistinct, which means that some hosts belong in
any of the two classes throughout time. To the best of our
knowledge, no corresponding generic model exists for the
duration of unavailability intervals. Bolosky [2] constructs
an empirical model for downtime intervals of hosts in a cor-
porate environment. The model is a mixture of two uniform
distributions for 14- and 64-hour downtime intervals, and a
gamma distribution for the hosts that do not have a cyclical
availability behaviour. Only the latter distribution should be

used in the simulation of traditional grids (in which hosts
are not meant to be turned off routinely.) This model, cur-
rently implemented in our simulator, introduces a time and
space overhead that is proportional to the total number of
hosts in a grid instance. The model needs every host to
have a few extra attributes (such as the current availability
status and the timestamp this will change) that need to be
periodically updated. Despite the introduced complexity, a
hosts availability model has general use, and eliminates the
need to account for network failures (at least those related
to access networks.)

4.3 Evolution Patterns

In addition to dynamics, the evolution of grids may also
be of interest in studies that involve large simulated inter-
vals. This evolution can be quantified at a high level by
means of the rate at which new (resp. existing) sites and
resources are being added to (resp. removed from) the grid.
Despite the lack of any grid-specific work in this area, we
would expect traditional and diverse grids to evolve as ran-
dom and scale-free networks, respectively. Barabasi and
Bonabeua [1] have observed that new nodes in scale-free
networks tend to associate with well-connected nodes; a
“rich get richer” process called preferential attachment. In
the context of diverse grids, this suggests that the probabil-
ity of new resources being added to a site is proportional to
the number of resources already at that site.

5 A Master-Save Case Study

The simulator was partially validated by reproducing the
task scheduling simulation experiment in [13]. Using our
simulator, an evaluation of the scheduling strategies consid-
ered in the above reference in a similar setting, yields iden-
tical performance trends. In this section, we report simula-
tion results on a master-slave case study where a master dis-
patches a given task, from a set of identical tasks, to slaves,
one at a time. The master receives requests from slaves, at
exponentially distributed intervals with a mean inter-arrival
time of two seconds. The master selects a slave from the
set of heterogeneous slaves that have sent requests and dis-
patches a task to it; once the task transfer is complete, the
master proceeds with scheduling the next task, until all tasks
are assigned. The aim of this scheduling process is to min-
imise the overall execution time.

Using a baseline measurement, each task is assumed to
demand a certain amount of computation (referred to as
computation cost and expressed in mega floating point op-
erations), and a certain amount of data that needs to be
transferred from the master to the slave before its execu-
tion starts (referred to as communication cost and expressed
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Figure 1. The Zipf distribution of hosts among
sites (with a maximum of 700 hosts per site.)

in MB). The combination of (i) computation and commu-
nication costs of tasks; and (ii) compute and network ca-
pabilities of slaves (that is, the hosts that choose to send a
request to the master, from all the hosts in a grid instance),
constitute a setting. The aims of this case study are (i) to un-
derstand the performance behaviour of a number of differ-
ent scheduling strategies across different settings; and (ii) to
define and assess a method to predict which strategy would
be the best for a particular setting.

5.1 Simulation Settings

Simulations were run using a large diverse grid instance
(i.e., including unreliable low-end grid sites) of approx-
imately 2.3M hosts, Zipf-distributed among 500K sites,
with an upper bound of 700 hosts per site. Figure 1
shows the distribution of hosts among sites in the used
grid instance. The nominal bandwidth of sites is between
256 Kbps and 64 Mbps, and was generated using 2'7+™
where n is Zipf-distributed in the range [1, 9] (one being the
most common and nine the most rare.) Given the set of re-
source assignments to sites and the set of bandwidth values,
bandwidth values were assigned to sites as described in Sec-
tion 3.2. For the reasons described in the aforementioned
section, a number of swaps were performed (10% of all as-
signments) between randomly selected sites on the condi-
tion that the difference between the two bandwidth values
is at most three (in the range [1,9].) The threshold is used
to minimise the possibility of swaps between sites with ex-
tremely low and high connections.

The host types are set to PCs, cluster nodes, super-
computers, and two more types corresponding to special-
purpose hosts. Again, the overall frequency of resource
types is Zipf-distributed (approximately 0.92,0.05,0.012
for PCs, cluster nodes and supercomputers, respectively;

the remainder being for special purpose hosts.) The as-
signment of types from the overall distribution to the par-
ticular hosts of every site is biased based on a site’s band-
width, to reflect for instance the intuition that supercom-
puters are not typically found on low-bandwidth sites. The
computational capacity of hosts is uniformly distributed in
the range [40, 200] (MFlops) for PCs and cluster nodes, and
in [80, 300] for supercomputers.

The availability of hosts is determined as described in
Section 4.2, with PCs most likely being in the set of hosts
that have a cyclical availability behaviour (i.e., turned off
routinely) and cluster nodes and supercomputers most likely
having a non-cyclical behaviour. Unavailable hosts are not
considered during scheduling. Available hosts that are as-
signed a task are assumed to remain available for the time
needed to process the task.

5.2 Scheduling Strategies and Metrics

The following scheduling strategies have been evaluated.
In these definitions w; (resp. c;) refers to the time that slave
i needs to process (resp. receive) a task. (i) Greedy (FCFS):
select slaves on a first come first serve basis; (ii) Compute-
centric (CPU): select the slave with the highest compute
capacity; (iii) Bandwidth-centric (BW): select the slave with
the highest bandwidth capacity (vi) Throughput (THR): se—

i.e., the number of completed tasks per tlme unit by slave
i; (v) Compute-biased throughput (CTHR): as in THR but
favouring slaves with large compute capacity: m
(vi) Bandwidth-biased throughput (BTHR): as in THR but
favouring well-connected slaves: m (vii) Earliest
finish time (EFT): select the slave that will yield the earliest
finish time for the next task, i.e., the one with the smallest
max(z;,¢;) + w;, where x; is the remaining compute time
of slave i if it already runs a task, or zero otherwise.

In a homogeneous environment, an intuitive approach to
select a strategy would be based on whether the setting is
compute- or communication-bounded. However, in a het-
erogeneous environment, such as the grid, this depends on
the capabilities of the slaves selected. Since a strategy may
select different slaves, we use the assignment of each strat-
egy as a basis to express such properties. Thus, for a strat-

egy r, we define the Communication-Computation Ratio as

2oiCi

CCR, = > o’

)

where i iterates over all tasks.

Another useful metric is the Maximum Number of Slaves
(MNS) than can be used at the same time in a particular
setting. This is related to the number of task transfers that
can be completed during the computation of a single task
and as a result it is inversely proportional to CCR,..



5.3 Results and Discussion

We have run simulation experiments in the described
grid instance using 56 different combinations of communi-
cation cost, computation cost and number of tasks, in the in-
tervals [1, 200], [1000,4000000], and [500, 10000], respec-
tively. Results from three of those experiments are shown
in Fig. 2. Each figure shows the completion time of the n-
th task throughout an experiment, for each strategy except
FCFS (FCFS is by far the worst in all experiments; being
an outlier it clutters the figures, thus it is omitted). For each
strategy r, the value of CC R, and the maximum number of
slaves used (MNS) are also shown.

As seen from the figures, the behaviour of the strategies
can be classified in two groups: (i) CPU, CTHR, THR and
EFT; and (ii) BW and BTHR. Typically, either BTHR or
EFT delivers the best performance. In all our experiments,
there were a few only exceptions in which BW was bet-
ter than BTHR, and CPU and CTHR were better than EFT
but the difference in terms of time was negligible (no more
than 0.027%). Another interesting observation, which can
be noticed in Fig. 2(b) and 2(c), is that even though the same
setting is used, EFT is best in the first case and BTHR in
the second. A final observation is that CPU, CTHR, THR
and EFT tend to complete tasks in even intervals, whereas
BW and BTHR tend to complete earlier tasks much quicker
than later tasks. An observation not obvious in the figures
shown is that results among CTHR, THR, EFT and BTHR
are almost identical when MNS is very small. This happens
because when only a small number of slaves is needed, it is
likely that the same or comparable slaves are chosen.

The key to understand the strategies’ behaviour is that
task communication is a serial process (one at a time)
whereas task computation is taking place in parallel (since
multiple tasks may be running by different slaves at the
same time.) Thus strategies that ignore (e.g., CPU) or un-
derestimate (e.g., CTHR) the communication costs perform
poorly. THR and EFT weight communication and compu-
tation costs equally and thus perform better in environments
where computation costs dominate. THR and EFT do not
perform well in environments where communication dom-
inates because they fail to acknowledge that computation
costs are mitigated by parallelism and thus should be treated
as less important. BTHR, being a bandwidth-biased varia-
tion of THR, is better in environments where communica-
tion dominates because it underestimates the importance of
compute costs. On the other hand, BW completely ignores
compute costs and thus is typically worse than BTHR.

In addition to completion time, the efficiency of slave
usage is of interest. That is, the compute capacity utilisa-
tion level of the selected slaves throughout an experiment.
For instance, in Fig. 3, more than half of the slaves used by
BTHR are idle for more than half of the overall execution
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time. In contrast, most of the slaves used by EFT are busy
for the most part of the overall execution time. Although
we do not formally define slave usage efficiency, these ob-
servations suggest that BTHR is less efficient than EFT.

In order to be able to predict for a given setting and num-
ber of tasks which strategy is best, we consider the two typi-
cally best strategies, EFT and BTHR, and how they perform
in relation to their CCR value and the number of tasks. The
results, shown in Fig. 4, indicate which of the two strategies
is best in all the experiments performed.*

The results in Fig. 4(a) suggest that EFT is the best
strategy when CC Rgpr is below a threshold, and that the
threshold is inversely proportional to the number of tasks.
Similarly, BTHR in Fig. 4(b) is the best strategy for settings
with CCRpryr above a threshold, and the threshold fol-
lows a similar trend as in EFT. To formalise the situations
where each of the two strategies is best, we have taken the
product of CC' R,- and number of tasks. For all experiments,
the value of this product that distinguishes the performance
behaviour of EFT and BTHR is about 5 when CCR g1 is
used in the product, and 0.5 when CCRpTgR is used. In
either case BTHR is best for product values above 5 or 0.5.

As a result, in order to predict which is the most appro-
priate strategy to use for a given setting and number of tasks,
all that is needed is to come up with a good estimate for
CCRprHR Of CCREprr. We calculated an estimation for
CCRpTHR based on

commDemand/bandwidthCapacity
compDemand/computeCapacity @)
3
where commDemand, compDemand refer to the com-
munication and computation costs of a task, and
bandwidthCapacity, computeCapacity are estimations
of the communication and compute capacity of the slaves
that will be chosen by BTHR. In order to estimate
bandwidthCapacity and computeCapacity, we experi-
mented with combinations of average and best values of
bandwidth and computer capacity of all available slaves.
We found that using best bandwidth and average compute
capacity yielded the best results. In that case, choosing a
strategy as follows (/V denotes the number of tasks)

CCRIBTHR =

_ [ EFT,if N X CCRlgpyp < 0.5
strategy = { BTHR, otherwise “

we were able to select the right strategy in 82% of the cases.
If MNS is small (e.g., < 5), either strategy can be chosen.

1\We show two fi gures because C'C'R, varies between BTHR and EFT
since this calculation depends on the capabilities of the slaves used. EFT
selects more powerful compute-wise slaves, thus the compute times are
smaller (the denominator in Egn 2) and hence CCRg pr is larger com-
pared to CC RpT g r. Nevertheless the overall trends are similar.



6 Conclusionsand Future Work

This paper outlined a set of high-level grid properties
that form a grid configuration, and considered ways to spec-
ify their values, for the generation of (data that describe)
grid instances. The paper also discussed how existing
application-level models can capture the behaviour of net-
works and hosts, with affordable computational complexity
for the simulation of large grids. Grid instantiation was il-
lustrated in a master-slave case study, and a large grid was
simulated for the evaluation of several scheduling strate-
gies. Our simulator allowed us to explore a significantly
larger search space than other studies [13], improving the
understanding of how performance behaviour varies in that
space. Based on simulation results, a method was defined
and assessed to predict the most appropriate strategy for a
given setting. Finally, as part of our motivating use case, we
are interested in testing the described modelling approach
in studies that involve a considerably larger number of con-
current network connections, compared to those in the case
study in this paper.
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