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Abstract

This paper presems an architecure andimplenmenttion for a dyramic OGSA-basd Qid service achitecture
that exendsGT3 to syppat dynaric service hosting - where © hostand re-hog a srvice wthin the Grid in response
to service demand and resource fuctuation. Our model goes beyor curent OGSI irplementations in which the
service s presumed b be“ pre-installed” at all sites (ard only sewice instantiation is dyramic). In dyramic virtual
organizations (VOs), we believe dyamic srvice hosting providesan impotant flexibility. Our modd also defines
severnl new adaptive Grid service clasesthat syppat adagation at mutiple levels Dynamic sewice deploymert
allows newservicesto be aldedor replacedwithout “ taking down” a site fa recanfiguration and allows a VO to
respond effectivey to dynamic resaurce availability and demand The preliminary resuts suggest that the cast o
dynamic instdlation, deploymen, andinvocdion, is tderable?!

1.0 Introduction

Compuatonal Grids ae undegoing anevolution. The first wave of Grid compuing sucesfully
demonstated the feasbility of Grids foraddessing niche prdlemsin high-end séertific computng basd
on the emergence of Grid middlewae, mos notably Globus|[5], Legion [9], and Cordor [14]. Thes
projects have established a @re erabling techology base on low-level resource-centric abstractions,
madines,dat stores,jobs, ett. The net geneation of Grids is focusing onhow to“elevate’ the level of
abstraction o beter emable Grid appicaton desgnersand &d-users o solve “red problems”. It has bea
persuasvely amgued hat next-generation Grid applicaionswill be increasngly multidisciplenary, cdlabo
rative, distributed, and mostimportartly, dynanic. Thelatter implies tha static infragructures will notbe
adequete since sich gplicationsmay be asenbled on-the-fly to exist only for a trangent period of time.
Swch aplicaion eavironments havebea coined Virtual Organizaions (VO) in which “seaure, flexible,
coordinated resource shaing anong dynamic oolledions of individuals and institutionsis required [6].”
Grid seviceshaw been poposedasa wayto addresstheseissues [7].

When sevices are hosed on the Grid they must adat dueto the dynamics d the Grid ard of the VO
users. Fo exampke, Gid sevicesmustadaptto thedynamicandunpredictable resourceavalability inher-
ent in the Grid resouraes uponwhich they are fosted. Grid sevices mug dso adaptto the dynamic and
unpredictable srvice demam from clents within the VO. In prior work, we have developed a classof
resaurce multiplexing aforithms r handling multple conarrent sevice requeds that addresses unge-
dictable resouce demandfor a shgle saticinstance ofa service on a dedigedresource pod [13][21]. In
this pager, we pesntan achitecure andprobotypeimplemengtion for dynamic Grid services hatextends
OGSA D better suppat dynamic VOs. In patticular, we aldressthe problem of dynanic sevice hoding -
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where to hog and re-hog a sevice within the Giid. We dso propoe ®vera new adapive Grid service
classe that are designedto beter cgpture the dynamics of the Grid. Dynamic sevice deploymentallows
services b be adled orupgradel withou “taking davn” a site for re-configuraton and alows the VO to
respond effectively to changing resaurce availability anddemand including “f lash crowds”. Our prototype
system isbagd on GbbusGT3 ard the results indicae tha dynamicingallation and deloymentof ser-
vices is manageable aswell as the overheadof savice invocaion. The remainder of this pgperis as fol-
lows: Sedion 20 presnisthe dynami frvice achitecuure. Section 3.0 desaibesthe adipive Grid service
classe in greder detil. Sedion 40 preent berchmak performanceresuts. Secton 50 providesrelated
work and Setion 6.0 is acondusion ard sunmary.

2.0 Dynamic Service Architecture

An OGSAbasd Grid software dadk has the pdertia to provide a cdierent andstable platform for
Grid applicaion ard tool devdopers in which the Grid is se@ as a cbecion of aplicaion- and systeam-
level Grid services Figurel). We take the “top hdf” of the Grid fabric to be OGSA which provides a baic
savice framework with common serviceslike factories, repositories registries etc. The “bottom half” is
OGSl and efleds a spcfific implementation aich & Globus @3 [8], OGSInet[19], et. Giid system
services provide core funcionality that is required by applcation-level Grid services.One dass of Grid
system seviceswe are invegigating ae thase which en@paulateand provide resouces toenable aplica
tion-specific Grid services to run. For example, an gpplication-level paralel solver service would needto
be “hosted o’ a Grid sygem service that provided CPU resurces To endle VOs b ewlve, scale, and
respond b urknown everts and unpredictable srvice demands,we beieve tha dynamic sevice depoy-
ment is needed both for Grid sydem seavices and Grid apgicaion sewvices Furthemore we bdievethat
each grvice chssmust be adative - an isuetha we adiressin the nex section. Our dynamic service
architecure casists of sewera core sevicesandcomponets (Hgure 2. Theadative Giid sevice AGYS)
isourfundamental abstacion for a Giid sevice that can adap to changesin demand andresouce availa
bility. The AGS corsists of three compmenss. a front-erd, deployer, and backerd. The AGS frontend
handles client requess and m&es dedsions alout where te requed should run. The AGS dployer
decideswhich dte(s) should hog anddepby the sevice. Informaion albutthe ®rvice when it is dedoyed
and munring is mantained by the frontend. The back-erd condsts of an AGS fadory tha contains the
adual codefor the srvice and serveseach request by creaing an instancewe cdl the AGSI (adaptive Grid
service instarce) OGSA sippats tboth transent andpersistent instancesard the badk-end @n be onfig-
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Figure 1. Grid Sack The bdd boxesare adresed in our system.




ured by the service provider to crat eiter type of instarce. The bacend is dyramiclly depbyed or
hosted wsing a negtiated andleaseal pod of resourcesprovided by a adapive resaurce provider service
(ARP). The €asng modd conforms to the OGSl lifetime specificaion. Fornegotiation we ultmately plan
to syppott the OGSI @reementspecificaion [4].

There may be“replicas” of the srvice bak-end hosed on different ARPsin the Gid. The ®rvice
provider creaes a front-endard back-end usng code emplates andrunsa packaging tod to create a se'v-
ice package. An install er sevice can thenbe run to install the AGS front-end and AGS deployer from this
package. In principle, the front-endcould beinstalled on any sie in the Grid thatis running an ARP. Mul-
tiple front-endscan be irstalled to avoid ac@ssbattleneds. Depbying the sevice isa2nd stg and & per-
formed by invoking the AGS deployer to initiate deploymert of the back-end also from the rvice
package. This requires the slecion of a remote ARP onwhich to deploy seavice Oncea rvice is
deployed all front-ends are aitomaticdly registered wih a registry for future client lookup

The container provided with GT3 is limited to handing sttically depgoyed sevices Once he con
tainer is shrted, no oher savices can be a@aded To enade true dynamic dedoyment, we haveusea the
TomcatWeb cortainer asareplacement(Figure 2). Tomcatprovides anAPI tha allows new web gplica
tions to be intalled while the contaner is running. Inthe current GT'3 platform, newly dewelopedsevices
canna be depoyed andadivated withoutrestarting the sevice cataine. In order to deploy a GQid service
ona ranmote machine dynamically, theGrid sewice @de s packaged & a webapplcaion in aweb agplica
tion archive (WAR). The WAR file is a Java archive file (JAR) and contains web applicaion codes, the
web applicaion depoyment desaiptor, ard other related libraries n a drecory-structured byout. The
Tomcatmanayer interface dlows the pakaged weé appication to be installed and a&tivated dynamicdly
from the WAR file. When packaging a Grid service in WAR file, GT3 related libraries, schema files
(WSDL fileg), andthe savice depbyment desaiption (WSDD) reedto be ncluded, in addition o the sr-
vice cades Theuse of Tomcatis only required for sites tha wish to suppat dynamic service deployment
eg. sites that run Grid system savices (ARPS) or locd install er stes.
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Figure2: Dynanic Service Architectue




The spedfic APIs for the achitedura comporents are shown in Figure 3. The LotType defines a
resaurce lot in units meaningful to the type of resaurces provided e.g. some numireof CPUs orsome
amount of storage The LotType also contains information abaut the resaurce leasse (Leasélype ard

installer

ServiceType install (ARP PackageType); // ingall AGS front-end service pakage onARP
void uninstall (SewiceType); // uninstl sevicefront-end}

AGS Deployer ({

ServiceType deploy AGS (Padagelype); // deploy back-end seviceon a seéded ARP
void undeploy AGS (SewiceType); // undedoy senice bak-end

}

AGS front end

void add_new_ AGS (SewiceType, LotType); // inform front-end about new back-end AGS
void remove AGS (SewiceType); // inform front-end that abadk-end AGS has beenremoved
PerfDataType get perf data (); // returnsperformancedaafor the AGS

Il sevicespedfic interface...}

Figure 3: Core canpaent APIs

enoughinformation atout the cntained reurces(Resairceype) to erable the seviceimplemenaton
deploy/usethem. TheSevicelypedefines the string representation of a frvice, aunique URI-addressel
ID. It contains a GSH (Grid service handle) ard a GSR (Grid savice reference in WSDL format). Lastly,
the Padkagelype contains the adual service cod and ay asociated daa files reuired for deploymert
including WAR files. It is saidlized to ereble SOAP trarsmission. The dynamic deployment lifecycle is
shown kelow (Figure 4). We asumetha someARPsare deployed in the VO & part of its core infrastruc-
ture (since without resouce providers no other sevices can be deployed!). A client looks p the AGS
front-end in a registry and issues a sevice request to it which will berouted to a kack-end. This has the
advartage tat ddailed performane informaion can be colleded asthe requestis being processd (e.g. it
enables the front-end b decdewhereto serd therequestbasd on ts paametery, andalso provides a sm-
ple “onestep” interfaceto the agplicaion.

Figure4: Service Lifecycle.All elementsof the grvice lifecycle are supparted in the achitecure.
Note that dynamic senice acces mayinduce adlitional backend deploymerts.

3.0 Adaptive Service Classes

An adative sewice is a Grid service bu with specia feaures and interfacesto account for and
expose theintemal adaptation peformed within the sevice Adaptive sevices are divided into system and
application savices(seeFigure 1). A system ®rvice peiforms ageneiic funcion sich asto manageapod
of resources, eg. an adative resource provider for CPUs orstorage(ARP). Sysem sevices are uisedby
highe-level appicaion sevices. An ARP mplemens a policy that defines b wha extent it is willing
provide reurces © the Grid, how to prioritize beween Grid and nan-Grid uses, andbeweendifferent



Grid sewices For“structured” ARPs with a ddined“owner” or provider, such a pdicy could bebasedon
some fom of paymentor campensaion. Oher Grid reseaches haveexplored economic models for Grid
resaurce allocation [22], and on Grd resource acourting [15 that caild be used b congruct such poi-
cies In this pape, we assume that reourcesare “leasal” for apetiod of time, and the st is proportiond
to the lease length.

Sane ARPsmay be highly spedalized— e.g an aépive storageprovider (ASP)may only provide
longterm sbrage, an adapive cpuprovider (ACP), may only provide computational resources. An ACP
mug provide sifficient resources toenalbe exeaution including sort-term useof memoy and sratch sor-
age. In thisremander of this pager, we focuson ACPs &ad usethe term ARP ard ACP nterchargealy. An
adaptive Grid service (AGS) denates a spedfic applicaion-level service. We focus on application-level
services that are on tke high-end in tems of resaurce requiremerts, e.g. aparalel equdaion soler, since
theee woul bemore typicd in a Grd ervironment. High-endservicesregresntan important dass ofGrid
services hat can be broady defined asrequiring sgnificantresaurces in terms of computation, mmunk
caion, or daia sorage. We also bdievethat thesesevices are mos sersitive o the dynamism nheaert in
the Grid.

3.1 AGS

High-end Gid sericesare paticularly atracive for avaiety of rea®ns Theyallow the urto focus
on their gpplication andobtain remote servicewhenneead ty simply invoking the sevice acioss the ret-
work. Theuser can be asured that the most recent version of the codeor saviceis dways provided and
they do not nedl to install, maintain, and manage significant infradructure to acessthe srvice. For hight
end aplicaions n paticular, the u®r is fill often required D install a codebase(e.g. MPI), andtherefore
become nvolved with the tedous detil s of infragructure management Some eamples of compute-inten-
sive high-end sevices that we have devieped n our work include numeic solvers, N-body simulators,
paalel CFD, sochadic smulation (e.g. monte-carlo), paameter sudies, and library-to-library genomic
sequencecompaison.

However, most high-erd goplications and srvices are desgned to run in gatic dedcaed environ
merts. It is urredistic to exped swch sevices to run “outof-the-box” in a dynanic Giid environment. To
med performane objecivesin the Grid, high-end srvicesshould be adaptive or maleable with resped to
system resurces For exampk, in order to balance resource alocaion betveen compeing service
requess, resouces mustbe dynamicaly shared. The system shoud be ade to take reurces(e.g. CPU$
away from ore request to allow anotherrequest to make pogress [13].

Implemerting adaptivity can be difficult, but we believe that this effort can be amortized since the
seavicewill be usedrepeatedly. In addition, we beli eve that some resource providers will bewill ing to host
high-end services only if they are adaptive to enable them to give priority to locd users. If the high-end
service anna adapt (e.g. releaseresouces) then he resource provider might chose b suspendthe sev-
ice.Conversely, if a hosted sevice is given only a smd amountof resaurces when it is started, adapivity
could alow it to aqjuire addtional reurces later if they becomeavalable. We bdieve these scenatios
will becommonphce asGrids evolve.



The AGS hasseveral comporens. The bak-end isthe atud sevice code whid is ercapsilated by
an AGS facbry that can cloneitsdf to seve requests. Tre “badk-end” is hoted ononeor more ARPs.
Hoging meansthat the ACP has allocated a ol of resouraes to the savicefor a regotiated lease period.
Hoging dedsions ae mede by tle AGS deployerusing placement algorithms povided by shediuling mid
dlewae [13][21] or speified by theservice provder (Figure 2) Once hosed, the AGSfacbry manage
the actual sewvice nstanaes the AGSIs tha are aeded by the fadory) which carry out service requests far
clients. The AGS fadory dso uses the sdiedding middleware to decide row to mutiplex the AGSk
aaosstheallocated resource pool.

The AGS badk-end suppats several interfaces refl eding the exposure of adaptivity (Figure 5. When
the AGS fatory recivesaclient binding request, it creaesanew AGSI ad rdurnsahande to it. Beause
resaurces may come ad go dyrmmiclly, the AGS fatory supports a notification interfacethat
allows the AGS 1 subscribe to everts of interest. Notifi cation to the AGS is performed asynchronously.
The AGS ako impemens an adaptation interfacethat dlows an ARP b add or remove resources
from it. When te AGS fatory receves a equest on its adaptation interface it deddes upon which
instances (if any)to ad. For exampk, inthe @seof an ACP tlatis manging CPUresources it could
inform the hosed AGS fatory that 3 rew CPU resurcesare now &ailable via its notification
interface. Itwould be up ® the AGS facbry to decide f it waned he resouces ard whatto do with them.
The AGSI sippats asubgt of the AGS inerfaces plus sevicespeific interfaces. The AGSladapta-
tion interface isimplemenid in amannea spedfic to theseavice Forexanple, addngorremoving CPUs
from adata parllel service requires dda mowementfor load ebdancing, am this in turn depedson he
undelying data structures andother implemenétion detail s. On the other hand for digtributed services e.g.
a paamder-sweep adling or removng CPUsis mud smpler. The srvice provider is respongble for
implementing theseinterfaces. The supported events are defined by Evenflype In the currert prototype,
these event arelimited to ACP-specific events. NewCPUsAvail, CPUsReclaimed, andCPULoad-
Change. The® events dso contan speific information abou the event. Orce he AGS ecavesan &ent

it can cotad the ACP if necessay (eg.NewCPUsAvail may triggerareques for extra resources). The
AGS/AGSI {

factory: // thisinterface is supported only by the fectory (notthe instances, AGSIs)
ServiceType create (); // creae AGSI
void init (LotType); // init AGS with leasenfo
void shutdown (); // disable rvice
void log time (RequestType TimeType); // logs performancedaafor a mmpleted request
PerDataType get perf data(TimeFrameType); // perf. dagfor prior requests ove a pattime frame

notification:
void event occured (EventType); // a sulscribed eventhas ocurred

adaptation:

void new resource lot (LotType); //provide new lot to AGS fadory (i.e. adding/removing resources)
void add_resources (ResourceType); // AGSI - add resources to this AGSI
void remove resources (ResourceType); // AGSI - remove resaurces from this AGSI

service-specific-interfaces:

} Figure5: High-level AGS andAGSI ecification




RauestType cortains informaion eout a paticular reques: operation nane, parameteg values ec., and
TimeFrameTpe represaits a past or future time frame, . past hou, last N requests, dc.

3.2 ARP

When high-end sevices are hosed on the Grid, the needfor adapivity arisesdue © unpredictable
resaurce sharing bath internal to the Grid ard external to it (i.e. locd non-Grid users). We assume that
high-end servicesare hosed on resourcesprovided by esaurce providers. The ARP ecapsilates Grid
resourcesthataremadeaval able o hostsewvices(Figure 6).

The ARP &poses mportantinternal state via aquery interface including:the anount of resources it
is willing to allocate for a leasepeiiod, platform featues including hadwae/sdtware features, and the
resource pofile of the cataned resaurces (@verage rumber power, and duaton of avdlable CPU
resourcey ove a recert time interval. The LeaseType contans the lesse duation and he kind of lea
(dedcated, shared renewable). By exposing the leasing model of the resource provider, the sevice can
decide o the degee of paformance uncetainty it is willing tderate. The amoun of resouces AmtType
offered by an ARP is spedfic to the type of ARP. The platform feauresPFType is an extensible type tha
defines the keyfeauresof the platform required by sewicesin orde to make hosing desisions,e.g. the
kind of process launch cgablity syppotted (ssh,MPI, efc.), amouwnt of memoy, scratch gaceavalable ©
the sevice, etc

AdaptiveResourceProvider {

query:
AmtType avail amt (LeaseType); //returns an of aval resarces grantable for the desired lease

LeaseType lease length (AmtType) ; //returns maximal leasefor the desired amount of resairces
PFType platform features (AmtType) ; //returns he platform features of this ARP

Boolean have_ features (PFType); // doesthe pltform have spedfic feaures?

ProfType get profile (TimeFrameType) ; //returnspeff. profile over pastfuture time frame

notification:
void subscribe event (EventType, AGS); // AGS wishesto subscribe to aparticular resource event

allocation:
LotTypealloc (LeaseType, AmtType); // initial poadl dlocaionreg. to AGS
Boolean dealloc (LeaseType, AmtType); // dealloc resources o newamourt
Boolean realloc (LeaseType, AmtType); // increase granted resourcesto new anmount
Boolean renew_lease ( LotType, LeaseType, AmtType);, // renew old lea® (in LotType) to new lease

usage // usagefor ACP
ServiceType deploy (PackegeType, LotType); // deploy service packa@ usng valid Lot
void undeploy (SeniceType); // undepoy sevice from ARP

Figure6: High-level ARP specificaion

4.0 Results

We hawe constucted atestbed anddepbyed ou architedure and @re savices based on GT3 and
Tomca at the University of Minnesda andthe University of Virginia conrecied by 12. Within Minnesof,
the srvices ae caneded by 100 Mb ebemet All machinesare a mix of Linux and Sobris wokstations
(2.x GHz Xeon PQGwith 512 MB running Linux, and Sun Wra-60 with 1024MB running SunOS 58
This testbed has endled usto meaure baic oveheadsinherent to our dynamic depbymert ard invoca
tion architecure. All data preenid is the result of five munswith averages shown. Snce evety agped of



the service is dynami in our model installation, depbyment, and nvocaion, it is important that the unt
ime oveheads as®ciated wih ead of these qperatons be measued and Utimaely mitigated. We first
meaured the trangort porton of the cost of remot seviceinstallation (front-end) and depoyment (back
end) asafunction of the Padkagelype $ze We compaed SOAP (sing enamdedbyte arays) which is the
default, HTTP, and TCPIP (Figure 7a) In genead, the SOAP pnaly is abou a fador of 2 (for WAN
trarsfers). For a RackageType sizes of 100K B, the cost is ~1 sec (WAN) and for IMB it is ~5.5 sec. If the
service isdepbyed to hande multiple requests (common cae)then the owerheadof installation/degdoy-
mert can be amotized Our corctlusion isthat for sewvicesthat do nothaveextremdy large assaiated
datase, SOAP wil be acepgale. We have obgrved ashave ohers [3] that SOAP performanceis very
sendtive to SOAP bifer szeard aproper chdce of buffer sizes is required b obtain aceptble perform-
ance (Figure 78. Tuning these bufersis thesulead of future work.
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Figure7: Install/Dedoymen Transport Cost

Once the sevice padkageis delvered tothehostsite, the sevice must be corfigured. Ths configura-
tion cog includesinteracion with the local Tomcat cortainer environment to unpak WAR files, create
directories, dl ocate memory for the service, and dart the service (Figure 7c). Configuration was measured
on a2.x GHz Xeon PCwith 512 MB running Linux. Similar configuraton costs would be pad for both
remote deploymentard installation snce oth involve pakage ransmisdon andinteradion with the locd
container. Configuraton costs for packagesabovelMB are on he oiderof secords. Ckaty, deploying the
service for eat requestondemam (trander and @mnfiguraton) is expensgve (unlessthe rvice requestis
very long running). Howe\er, we do rot want to rule out such senaros. The wmmon case ¢ multiple
request will erable the overtheal to be @sily amotized.

To reduce e cos of dyramicdeployment we next considered seeral optimizaionsthat can be usd
in spedfic situations (Figure 8). For thee epeaiments we implemened and deloyed an eigenwalue
solver sewice hat takes an NxN input matix of 8 byte daibles as its agument This service has acocde



size of 15KB which results in a ®rvice pakage of 10KB (when compessdin the WAR format, without
GT3 libraries), or 10MB (with all GT3 srvice libraries) Sevice teardown namaly involvesremoval of
all traces of the service, including the service package. Insteal, it is possble to tear-down the sevice
(removedfrom Tomcat s memory), but allow the sewvice padkageto remain“cachal” (with a doragecast).
By caching we nean that the sevice pa&age still resdes inTomcatsdirecory spaae, butcan be reloade
into a runring containerlater if necesary Thecost of stbsejuert depoyments of the seviceto this ARP
can begreaty reducedasthe savice package nea not beretrarsmitied (Figure 8). A seondoptimizaion
is to shrink the sevice package to omit redundant system library files. If the ARP is aready hosting other
Grid services thenit likely has already loaded certain system libraries as part of GT3. These libraries an
be loaded asshareable muchlike shared codesegmerts in OSdevel virtual memoy. This also gpplies to
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Figure 8. Optimizaions. Incremental ervice package szeis 1KB (one clasfilein the
eignenvalue sevicewaschanged ard only this his clas was tansmitted).

service upgadesin which the sevice pakagecan omitthe dread/ ddivered and loaded ystem lbraries.
This opimizaion is morepowerful as it reduaes boh thetransmissbn time as wedlas tle configuration
cost (Figure &).

Once a srvice isinstaled ard deployed, the next phase of its lifecycle is client access This is the
mog important cost from the perspecive d the erd-user The endio-end respon® ime for seviceaces
includes te costof sending the reques from the client to the front-end, outing the requestto abackend,
and aeding asevice instance We have measured this “end-to-end latency in four scerarios (X-Y)
refleding the nawork distancefrom the dient to the front-end (X) andfrom the front-end b the ba&-end
(Y), Figure 9a.Thetotal lifecycle costin termsof percentagesis shown in Figure 9b (shown for the eigen
value service) with N=113 (yielding a reques size of 8*11.372~100KB). We shav depgoyment of a full-
size sevice pa&kage (10 MB) vs. an opimized one hat serds only the sevice cale (LO KB). Theimpor-
tance d incremertal deploymentis obseved asthe overhea difference bewveen full dgployment(10MB)
and incremental (10KB) is about a fador of 4 (80% vs. 20%), (1-4 in Figure 9b). Next, the overheal of
service execuion acetheseaviceis deployed(5-6) is appoximately 25%. This costis largely the tranger
of therequestinpu matiix to thefront-endand then to the ba&-end. This cog coud be cuin hdf by send-
ing the inputs directly to the bak-end and adesciiption d the inputs (e.g. $zes) only to the frontend
suppot schedding. Ths opimizaion will beinvestigated in the future. Fndly, a large pat of the total



cost is building and compeessirg the savice package.Of course,this overheadwoud likely be amortized
over multiple sewvice request and deploymens.

Service Lifecycl e
100%

20% 7] i .
T —

80%
70%

Scenario Latency

@ | LAN-LAN |35 & 60% | | i

LAN-WAN | 155 3 v | 2

WAN-LAN 148 & 30% & \\\\\

20% N\
WAN-WAN | 278 oot 1
0% T T T
Deployment through Deployment through Deployment through Deployment through
(b) LAN (10 MB) WAN (10 MB) LAN (10 KB) WAN (10 KB)

Figure9: Endio-endService Qst. Table (@) islatency with no service executon or transmisson of input
data. Grap (b) is the lifecycle cosandincludes (1) service packamg, (2) front-end installation, (3) pack
age trasfer via SOAR(4) Tomcat coniguration, (5) client-> frontend caonmuricaton, (6) front-end->
backend commuicaton, (7) AGSI creaton andservice executia, (8) serviceteardown

5.0 Related Work

Other savice bagd achitecuresfor Grid and nework computing havealso keenproposel swch &
H,0 [17], NetSdve [2], Ninf [16], CCA/XCAT [1], Sewvice Grid [20], Patitionable Sewvices [L0], Soch
[17], Sharc [18], and ohers [12][12][20]. However few of theee srvice modés suyppott the degree of
dynamim oradapition propoedhere. In partitionable sevices, adaptivity is achievedby dynamc srvice
compostion & a much carser gran. In othe systans, NeSolve, Ninf, Soda,and ohes, the service 5
assumed to be “pre-deployed” and aailable to suppat multiple users ove some time fame wth limited
adaptation suppat. In most cases, adaptation is presumed to be left to the implementation as an optimiza-
tion. While we dsodlow the service to persist over sometime horizon we suppat adynamicdeploymert
cgpalility bagd on esaurce leashg. DyramicTao is a dyramic Corba-based approachthat hassimilar
goals, butis notbagd on Web/Grid sevices ard does notsugpont adapivity within the seviceitsef. Shac
alows finegrained adpttion within a sngle appicaion only. In other systems sich asCCA/XCAT and
H,0 the frvice a component instancewill belaunched on demandwhenanappication requests it. In con
trad, our apgproach allows a seviceto pesist in order to sevice multiple requests. In awide-areaerviron-
mert such as he Grid, amotizing the cos of sevice depoyment is critical.

6.0 Summary

We have presated an achitecure and pototype implkemenation fora dynanic Grid sevicearchitec
ture that supports dynami sevice hostng - whereto hostandre-hog a sewice wihin the Grid in response
to savice deman and esource fuctuaton. Our mode definesseeral new adative Grid sewvice dasse
that suppat adaptation at muttiple levels. In particular, dynamic sevice dedoyment allows new sevices
to be aded without“taking down” a gie for re-configuraion, alows theGrid to be nuch moredynamc,
and alows a VO b respand efectively to resouce aval ability anddemail. We have dso measired the
costs d dynamc installation, deploymert, and invocaion. Thepreliminary results indicate that the g/stem

10



ovetheadis tolerable paticularly for multiple sevice requests or whenoptimizaionssuch ascading or
incremenal degploymentare employed. Future work centerson reducing the basc costsof the infrastruc-
ture and the developmentof middeware compaent and pdicies br sdting leaselengths, whereto hog

and rehog sevices, ard ARP{evel resource mangemen for CPU (ACP) ard other adative service
classs (ASFs).
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