
Supporting the Dynamic Grid Service Lifecycle

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 04-041

Supporting the Dynamic Grid Service Lifecycle

Jon Weissman, Seonho Kim, and Darin England

November 17, 2004

Technical Report

Supporting the Dynamic Grid Service Lifecycle

Jon B. Weissman, Seonho Kim, and Darin England

Nov, 2004

Department of Computer Science & Engineering
University of Minnesota
4-192 EE/CS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

1

Supporting the Dynamic Grid Service Lif ecycle

Jon B. Weissman, Seonho Kim, and Darin England
Department of Computer Science and Engineering

University of Minnesota, Twin Cities
(jon@cs.umn.edu)

Abstract
This paper presents an architecture and implementation for a dynamic OGSA-based Grid service architecture

that extends GT3 to support dynamic service hosting - where to host and re-host a service within the Grid in response
to service demand and resource fluctuation. Our model goes beyond current OGSI implementations in which the
service is presumed to be “ pre-installed” at all sites (and only service instantiation is dynamic). In dynamic virtual
organizations (VOs), we believe dynamic service hosting provides an important flexibility. Our model also defines
several new adaptive Grid service classes that support adaptation at multiple levels. Dynamic service deployment
allows new services to be added or replaced without “ taking down” a site for reconfiguration and allows a VO to
respond effectively to dynamic resource availability and demand. The preliminary results suggest that the cost of
dynamic installation, deployment, and invocation, is tolerable.1

1.0 Introduction
Computational Grids are undergoing an evolution. The first wave of Grid computing successfully

demonstrated the feasibility of Grids for addressing niche problems in high-end scientific computing based

on the emergence of Grid middleware, most notably Globus [5], Legion [9], and Condor [14]. These

projects have established a core enabling technology based on low-level resource-centric abstractions,

machines, data stores, jobs, etc. The next generation of Grids is focusing on how to “elevate” the level of

abstraction to better enable Grid application designers and end-users to solve “real problems”. It has been

persuasively argued that next-generation Grid applications wil l be increasingly multidisciplenary, collabo-

rative, distributed, and most importantly, dynamic. The latter implies that static infrastructures will not be

adequate since such applications may be assembled on-the-fly to exist only for a transient period of time.

Such application environments have been coined Virtual Organizations (VO) in which “secure, flexible,

coordinated resource sharing among dynamic collections of individuals and institutions is required [6].”

Grid services have been proposed as a way to address these issues [7].

When services are hosted on the Grid they must adapt due to the dynamics of the Grid and of the VO

users. For example, Grid services must adapt to the dynamic and unpredictable resource availabili ty inher-

ent in the Grid resources upon which they are hosted. Grid services must also adapt to the dynamic and

unpredictable service demand from clients within the VO. In prior work, we have developed a class of

resource multiplexing algorithms for handling multiple concurrent service requests that addresses unpre-

dictable resource demand for a single static instance of a service on a dedicated resource pool [13][21]. In

this paper, we present an architecture and prototype implementation for dynamic Grid services that extends

OGSA to better support dynamic VOs. In particular, we address the problem of dynamic service hosting -

1. This work has been sponsored by the National Science Foundation NGS-0305641 and ITR-0325949, and the Department of Energy’s Office of Science under grant
DE-FG02-03ER25554.

2

where to host and re-host a service within the Grid. We also propose several new adaptive Grid service

classes that are designed to better capture the dynamics of the Grid. Dynamic service deployment allows

services to be added or upgraded without “taking down” a site for re-configuration and allows the VO to

respond effectively to changing resource availabili ty and demand including “f lash crowds”. Our prototype

system is based on Globus GT3 and the results indicate that dynamic installation and deployment of ser-

vices is manageable as well as the overhead of service invocation. The remainder of this paper is as fol-

lows: Section 2.0 presents the dynamic service architecture. Section 3.0 describes the adaptive Grid service

classes in greater detail . Section 4.0 presents benchmark performance results. Section 5.0 provides related

work and Section 6.0 is a conclusion and summary.

2.0 Dynamic Service Architecture
An OGSA-based Grid software stack has the potential to provide a coherent and stable platform for

Grid application and tool developers in which the Grid is seen as a collection of application- and system-

level Grid services (Figure 1). We take the “top half ” of the Grid fabric to be OGSA which provides a basic

service framework with common services like factories, repositories, registries, etc. The “bottom half” is

OGSI and reflects a specific implementation such as Globus GT3 [8], OGSI.net [19], etc. Grid system

services provide core functionality that is required by application-level Grid services. One class of Grid

system services we are investigating are those which encapsulate and provide resources to enable applica-

tion-specifi c Grid services to run. For example, an application-level parallel solver service would need to

be “hosted on” a Grid system service that provided CPU resources. To enable VOs to evolve, scale, and

respond to unknown events and unpredictable service demands, we believe that dynamic service deploy-

ment is needed both for Grid system services and Grid application services. Furthermore, we believe that

each service class must be adaptive - an issue that we address in the next section. Our dynamic service

architecture consists of several core services and components (Figure 2). The adaptive Grid service (AGS)

is our fundamental abstraction for a Grid service that can adapt to changes in demand and resource availa-

bility. The AGS consists of three components: a front-end, deployer, and back-end. The AGS front-end

handles client requests and makes decisions about where the request should run. The AGS deployer

decides which site(s) should host and deploy the service. Information about the service when it is deployed

and running is maintained by the front-end. The back-end consists of an AGS factory that contains the

actual code for the service and serves each request by creating an instance we call the AGSI (adaptive Grid

service instance). OGSA supports both transient and persistent instances and the back-end can be config-

Figure 1: Grid Stack. The bold boxes are addressed in our system.

Applications

Grid system
services

Grid Fabric: OGSA

Resources

Application-level Grid services

OGSI: GT, OGSI.net, ...

Reusable
Middleware

3

ured by the service provider to create either type of instance. The back-end is dynamically deployed or

hosted using a negotiated and leased pool of resources provided by an adaptive resource provider service

(ARP). The leasing model conforms to the OGSI li fetime specification. For negotiation we ultimately plan

to support the OGSI agreement specification [4].

There may be “repli cas” of the service back-end hosted on different ARPs in the Grid. The service

provider creates a front-end and back-end using code templates and runs a packaging tool to create a serv-

ice package. An installer service can then be run to install the AGS front-end and AGS deployer from this

package. In principle, the front-end could be installed on any site in the Grid that is running an ARP. Mul-

tiple front-ends can be installed to avoid access bottlenecks. Deploying the service is a 2nd step and is per-

formed by invoking the AGS deployer to initiate deployment of the back-end also from the service

package. This requires the selection of a remote ARP on which to deploy service. Once a service is

deployed, all front-ends are automatically registered with a registry for future client lookup.

The container provided with GT3 is limited to handling statically deployed services. Once the con-

tainer is started, no other services can be added. To enable true dynamic deployment, we have used the

Tomcat Web container as a replacement (Figure 2). Tomcat provides an API that allows new web applica-

tions to be installed while the container is running. In the current GT3 platform, newly developed services

cannot be deployed and activated without restarting the service container. In order to deploy a Grid service

on a remote machine dynamically, the Grid service code is packaged as a web application in a web applica-

tion archive (WAR). The WAR fi le is a Java archive fi le (JAR) and contains web application codes, the

web application deployment descriptor, and other related libraries in a directory-structured layout. The

Tomcat manager interface allows the packaged web application to be installed and activated dynamically

from the WAR fi le. When packaging a Grid service in WAR fi le, GT3 related libraries, schema files

(WSDL fi les), and the service deployment description (WSDD) need to be included, in addition to the ser-

vice codes. The use of Tomcat is only required for sites that wish to support dynamic service deployment,

e.g. sites that run Grid system services (ARPs) or local installer sites.

Figure 2: Dynamic Service Architecture

Lease ManagerLease Manager

Query moduleQuery module Allocation moduleAllocation module

ARP

AGSI

AGS
Reposito ry

AGS
Deployer

AGS
Deployer

AGS
Front- end

AGS
Front-end

Resour ce Mon itor

AGS_Factory
lease

Home Site Remote Site

Request
Manager
Request
Manager

Runt ime
Prediction

Service

Runtime
Prediction

Service

Service
Installer
Service
Installer

SOAP/HTTP
Perfo rmance DB

Status DB
past w orkload

…

Infor mation
Serv ice
Information
Serv ice Registry
Infor mation
Serv ice
Information
Serv ice Registry

AGSIAGSI

Request/Respon se
Service In stance Creation
Register/Query

Request/Respon se
Service In stance Creation
Register/Query

resources

Tomcat
Manager
Tomcat
Manager

Webapp
Load er

Webapp
Load er

Tomcat Servlet Engi ne

AGS
Factory
AGS

Factory InstanceInstance

Member Node

ARP Host Node

Webapp
Deploy er
Webapp
Deploy er

Deploy moduleDeploy module

C l ie n t

4

The specifi c APIs for the architectural components are shown in Figure 3. The LotType defines a

resource lot in units meaningful to the type of resources provided, e.g. some number of CPUs or some

amount of storage. The LotType also contains information about the resource lease (LeaseType) and

enough information about the contained resources (ResourceType) to enable the service implementation to

deploy/use them. The ServiceType defines the string representation of a service, a unique URI-addressed

ID. It contains a GSH (Grid service handle) and a GSR (Grid service reference in WSDL format). Lastly,

the PackageType contains the actual service code and any associated data fi les required for deployment

including WAR files. It is serialized to enable SOAP transmission. The dynamic deployment li fecycle is

shown below (Figure 4). We assume that some ARPs are deployed in the VO as part of its core infrastruc-

ture (since without resource providers no other services can be deployed!). A client looks up the AGS

front-end in a registry and issues a service request to it which will be routed to a back-end. This has the

advantage that detailed performance information can be collected as the request is being processed (e.g. it

enables the front-end to decide where to send the request based on its parameters), and also provides a sim-

ple “one-step” interface to the application.

3.0 Adaptive Service Classes

An adaptive service is a Grid service but with special features and interfaces to account for and

expose the internal adaptation performed within the service. Adaptive services are divided into system and

application services (see Figure 1). A system service performs a generic function such as to manage a pool

of resources, e.g. an adaptive resource provider for CPUs or storage (ARP). System services are used by

higher-level application services. An ARP implements a policy that defines to what extent it is wil ling to

provide resources to the Grid, how to prioriti ze between Grid and non-Grid users, and between different

Figure 3: Core component APIs

installer {

ServiceType install (ARP, PackageType); // install AGS front-end service package on ARP
void uninstall (ServiceType); // uninstall service front-end }

AGS_Deployer {

ServiceType deploy_AGS (PackageType); // deploy back-end service on a selected ARP
void undeploy_AGS (ServiceType); // undeploy service back-end

}

AGS_front_end {

void add_new_AGS (ServiceType, LotType); // inform front-end about new back-end AGS
void remove_AGS (ServiceType); // inform front-end that a back-end AGS has been removed
PerfDataType get_perf_data (); // returns performance data for the AGS
// service-specif ic interface ... }

Figure 4: Service Lifecycle. All elements of the service lifecycle are supported in the architecture.
Note that dynamic service access may induce additional back-end deployments.

packaging installation deployment initialization access teardown

5

Grid services. For “structured” ARPs with a defined “owner” or provider, such a policy could be based on

some form of payment or compensation. Other Grid researchers have explored economic models for Grid

resource allocation [22], and on Grid resource accounting [15] that could be used to construct such poli-

cies. In this paper, we assume that resources are “leased” for a period of time, and the cost is proportional

to the lease length.

Some ARPs may be highly specialized − e.g. an adaptive storage provider (ASP) may only provide

long-term storage, an adaptive cpu provider (ACP), may only provide computational resources. An ACP

must provide suff icient resources to enable execution including short-term use of memory and scratch stor-

age. In this remainder of this paper, we focus on ACPs and use the term ARP and ACP interchangeably. An

adaptive Grid service (AGS) denotes a specif ic application-level service. We focus on application-level

services that are on the high-end in terms of resource requirements, e.g. a parallel equation solver, since

these would be more typical in a Grid environment. High-end services represent an important class of Grid

services that can be broadly defined as requiring signif icant resources in terms of computation, communi-

cation, or data storage. We also believe that these services are most sensitive to the dynamism inherent in

the Grid.

3.1 AGS

High-end Grid services are particularly attractive for a variety of reasons. They allow the user to focus

on their application and obtain remote service when needed by simply invoking the service across the net-

work. The user can be assured that the most recent version of the code or service is always provided and

they do not need to install , maintain, and manage significant infrastructure to access the service. For high-

end applications in particular, the user is still often required to install a code base (e.g. MPI), and therefore

become involved with the tedious detail s of infrastructure management. Some examples of compute-inten-

sive high-end services that we have developed in our work include numeric solvers, N-body simulators,

parallel CFD, stochastic simulation (e.g. monte-carlo), parameter studies, and library-to-library genomic

sequence comparison.

However, most high-end applications and services are designed to run in static dedicated environ-

ments. It is unrealistic to expect such services to run “out-of-the-box” in a dynamic Grid environment. To

meet performance objectives in the Grid, high-end services should be adaptive or malleable with respect to

system resources. For example, in order to balance resource allocation between competing service

requests, resources must be dynamically shared. The system should be able to take resources (e.g. CPUs)

away from one request to allow another request to make progress [13].

Implementing adaptivity can be diff icult, but we believe that this effort can be amortized since the

service will be used repeatedly. In addition, we believe that some resource providers will be will ing to host

high-end services only if they are adaptive to enable them to give priority to local users. If the high-end

service cannot adapt (e.g. release resources) then the resource provider might choose to suspend the serv-

ice. Conversely, if a hosted service is given only a small amount of resources when it is started, adaptivity

could allow it to acquire additional resources later if they become available. We believe these scenarios

will be commonplace as Grids evolve.

6

The AGS has several components. The back-end is the actual service code which is encapsulated by

an AGS factory that can clone itself to serve requests. The “back-end” is hosted on one or more ARPs.

Hosting means that the ACP has allocated a pool of resources to the service for a negotiated lease period.

Hosting decisions are made by the AGS deployer using placement algorithms provided by scheduling mid-

dleware [13][21] or specified by the service provider (Figure 2). Once hosted, the AGS factory manages

the actual service instances (the AGSIs, that are created by the factory) which carry out service requests for

clients. The AGS factory also uses the scheduling middleware to decide how to multiplex the AGSIs

across the allocated resource pool.

The AGS back-end supports several interfaces reflecting the exposure of adaptivity (Figure 5). When

the AGS factory receives a client binding request, it creates a new AGSI and returns a handle to it. Because

resources may come and go dynamically, the AGS factory supports a notification interface that

allows the AGS to subscribe to events of interest. Notifi cation to the AGS is performed asynchronously.

The AGS also implements an adaptation interface that allows an ARP to add or remove resources

from it. When the AGS factory receives a request on its adaptation interface, it decides upon which

instances (if any) to act. For example, in the case of an ACP that is managing CPU resources, it could

inform the hosted AGS factory that 3 new CPU resources are now available via its notification

interface. It would be up to the AGS factory to decide if it wanted the resources and what to do with them.

The AGSI supports a subset of the AGS interfaces plus service-specific interfaces. The AGSI adapta-

tion interface is implemented in a manner specif ic to the service. For example, adding or removing CPUs

from a data parallel service requires data movement for load rebalancing, and this in turn depends on the

underlying data structures and other implementation detail s. On the other hand for distributed services, e.g.

a parameter-sweep, adding or removing CPUs is much simpler. The service provider is responsible for

implementing these interfaces. The supported events are defined by EventType. In the current prototype,

these events are limited to ACP-specific events: NewCPUsAvail, CPUsReclaimed, and CPULoad-

Change. These events also contain specif ic information about the event. Once the AGS receives an event,

it can contact the ACP if necessary (e.g. NewCPUsAvail may trigger a request for extra resources). The

Figure 5: High-level AGS and AGSI specification

AGS/AGSI {

factory: // this interface is supported only by the factory (not the instances, AGSIs)
ServiceType create (); // create AGSI
void init (LotType); // init AGS with lease info
void shutdown (); // disable service
void log_time (RequestType, TimeType); // logs performance data for a completed request
PerDataType get_perf_data(TimeFrameType); // perf. data for prior requests over a past time frame

notification:
void event_occured (EventType); // a subscribed event has occurred

adaptation:

void new_resource_lot (LotType); //provide new lot to AGS factory (i.e. adding/removing resources)
void add_resources (ResourceType); // AGSI - add resources to this AGSI
void remove_resources (ResourceType); // AGSI - remove resources from this AGSI
...

service-specific-interfaces:

...
}

7

RequestType contains information about a particular request: operation name, parameter values, etc., and

TimeFrameType represents a past or future time frame, e.g. past hour, last N requests, etc.

3.2 ARP

When high-end services are hosted on the Grid, the need for adaptivity arises due to unpredictable

resource sharing both internal to the Grid and external to it (i.e. local non-Grid users). We assume that

high-end services are hosted on resources provided by resource providers. The ARP encapsulates Grid

resources that are made available to host services (Figure 6).

The ARP exposes important internal state via a query interface including: the amount of resources it

is will ing to allocate for a lease period, platform features including hardware/software features, and the

resource profile of the contained resources (average number, power, and duration of available CPU

resources) over a recent time interval. The LeaseType contains the lease duration and the kind of lease

(dedicated, shared, renewable). By exposing the leasing model of the resource provider, the service can

decide on the degree of performance uncertainty it is will ing tolerate. The amount of resources AmtType

offered by an ARP is specif ic to the type of ARP. The platform features PFType is an extensible type that

defines the key features of the platform required by services in order to make hosting decisions, e.g. the

kind of process launch capability supported (ssh, MPI, etc.), amount of memory, scratch space available to

the service, etc.

4.0 Results

We have constructed a testbed and deployed our architecture and core services based on GT3 and

Tomcat at the University of Minnesota and the University of Virginia connected by I2. Within Minnesota,

the services are connected by 100 Mb ethernet. All machines are a mix of Linux and Solaris workstations

(2.x GHz Xeon PC with 512 MB running Linux, and Sun Ultra-60 with 1024 MB running SunOS 5.8).

This testbed has enabled us to measure basic overheads inherent to our dynamic deployment and invoca-

tion architecture. All data presented is the result of five runs with averages shown. Since every aspect of

Figure 6: High-level ARP specification

AdaptiveResourceProvider{
query:

AmtType avail_amt (LeaseType); // returns amt of avail resources grantable for the desired lease
LeaseType lease_length(AmtType); // returns maximal lease for the desired amount of resources
PFType platform_features(AmtType); // returns the platform features of this ARP
Boolean have_features(PFType); // does the platform have specif ic features?
ProfType get_profile (TimeFrameType); // returns perf. profile over past/future time frame

notification:
void subscribe_event (EventType, AGS); // AGS wishes to subscribe to a particular resource event

allocation:
LotType alloc(LeaseType, AmtType); // initial pool allocation req. to AGS
Boolean dealloc (LeaseType, AmtType); // dealloc resources to new amount
Boolean realloc (LeaseType, AmtType); // increase granted resources to new amount
Boolean renew_lease (LotType, LeaseType, AmtType); // renew old lease (in LotType) to new lease

usage: // usage for ACP
ServiceType deploy (PackageType, LotType); // deploy service package using valid Lot
void undeploy (ServiceType); // undeploy service from ARP

...
}

8

the service is dynamic in our model: installation, deployment, and invocation, it is important that the runt-

ime overheads associated with each of these operations be measured and ultimately mitigated. We first

measured the transport portion of the cost of remote service installation (front-end) and deployment (back-

end) as a function of the PackageType size. We compared SOAP (using encoded byte arrays) which is the

default, HTTP, and TCP/IP (Figure 7a). In general, the SOAP penalty is about a factor of 2 (for WAN

transfers). For a PackageType sizes of 100KB, the cost is ~1 sec (WAN) and for 1MB it is ~5.5 sec. If the

service is deployed to handle multiple requests (common case) then the overhead of installation/deploy-

ment can be amortized. Our conclusion is that for services that do not have extremely large associated

datasets, SOAP will be acceptable. We have observed as have others [3] that SOAP performance is very

sensitive to SOAP buffer size and a proper choice of buffer sizes is required to obtain acceptable perform-

ance (Figure 7b). Tuning these buffers is the subject of future work.

Once the service package is delivered to the host site, the service must be configured. This configura-

tion cost includes interaction with the local Tomcat container environment to unpack WAR files, create

directories, allocate memory for the service, and start the service (Figure 7c). Configuration was measured

on a 2.x GHz Xeon PC with 512 MB running Linux. Similar configuration costs would be paid for both

remote deployment and installation since both involve package transmission and interaction with the local

container. Configuration costs for packages above 1MB are on the order of seconds. Clearly, deploying the

service for each request on demand (transfer and configuration) is expensive (unless the service request is

very long running). However, we do not want to rule out such scenarios. The common case of multiple

requests will enable the overhead to be easily amortized.

To reduce the cost of dynamic deployment, we next considered several optimizations that can be used

in specif ic situations (Figure 8). For these experiments, we implemented and deployed an eigenvalue

solver service that takes an NxN input matrix of 8 byte doubles as its argument. This service has a code

Figure 7: Install/Deployment Transport Cost

(a)

(b)Conf igur ation C ost

0

200

400

600

800

1000

1200

1400

2K 10K 100K 500K 1MB

Packa ge Size (Bytes)

T
im

e
(m

s)

(c)

(a)

Sensitivity to Buffer Size (100K transfer)

0

1000

2000

3000

4000

5000

6000

7000

2 22 42 62 82 102

Buffe r Size (KB)

T
im

e
(m

s)

Packa ge Transfer Time (WAN)

0

1000

2000

3000

4000

5000

6000

1K 10K 100K 500K 1M

Packa ge Size (Byte)

T
im

e
(m

s)

WAN_Socket

WAN_HTTP
WAN_SOAP

9

size of 15KB which results in a service package of 10KB (when compressed in the WAR format, without

GT3 libraries), or 10MB (with all GT3 service libraries). Service tear-down normally involves removal of

all traces of the service, including the service package. Instead, it is possible to tear-down the service

(removed from Tomcat’s memory), but allow the service package to remain “cached” (with a storage cost).

By caching we mean that the service package still resides in Tomcat’s directory space, but can be re-loaded

into a running container later if necessary. The cost of subsequent deployments of the service to this ARP

can be greatly reduced as the service package need not be retransmitted (Figure 8a). A second optimization

is to shrink the service package to omit redundant system library files. If the ARP is already hosting other

Grid services, then it likely has already loaded certain system libraries as part of GT3. These libraries can

be loaded as shareable much like shared code segments in OS-level virtual memory. This also applies to

service upgrades in which the service package can omit the already delivered and loaded system libraries.

This optimization is more powerful as it reduces both the transmission time as well as the configuration

cost (Figure 8b).

Once a service is installed and deployed, the next phase of its li fecycle is client access. This is the

most important cost from the perspective of the end-user. The end-to-end response time for service access

includes the cost of sending the request from the client to the front-end, routing the request to a back-end,

and creating a service instance. We have measured this “end-to-end” latency in four scenarios (X-Y)

reflecting the network distance from the client to the front-end (X) and from the front-end to the back-end

(Y), Figure 9a. The total lifecycle cost in terms of percentages is shown in Figure 9b (shown for the eigen-

value service) with N=113 (yielding a request size of 8*113^2 ~100KB). We show deployment of a full-

size service package (10 MB) vs. an optimized one that sends only the service code (10 KB). The impor-

tance of incremental deployment is observed as the overhead difference between full deployment (10MB)

and incremental (10KB) is about a factor of 4 (80% vs. 20%), (1-4 in Figure 9b). Next, the overhead of

service execution once the service is deployed (5-6) is approximately 25%. This cost is largely the transfer

of the request input matrix to the front-end and then to the back-end. This cost could be cut in half by send-

ing the inputs directly to the back-end and a description of the inputs (e.g. sizes) only to the front-end to

support scheduling. This optimization will be investigated in the future. Finally, a large part of the total

0

200

400

600

800

1000

1200

1400

2KB 10KB 100KB 500KB

Packa ge Size

T
im

e
(m

s)

Incremental Service Upgrading

Service Redeployment

Impact of Service Caching

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2KB 10KB 100KB 500KB

Packa ge Size

T
im

e
(m

s)

Service Caching
Service Redeploying through LAN
Service Redeploying through WAN

Figure 8: Optimizations. Incremental service package size is 1KB (one class fil e in the
eignenvalue service was changed and only this his class was transmitted).

10

cost is building and compressing the service package. Of course, this overhead would li kely be amortized

over multiple service requests and deployments.

5.0 Related Work

Other service based architectures for Grid and network computing have also been proposed such as

H20 [17], NetSolve [2], Ninf [16], CCA/XCAT [1], Service Grid [20], Partitionable Services [10], Soda

[11], Sharc [18], and others [12][12][20]. However, few of these service models support the degree of

dynamism or adaptation proposed here. In partitionable services, adaptivity is achieved by dynamic service

composition at a much coarser grain. In other systems, NetSolve, Ninf, Soda, and others, the service is

assumed to be “pre-deployed” and available to support multiple users over some time frame with limited

adaptation support. In most cases, adaptation is presumed to be left to the implementation as an optimiza-

tion. While we also allow the service to persist over some time horizon, we support a dynamic deployment

capabilit y based on resource leasing. DynamicTao is a dynamic Corba-based approach that has similar

goals, but is not based on Web/Grid services and does not support adaptivity within the service itself. Sharc

allows fine-grained adaptation within a single application only. In other systems such as CCA/XCAT and

H20 the service or component instance will be launched on demand when an application requests it. In con-

trast, our approach allows a service to persist in order to service multiple requests. In a wide-area environ-

ment such as the Grid, amortizing the cost of service deployment is critical.

6.0 Summary

We have presented an architecture and prototype implementation for a dynamic Grid service architec-

ture that supports dynamic service hosting - where to host and re-host a service within the Grid in response

to service demand and resource fluctuation. Our model defines several new adaptive Grid service classes

that support adaptation at multiple levels. In particular, dynamic service deployment allows new services

to be added without “taking down” a site for re-configuration, allows the Grid to be much more dynamic,

and allows a VO to respond effectively to resource availability and demand. We have also measured the

costs of dynamic installation, deployment, and invocation. The preliminary results indicate that the system

Scenario Latency

LAN-LAN 35
LAN-WAN 155
WAN-LAN 148
WAN-WAN 278

Service Lifecycl e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Deployment through
LAN (10 MB)

Deployment through
WAN (10 MB)

Deployment through
LAN (10 KB)

Deployment through
WAN (10 KB)

P
er

ce
n

ta
g

e

1

2

3

4

5 6

7

Figure 9: End-to-end Service Cost. Table (a) is latency with no service execution or transmission of input
data. Graph (b) is the life-cycle cost and includes: (1) service packaging, (2) front-end installation, (3) pack-
age transfer via SOAP, (4) Tomcat configuration, (5) client -> front-end communication, (6) front-end ->
back-end communication, (7) AGSI creation and service execution, (8) service tear-down.

(a)

(b)

8

11

overhead is tolerable particularly for multiple service requests or when optimizations such as caching or

incremental deployment are employed. Future work centers on reducing the basic costs of the infrastruc-

ture and the development of middleware components and policies for setting lease lengths, where to host

and re-host services, and ARP-level resource management for CPU (ACP) and other adaptive service

classes (ASPs).

7.0 Bibliography
[1] R. Bramley et. al, “A Component-Based Services Architecture for Building Distributed Applications,” Pro-

ceedings of the 9th International Symposium on High Performance Distributed Computing, August 2000.

[2] H. Cassanova and J. Dongarra, “Netsolve: A Network Server for Solving Computational Science Problems,”

International Jour of Supercomputing Appli cations and High Performance Computing, Vol. 11, no. 3, 1997.

[3] K. Chiu et al, “I nvestigating the Limits of SOAP Performance for Scientif ic Computing,” Proceedings of the

11th International Symposium on High Performance Distributed Computing, July 2002.

[4] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu, “Agreement-based Grid Service Management

(OGSI-Agreement),” Global Grid Forum, GRAAP-WG Author Contribution, 12 June 2003.

[5] I . Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” International Journal of

Supercomputing Applications, 11(2), 1997.

[6] I . Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual Organizations,”

International J. Supercomputer Applications, 15(3), 2001.

[7] I . Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An Open Grid Services Architec-

ture for Distributed Systems Integration,” Open Grid Service Infrastructure WG, GGF, June 2002.

[8] Globus GT3: www.globus.org, 2004.

[9] A.S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,” Communications of

the ACM, Vol. 40(1), 1997.

[10] A. Ivan et al, “Partitionable services: a framework for seamlessly adapting distributed appli cations to heter-

ogeneous environments,” Proc of the 11th IEEE Intl Symp on High Performance Dist Computing, July 2002.

[11] X. Jiang, D. Xu, “SODA: a Service-On-Demand Architecture for Application Service Hosting Utility Plat-

forms, “Proc of the 12th IEEE Intl Symposium on High Performance Distributed Computing, June 2003.

[12] F. Kon et al, “Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB,”

IFIP/ACM Intl Conf on Dist Systems Platforms and Open Distributed Processing (Middleware'2000).

[13] B. Lee and J.B. Weissman, ` Àdaptive Resource Selection for Grid-Enabled Network Services'', 2nd IEEE

International Symposium on Network Computing and Applications, April 2003.

[14] M.J. Litzkow et al., “Condor - a hunter of idle workstations,” Proceedings of the 8th International Confer-

ence on Distributed Computing Systems, June 1988.

[15] L.F. McGinnis, W. Thigpen, and T. J. Hacker, “Accounting and Accountability for Distributed and Grid Sys-

tems,” 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, April 2002.

[16] H. Nakada, M. Sato, and S. Sekiguchi, “Design and Implementation of Ninf: towards a Global Computing

Infrastructure,” Journal of Future Generation Computing Systems, Metacomputing Issue, 1999.

12

[17] V. Sunderam, D. Kurzyniec, “Lightweight self-organizing frameworks for metacomputing,” Proceedings of

the 11th IEEE International Symposium on High Performance Distributed Computing, July 2002.

[18] B. Urgaonkar and P. Shenoy, “ Sharc: Managing CPU and Network Bandwidth in Shared Clusters,” IEEE

Transactions on Parallel and Distributed Systems, January 2004, Vol. 15, No. 1.

[19] G. Wasson, N. Beekwilder, M. Morgan, and M. Humphrey, “OGSI.NET: OGSI-compliance on the .NET

Framework,” 4th IEEE/ACM International Symposium on Cluster Computing and the Grid, April 2004.

[20] J.B. Weissman and B. Lee, “The Service Grid: Supporting Scalable Heterogeneous Services in Wide-Area

Networks,” 2001 Symposium on Applications and the Internet, January 2001.

[21] J.B. Weissman, D. England, and L.R. Abburi, “Integrated Scheduling: The Best of Both Worlds,” Journal of

Parallel and Distributed Computing, 63(6), June 2003.

[22] R. Wolski, et al. “G-commerce: Market Formulations Controll ing Resource Allocation on the Computa-

tional Grid,” Proceedings of the 2001 International Parallel and Distributed Processing Symposium, 2001.

