
Behavioural Specification of Grid Services with the KAoS Policy Language

Luc Moreau1 Jeff Bradshaw2 Maggie Breedy2 Larry Bunch2 Pat Hayes2

Matt Johnson2 Shri Kulkarni2 James Lott2 Niranjan Suri2 Andrzej Uszok2

(1) Electronics and Computer Science, University of Southampton
(2) Institute for Human and Machine Cognition (IHMC)

L.Moreau@ecs.soton.ac.uk, jbradshaw@ihmc.us, mbreedy@ihmc.us, lbunch@ihmc.us, phayes@ihmc.us

mjohnson@ihmc.us, skulkarni@ihmc.us, jlott@ihmc.us, nsuri@ihmc.us, auszok@ihmc.us

Abstract

Complex services in Service-Oriented Architectures such
as the Grid typically require to be configured in multiple
ways that cannot be anticipated by service designers; we il-
lustrate this requirement by studying the myGrid registry, a
Grid Registry capable of supporting annotations of service
descriptions by third-party users. Instead, services have to
be conceived so that they can be configured at deployment
and run time. We argue that KAOS is a powerful and flexi-
ble language that can help define such configurations. Us-
ing our registry case study, we examine the requirements
that the definition of such complex configurations brings
on policy languages and explain how they can be satisfied.
Specifically, we use role-value maps to express constraints
between property values; we introduce a notion of PolicySet
with associated parameters that support constraints within
a well defined scope; finally, we define a notion of Context
that allows us to refer to property values that were extant
in past execution environments. Essentially, these concepts
allow us to add constraints to values in policy definitions,
to organise policies in coherent and structure blocks, and
to refer to the execution history. The paper discusses these
concepts and how they are implemented in a binding of the
KAOS policy language to the myGrid Registry.

1 Introduction

Complex services in Service-Oriented Architectures
such as the Grid typically require to be configured in mul-
tiple ways that cannot be anticipated by service designers.
Consider the myGrid registry [17], which is capable of host-
ing service descriptions and third-party annotations; anno-
tations include semantic descriptions of services, trust or ac-
curacy information about them, their usage policies or sim-
ply general statistics about their use. Such Grid registries
may be deployed in many different ways: e.g., they may be

federated or replicated, they may hold annotations to be cu-
rated by experts, their access control may be role based. As
registries operate semi-autonomously, some additional ex-
ternal constraints may be set by institutions that host them:
e.g., about the computing resources they use or about the
domains of services being registered.

The variety of service configurations is such that service
designers cannot anticipate them all. It is therefore a re-
quirement that such services be provided with the means
to specify their configurations, hence giving them the flex-
ibility that is desired at deployment or run time. We argue
that policy languages, such as KAOS [22], Ponder [5], or
Rei [14] can be utilised for configuring complex grid ser-
vices. In particular, the KAOS language, which has been
used for grid security [13, 23] or mobile agents, is an inter-
esting candidate since it is conceived to constrain behaviour
of (semi-)autonomous entities through the use of enforce-
ment mechanisms [4]. Another benefit that is relevant to
this context is that KAOS is based on the ontology language
OWL [1] and therefore OWL-based reasoning can be applied
to policies for enforcing them or for detecting conflicts they
may entail.

We therefore undertook to use the policy language
KAOS to specify configurations of the myGrid registry
[17], which had already been designed to be modularly or-
ganised around a set components [18]. Three different us-
ages of KAOS policies have been adopted in our endeavour.
Policies are used to (i) to express the behavioural specifi-
cation of components; (ii) to define components instances
and aggregate them in meaningful compositions; and, (iii)
to characterise overarching constraints over registries.

Doing so, we have encountered an interesting set of new
requirements, which we have addressed by providing ex-
tensions to KAOS. These extensions will be discussed in
this paper: (i) We made extensive use of role-value maps
[20] to add constraints to property values in concept defi-
nitions, which would otherwise be not expressible in OWL.
(ii) PolicySets, defined as first-class OWL concepts, can be

extended with properties and can be referenced by policies
belonging to these sets. (iii) Finally, we recognise that a
policy language, in particular one that contains obligation
policies, has an underlying computational model; we make
past execution history explicit through an OWL-concept of
context.

This paper is organised as follows. We provide further
motivation for this work, by detailing a flexible Grid Reg-
istry, whose behaviour needs to be specified and constrained
at deployment- and run- times (Section 2). We summarise
key concepts of the policy language KAOS, which we see
as a powerful fit for such an application (Section 3). We
then discuss how policies can contribute to the configura-
tion of such a Grid Registry (Section 4). This is followed
by an analysis of the requirements that this application in-
troduces on a policy language and the KAOS solutions to
address them (Section 5), and an overview of our on-going
implementation (Section 6). Finally, we conclude the paper
by a discussion and a summary.

2 Background Motivation: a Flexible Grid
Registry

The Grid is a large scale computer system that is capable
of coordinating resources that are not subject to centralised
control, whilst using standard, open, general-purpose pro-
tocols and interfaces, and delivering non-trivial qualities of
service [10]. As part of the endeavour to define the Grid, a
service-oriented approach has been adopted, by which com-
putational resources, storage resources, networks, programs
and databases are all represented by services [11]. In this
context, a service is a network-enabled entity capable of en-
capsulating diverse implementations behind a common in-
terface. A service-oriented view is powerful since it allows
the composition of services to form more sophisticated ser-
vices.

Service discovery is a difficult task in large-scale open
distributed systems such as the Grid and Web, due to the
potentially large number of services advertised. In order
to filter out the most suitable services for the task at hand,
many have advocated the use of semantic descriptions that
qualify functional and non-functional characteristics of ser-
vices in a manner that is amenable to automatic processing
[2, 7, 24].

As part of the myGrid project (www.mygrid.org.uk), a
service directory was designed for hosting semantic de-
scriptions of services, including their functionality and their
semantic inputs and outputs [15]. Semantic descriptions
are currently expressed in an OWL ontology [24]. A key
characteristics of our approach is that semantic descriptions
need not be published by service providers, but can be made
available by third party users [15]; such an approach sup-
ports collaborative practices, since users can utilise services

because others found them useful or efficient to perform
specific tasks.

We have identified different ways of deploying a Grid
registry; the following use cases illustrate configurations
that are deemed desirable in different circumstances. (i)
First, a Grid registry can be deployed as a standalone ser-
vice, presenting the set of interfaces required by its de-
ployer, and whose availability to clients is prescribed by
its security policy. (ii) Second, users could deploy it as
a “proxy” to a publicly available registry for which they do
not have write access [15]; the proxy would typically tun-
nel queries to the public registry, but would hold locally any
metadata information about registered services, and would
therefore act as a personalised registry. (iii) Alternatively,
the service could also federate entries from multiple reg-
istries. Such configurations, and many others, cannot be
frozen at design time, but they need to be decided at de-
ployment time according to the deployer’s needs, or possi-
bly at run time according to the users’ needs. Therefore,
the architecture of such a registry must be designed to al-
low easy configuration or re-configuration at deployment
and run time, respectively.

Against this background, the myGrid registry implemen-
tation adopts a message-passing metaphore, in which mes-
sages are handled by components we refer to as handlers
[18]. Handlers are typically designed to process messages
of a same category, such as the messages of the UDDI pub-
lish interface, of the UDDI inquiry interface, or messages re-
lated to metadata; handlers in fact contain the business logic
implementing some ports of the registry’s WSDL interface.

To focus the discussion, we consider a typical distributed
deployment of the registry, supporting some myGrid use
cases. Figure 1 illustrates the scenario in which an expert
scientist in an organisation has a personalised registry (Reg-
istry 1) that copies the service adverts published in one or
more public remote registries. The expert then adds a trust
value as metadata to each service advert, indicating how re-
liable they have found the service. A novice in the same
organisation owns a personalised registry (Registry 2) that
subscribes to notifications of changes in Registry 1, and
copies new entries from Registry 1, if the trust value of
such an entry is higher than a particular defined constant.
The novice is the only user allowed to edit the metadata in
Registry 2. As a result, all services discovered by the novice
have been judged to be trustable by the expert.

The configurations of registries 1 and 2 are substantially
different: Registry 1 sets up subscriptions from multiple
public remote registries, has its trust metadata (among oth-
ers) curated by an expert user, whereas Registry 2 sub-
scribes to changes in metadata from Registry 1, and auto-
matically updates its contents when trust values assigned by
the expert are above a given threshold. We cannot expect the
registry designers to anticipate all such possible configura-

Registry2

Notification message

Registry1
pulls information from

multiple registries

The information in
Registry1 is curated:
a curator is adding

trust values to advertised
services

Query for details

Results

Selecting services with a
trust value > X

Query for details

Results
Notification message

Registry1

Rem
Reg

Rem
Reg

Figure 1. A Deployment Scenario

tions. Hence, we believe that a policy-based mechanism to
specify configurations of such services would be very valu-
able. In Section 4, we discuss the different use of policies
that we foresee in this context, but beforehand we introduce
the KAOS policy language and its terminology.

3 KAoS Policy Language Overview

We refer the reader to previous KAOS publications such
as [4, 22, 13] for a detailed presentation of the KAOS lan-
guage and its associated graphical interface KPAT. In this
section, we introduce the concepts of KAOS that we use in
this paper.

KAOS key entity is the policy that can express autho-
rization (i.e., constraints that permit or forbid some action)
or obligation (i.e., constraints that require some action to
be performed, or else serve to waive such a requirement)
for some type of action performed by one or more actors in
some situation. A policy is represented as an ontology sub-
class of one of the four types of policy classes: positive or
negative authorization, and positive or negative obligation.
An important property value is the name of a controlled ac-
tion class, which is used to determine the actual meaning of
the policy. Authorization policies use it to specify the action
being authorized or forbidden, whereas obligation policies
use it to specify the action being obliged or waived. An-
other property value is the trigger which identifes an action
that will trigger the enactment of a policy. Finally, policies
are bundled together into named policy sets.

Figure 2 illustrates the syntactic notation that we use in
this paper and is shown by the KPAT editing interface. It
contains the specification of a positive obligation policy p

that mandates actors of class X to perform a Communi-
cationAction, which is a predefined concept in the KAOS
ontology. The communication action is to send messages of
class Bar to recipients of class Y ; such a communication
action is referred to as the “controlled action” of the policy,
or control for short. In Figure 2, the trigger of the policy is
itself another communication action that must take place to
enable the obligation. The trigger requires an obligation’s
incumbent of class X to be the recipient of a message of
class Foo. Informally, the policy requires any X to send

a message of class Bar to some Y , whenever it receives a
message of class Foo. For instance, such an obligation pol-
icy could be instantiated to record incoming messages into a
logging service. Concepts Foo and Bar must themselves be
defined in an ontology; in our case study, they will denote
messages that are used by the registry implementation.

Policy p:
X is obligated to perform

CommunicationAction with properties
hasDestination is subset of Y

carriesMessage is subset of Bar
when X performs

CommunicationAction with properties
hasDestination is subset of X

carriesMessage is subset of Foo

Figure 2. KAoS Obligation Policy

4 Multiple Levels of Policy Usage

In this Section, we analyse how policy languages can
help specify the behaviour of services, and in particular grid
registries. As an illustration, we consider the deployment
scenario introduced in Section 2, and specifically, the con-
figuration of Registry 2 for the novice. Figure 3 shows the
expert registry and the contents of the novice registry. A
notification message, in transit from the expert registry to
the novice registry, is meant to indicate that some metadata
has been updated in the expert registry. Such a notification
message is received by the event handler in the novice reg-
istry, which needs to be configured so as to behave accord-
ing to the scenario described previously. We now introduce
different types of policy usage in the context of the registry,
namely inside components, registry level and external to the
registry.

Inside component Upon receiving a MetadataChanged
notification message, the EventHandler in the novice reg-
istry needs to query the expert registry to obtain the details
of the metadata that has changed. If such a metadata per-
tains to the trust given to a service, than the service detail
(and all its metadata) should be retrieved from the expert
registry and saved into the novice registry. Such a behaviour
can be characterised by five obligation policies: (i) obtain
trust metadata from expert registry and check it is greater
than threshold; (ii) obtain service detail from expert reg-
istry; (iii) save service detail in novice registry using the
UDDI publish interface [21]; (iv) obtain service metadata
from expert registry; (v) save service metadata in novice
registry using the metadata handler interface [17]. Such
behaviour can be specified by obligation policies, which
aggregated in a PolicySet, will define a component’s be-
haviour.

EVENT HANDLER

METADATA

HANDLER

UDDI

PUBLISH

HANDLER

METADATA

HANDLER

UDDI PUBLISH

HANDLER

EXPERT REGISTRY

MetadataChanged Notification

PolicySet specifying the behaviour

of the EventHandler component

parametrised by the remote

registry, the Event Handler interface,

the Metadata and UDDI Publish

Handler Interfaces and external

parameters

PolicySet specifying which component

instances have to be deployed, how

they should be connected, what parameter

values should be adopted, and which

interface should be exposed externally

in order to provide a personalised Registry.

param1

param2

param3

NOVICE REGISTRY

Figure 3. Policies in Novice Registry

Registry Level Given a set of components, either pro-
grammed directly or specified by policies, a given deploy-
ment of the registry will identify how such components
need to be connected. Again, such configuration cannot
be hard-coded by registry implementers but must be speci-
fiable by deployers. In our case, the policy will identify
three component instances (as depicted in Figure 3), a set
of parameters for example read from a configuration file,
and how each of these components will be connected.

Single and Distributed Registries Overarching Con-
straints Registries may have to conform to the rules set
by the institution in which they are deployed. Examples of
such rules are: (i) A registry may be authorised to repli-
cate data only from a trusted remote registry, and it is at
the institutional level that such a notion of trusted registry is
specified. (ii) A collection of registries may be authorised
to replicate data from each other, but a policy may force
them to avoid circularity in data being replicated. (iii)
An institution may set constraints on the set of resources
a registry can use (such as processor or disk space). (iv)
Likewise, an institution may require services in a given reg-
istry to be located within some administrative domain (e.g.,
Southampton services), or to be related to a given applica-
tion domain (e.g., bioinformatics).

5 Policy Language Features

We now illustrate how specific application requirements
can be expressed with KAOS policy language.

5.1 Action Must Refer to Trigger Properties

There is a type of constraints that is very common in
practical policy definitions, as illustrated by the following
examples: given a message from an entity X , the obliga-
tion is to send an acknowledgement back to X ; or given a
message with value v, the obligation is to send a message
with value v + 1. In such cases, the trigger of an obligation
policy identifies a value, and the action of this policy is to
perform an action that is parameterised by such a value.

Such constraints could naturally be expressed using a no-
tion of variable: the trigger declares a variable, which is
computationally bound to a value when the trigger of the
policy is verified to be satisfied; the value the variable refers
to is itself used when the variable is referenced in the action.
KAOS policy language is based on OWL which does not
offer variables directly; instead, KAOS relies on a mech-
anism, called role value maps [20], to express such con-
straints. Figure 4 illustrates how role value maps have been
put into practice in an example obligation policy. Using the
notation:

GetBusinessServiceMetadata → hasMetadataKey
equals

Trigger→carriesMessage→hasMetadataKey,

the set of values of the hasMetadataKey property of Get-
BusinessServiceMetadata messsages in the policy control
is prescribed to be equal to the values of the property has-
MetadataKey of the messages that are values of the prop-
erty carriesMessage, for the obligation trigger. Likewise,
the following notation:

MetadataChanged → hasMetadataKey
equals

Control→carriesMessage→hasMetadataKey.

requires the values of the property hasMetadataKey to be
equal to values of the same property for messages in the
Control. Within a policy specification, the reserverd words
Control and Trigger refer to the terms respectively denoting
the control and trigger of the current policy being defined.

5.2 Policy Set Context

A component’s behavioural specification can be defined
by a policy set; hence, within this set, a given policy may be
parameterised by some parameters whose values are shared
by its other policies. For a component specification, the de-
ployment configuration of the registry may specify that dif-
ferent instances of the component should be deployed with
different parameter values. Therefore, each policy instance
in a given policy set instance can refer to the parameter val-
ues that were specified for this set.

EventHandler is obligated to perform
CommunicationAction with properties

hasDestination is subset of Registry
carriesMessage is subset of

GetBusinessServiceMetadata
hasMetadataKey equals

Trigger→carriesMessage
→hasMetadataKey

when EventHandler performs
CommunicationAction with properties

hasDestination is subset of EventHandler
carriesMessage is subset of

MetadataChanged
hasMetadataKey equals

Control→carriesMessage
→hasMetadataKey

Figure 4. Role Value Maps in Obligation Policy

Programming languages have a similar analogy. Con-
sider that a component behavioural specification is im-
plemented by a Java class, with a constructor initialising
some private instance variables; each policy could be im-
plemented by a method (or possibly inner class); policies
would be entitled to refer to instance variables. Java scop-
ing rules would ensure that private instance variables re-
main visible to the current block, i.e. the component. Com-
ponents instances can be created by instantiating the class:
instance variables would then be entitled to be bound to dif-
ferent values in different component instances. The role-
value maps introduced in Section 5.1 can be used to express
such a notion. Figure 5 provides us with an illustration.

Using role value maps and a keyword PolicySet, we can
express contraints between concept properties and Policy-
Set properties. In Figure 5, we set a constraint to the concept
MetadataChanged by requiring the values of its hasTrust
property to be greater than the values of the hasThreshold
property of the PolicySet the policy belongs to.

hasTrust greaterThan PolicySet → hasThreshold

In Figure 5, we show how a component behaviour can
be specified by a set of policies, including p1 we have just
defined. Such a behaviour can be instantiated into two dif-
ferent concrete components c1 and c2, which are each given
a specific threshold value (0.5 for c1 and 0.8 for c2). Within
component c1, policy p1 will be instantiated: its constraint
will refer to threshold 0.5. Likewise, the instance of p1 in
c2 will refer to threshold value 0.8. We note that policy p1

could also be used in a different policy set, which would be
instantiated to form other component instances, referring to
different threshold values.

Policy p1:
EventHandler is obligated to perform

CommunicationAction with properties . . .

when EventHandler performs
CommunicationAction with properties

hasDestination is subset of EventHandler
carriesMessage is subset of

MetadataChanged
hasMetadataKey equals

Control→carriesMessage
→hasMetadataKey

hasTrust greaterThan
PolicySet→hasThreshold

PolicySet ComponentBehaviour
hasPolicy [p1, p2, . . .]
hasThreshold [Integer]
hasOtherParameter [Class]

Instance c1 of ComponentBehaviour
hasThreshold 0.5

Instance c2 of ComponentBehaviour
hasThreshold 0.8

Figure 5. PolicySet Properties

5.3 Execution Context

An obligation policy such as p1 may initiate an event,
whose completion may trigger another obligation policy p2.
In other words, the succession of events and triggerings of
policies result in the sequenced execution of obligation poli-
cies. In some cases, a given event may trigger several obli-
gation policies, which potentially could be executed in par-
allel. Hence, the computing model underlying the KAOS
policy language naturally supports sequentiality and paral-
lelism. In a policy p2 that is executed after p1, it is frequent
that we have to refer to property values that were extant in
the trigger of p1.

Hence, KAOS provides us with a notion of execution
context, through which we can refer to properties that held
during the enactment of a previous policy. Since parallel
execution may take place, it is understood that multiple ex-
ecution contexts may coexist, so that each “thread of execu-
tion” is entitled to its own context.

So, similarly to reserved words to refer to the trigger and
the control of a policy, the reserved word Context is used
to refer to the execution context of a policy. Its use is il-
lustrated by policy p2 in Figure 6 that mandates the saving
of a pair, composed of the result returned by the action in
the trigger and the threshold value accessible from the ex-
ecution context. Policy p1 is the obligation that performs
the action, the completion of which triggers p2. We have
introduced in policy p1 a new clause with context, which
allows us to specify a new context value if p1 is activated.
In this example, the new context is formed by extending the

Policy p1:
EventHandler is obligated to perform

CommunicationAction with properties
(see Figure 5)

with context: extends Context with properties
hasTrust equals Trigger→carriesMessage→hasTrust

when EventHandler performs
CommunicationAction with properties

hasDestination is subset of EventHandler
carriesMessage is subset of

MetadataChanged
hasMetadataKey equals

Control→carriesMessage→hasMetadataKey
hasTrust greaterThan

PolicySet→hasThreshold

Policy p2:
EventHandler is obligated to perform

SaveAction with properties
hasValue Pair

hasLeft equals Trigger → carriesMessage
→ returns,

hasRight equals Context → hasTrust

when EventHandler performs
CommunicationAction with properties

hasDestination is subset of EventHandler
carriesMessage is subset of

GetBusinessServiceMetadata
returns equals

Control→hasValue → hasLeft

Figure 6. Execution Level Context

existing context with a property hasTrust that is equal to a
property accessible from the trigger.

We note that the keywords PolicySet and Context have
different purposes: the former refers to the static structure
of policies, whereas the latter refers to execution. From a
semantic viewpoint, we allow contexts to be “extended” by
adding a new property to an existing context; if the prop-
erty already existed, the new property overrides the previous
one. Such a non-mutable semantics of contexts provides a
precise behaviour when multiple policies can be triggered
in parallel and they share a same execution context1.

5.4 Overarching Constraint

Finally, we now show an example of an overarching con-
straint set by the institution in which a registry is deployed.
In Figure 7, we present a negative authorization policy that
prevents a Registry from communicating with remote reg-
istries located outside its administrative domain. Such a
policy ensures that services advertised in the Registry are

1Specifically, the notion of context that we have introduced here corre-
sponds to the notion of environment usually used in denotational semantics
of programming language as opposed to the notion of store.

not propagated to other institutions, and that the Registry’s
content is not directly changed by updates coming from
other domains.

Policy p:
Registry is not authorized to perform

CommunicationAction with properties
hasDestination is subset of

RemoteRegistry
hasDomain not equal Registry → hasDomain

Figure 7. Overarching Constraint

6 Implementation

The myGrid registry adopts a message passing metaphor,
according to which a set of components only communi-
cate by message passing [18]; each component is imple-
mented as a handler of messages of a given type. From
an implementation viewpoint, messages are specified in the
registry’s WSDL interface and converted into Java classes
(using the Axis wsdl2java converter). In order to structure
the code, messages implement the visitor pattern; handlers
are expressed as visitors for sets of messages. Such a code
design insures proper compile-time type checking and pro-
motes compositionality of components.

In order to bind the KAOS run time system to the my-
Grid registry, we have defined new message visitors that
are capable of converting messages and their contents into
communication actions understood by KAOS. KAOS of-
fers an API that allows the construction of “Action Instance
Descriptions” as OWL concepts with their associated prop-
erties. A querying interface allows us to identify the obliga-
tions that are triggered by a given action; to this end, KAOS
uses OWL-based reasoning to find the obligations, whose
triggers match the current action, and obtain the resulting
controls, instantiated for the given trigger. Such actions now
need to be converted back to Java messages that can be han-
dled by the myGrid registry; they are then dispatched to the
appropriate handlers, as specified by the triggered obliga-
tion. As far as authorization policies are concerned, they
can be enforced using a similar technique to [13], in which
an access control modules decides, using OWL-based rea-
soning, whether a request can be appropriately delegated to
a component, or whether it should be rejected.

7 Discussion and Related Work

Policy languages have been the focus of much attention
lately in the Grid and Web Services communities. Policies
have usefully been applied in the context of autonomous

services and agents that cannot always be trusted to regu-
late their own behaviour appropriately, because poorly de-
signed, buggy or malicious [4]. Specifically, policy lan-
guages, such as KAOS [4] or Ponder [6], allow system de-
signers to externally adjust the bound of autonomous be-
haviour, in order to ensure safety and effectiveness of their
system: policy languages and associated mechanisms to en-
force them allow the dynamic regulation of the system com-
ponents behaviour without changing their code, nor requir-
ing the cooperation of the components being governed. Pol-
icy languages have also been adopted by the Web Services
community, in particular, in the context of security: for in-
stance, WS-Policy is a framework for indicating a service’s
requirements and policies [3].

WS-Policy introduces a simple grammar for expressing
the capabilities, requirements, and general characteristics
of Web Services and their clients. Policy expressions al-
low for domain-specific declarative and conditional asser-
tions. WS-Policy defines a policy to be a collection of
one or more policy assertions. WS-Policy, in compari-
son to KAOS, takes a different view on policy semantics
since it defines policy from the perspective of capabilities
or behaviour required to access particular service. Thus,
the WS-Policy policies, in essence, provide lists of possi-
ble values for properties defining capabilities. As previ-
ously described, KAOS policy semantics is concentrated
around authorizations and obligations, which can also be
used to obtain lists of allowed values for a given service
request. However, KAOS declarative definitions based on
ontology allow for greater flexible computing of these lists
based on the current context. In general, the fact that KAOS
is using ontology both as a base of its policy vocabulary
and as its policy constructs allows us to build much more
complex policy definitions then WS-Policy and more im-
portantly allows for reasoning of policy applicability and
relations. Recent work by Parsia et al. [19] provides map-
pings of WS-Policy into OWL that allows them to reason
about policy containment, i.e., whether the requirements for
supporting one policy are a subset of the requirements for
another. WS-SecurityPolicy defines extensions for security
properties for Web Services [8]; SAML [12], the Security
Assertion Markup Language, is a framework for exchang-
ing authentication and authorization information.

Among the plethora of policy languages, KAOS adopts
the original approach of expressing policy specifications in
the ontology language OWL [1], which gives it a number
of significant advantages. First, most policy specifications
need to refer to domain specific concepts, which are typ-
ically formalised in an ontology; therefore, by expressing
both policies and concepts in OWL, policy specifications are
able to refer to concepts easily. Second, reasoning over pol-
icy specifications can decide if a set of policies subsumes
another, or if a set of policies results in conflicts; thus, we

naturally benefit from OWL’s underlying reasoning mech-
anism by expressing polices in OWL. Third, the policy
language is not constructed in an ad-hoc manner for spe-
cific application domains, but it draws its vocabulary from
a well-understood, clearly specified set of OWL terms.

This paper introduces a new kind of use of the KAOS
language since it applies KAOS to the behavioural specifi-
cation of Grid registries. Miles et al. [16] is a first attempt
of using policies for specifying the behaviour of Grid reg-
istries. Their approach differs from ours in two different
ways. First, it adopts an ad-hoc policy language to describe
the configuration of a system; such a language does not of-
fer the systematism of OWL-based KAOS, nor its reasoning
capababilities; on the other hand, since it was purposely de-
signed for the task, it is more concise. Second, in order to
enforce management policy in a registry, Miles et al. create
an agent that processes the goals of the policy and the op-
erations performed on the registry using the belief-desire-
intention model and its specific instantiations as the pro-
cedural reasoning system (PRS) and the distributed multi-
agent reasoning system (dMARS) [9]. As far as enforce-
ment (i.e., execution) is concerned, both approaches have
strong theoretical underpinning, respectively OWL-based
reasoning and belief-desire-intention model. The KAOS
approach offers the additional advantage that reasoning can
be applied statically over policies, to detect conflicts or to
perform subsumption reasoning, a facility that is not avail-
able in Miles’ approach. From a performance viewpoint,
reasoning is also used to decide if a policy applies to an
incoming message; in the simplest case, pattern matching
suffices to match an incoming message against applicable
policies; in the most complex case, ontological reasoning is
required which trigger is semmantically satisfied; our focus
is on optimising such a process, by maximising the amount
of offline reasoning, so as to reduce the amount of reasoning
requied at run time.

8 Conclusion

By studying the configuration of distributed grid services
using the policy language KAOS, we have elicited require-
ments that are typical of complex systems. We have intro-
duced extensions to KAOS that address these requirements.
The core extension is the notion of role-value maps that al-
lows us to express constraints over OWL property values.
This feature is extensively used in our other extensions for
defining policies whose control refers to trigger value, for
structuring policies into policy sets that are parameterised
by run-time values, and for referring to past execution his-
tory. These extensions make KAOS a very powerful policy-
based configuration language, while still providing benefits
such as reasoning for detecting policy conflicts and enforc-
ing polices.

9 Acknowledgements

This research is funded in part by the Overseas Travel
Scheme of the Royal Academy of Engineering and EP-
SRC project (reference GR/S75758/01). The case study
presented here is the myGrid registry (EPSRC Grant
GR/R67743/01) which is being refactored as part of the
OMII Grimoires project (EPSRC Grant GR/S90843/01).

References

[1] S. Bechhofer, F. van Harmelen, J. Hendler, I. Hor-
rocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL Web Ontology Language Reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/, Feb.
2004.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, 284(5):34–43, 2001.

[3] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy,
A. Nadalin, N. Nagaratnam, M. Nottingham, C. von Riegen,
and J. Shewchuk. Web services policy framework (ws-
policy). May 2003.

[4] J. M. Bradshaw, P. Beautement, M. Breedy, L. Bunch,
S. V. Drakunov, P. J. Feltovich, R. R. Hoffman, R. Jeffers,
M. Johnson, S. Kulkarni, J. Lott, A. Raj, N. Suri, and A. Us-
zok. Making agents acceptable to people. In N. Zhong
and J. Liu, editors, Intelligent Technologies for Information
Analysis: Advances in Agents, Data Mining, and Statistical
Learning, pages 361–400. Springer, 2004.

[5] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. In Workshop on Policies
for Distributed Systems and Networks (POLICY 2001), vol-
ume 1995 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

[6] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. Pon-
der: a language for specifying security and management
policies for distributed systems. Imperial College Research
Report DoC 2000/1, 2000.

[7] DAML-S Coalition:, A. Ankolekar, M. Burstein, J. Hobbs,
O. Lassila, D. McDermott, D. Martin, S. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service Description for the Semantic Web.
In First International Semantic Web Conference (ISWC)
Proceedings, pages 348–363, 2002.

[8] G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk,
C. Kaler, H. Maruyama, N. Nagaratnam, A. Nash,
R. Philpott, H. Prafullchandra, J. Shewchuk, E. Waingold,
and R. Zolfonoon. Web services security policy (ws-
securitypolicy). Dec. 2002.

[9] M. dInverno, M. Luck, M. Georgeff, D. Kinny, , and
M. Wooldridge. The dmars architecture: A specification of
the distributed multi-agent reasoning system. Autonomous
Agents and Multi-Agent Systems, 2004.

[10] I. Foster. What is the grid? a three point check-
list. http://www-fp.mcs.anl.gov/˜foster/,
July 2002.

[11] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
Physiology of the Grid — An Open Grid Services Architec-
ture for Distributed Systems Integration. Technical report,
Argonne National Laboratory, 2002.

[12] J. Hughes and E. Maler. Security assertion markup language
(saml) 2.0, technical overview, working draft 03. Feb. 2005.

[13] M. Johnson, P. Chang, R. Jeffers, J. Bradshaw, M. Breedy,
L. Bunch, S. Kulkarni, J. Lott, N. Suri, A. Uszok, and V.-W.
Soo. Kaos semantic policy and domain services: An appli-
cation of daml to web services-based grid architectures. In
AAMAS Workshop on Web-Services and Agent-based Engi-
neering, Merlbourne, Australia, 2003.

[14] L. Kagal, T. Finin, and A. Joshi. A policy based approach
to security for the semantic web. In Second International
Semantic Web Conference (ISWC2003), Sanibel Island FL,
Oct. 2003.

[15] S. Miles, J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne,
and L. Moreau. Personalised grid service discovery. IEE
Proceedings Software: Special Issue on Performance Engi-
neering, 150(4):252–256, Aug. 2003.

[16] S. Miles, J. Papay, M. Luck, and L. Moreau. Implementing
policy management through bdi. In The Twenty-third SGAI
International Conference on Innovative Techniques and Ap-
plications of Artificial Intelligence, Dec. 2004.

[17] S. Miles, J. Papay, T. Payne, K. Decker, and L. Moreau. To-
wards a protocol for the attachment of semantic descriptions
to grid services. In The Second European across Grids Con-
ference, volume 3165 of Lecture Notes in Computer Science,
pages 230–239, Nicosia, Cyprus, Jan. 2004.

[18] J. Papay, S. Miles, M. Luck, L. Moreau, and T. Payne. Prin-
ciples of personalisation of service discovery. In Proceed-
ings of the UK OST e-Science second All Hands Meeting
2004 (AHM’04), Nottingham, UK, Sept. 2004.

[19] B. Parsia, V. Kolovski, and J. Hendler. Expressing
ws-policies in owl. In Submitted to Policy Man-
agement for the Web Workshop, 14th International
World Wide Web Conference, Chiba, Japan, May 2005.
http://www.mindswap.org/papers/2005/WSPolicyInOWL.pdf.

[20] M. Schmidt-Schauss. Subsumption in kl-one is undecid-
able. In R. J. Brachman, H. J. Levesque, and R. Reiter, ed-
itors, Proc. of the 1st Int. Conf. on the Principles of Knowl-
edge Representation and Reasoning (KR’89), pages 421–
431, Los Altos, 1989. Morgan Kaufmann.

[21] Universal Description, Discovery and Integration of Busi-
ness of the Web. www.uddi.org, 2001.

[22] A. Uszok, J. M. Bradshaw, and R. Jeffers. Kaos: A pol-
icy and domain services framework for grid computing and
semantic web services. In C. Jensen, S. Poslad, and T. Dim-
itrakos, editors, Trust Management: Second International
Conference (iTrust 2004) Proceedings, volume 2995 of Lec-
ture Notes in Computer Science, pages 16–26, Oxford, UK,
Mar. 2004. Springer.

[23] A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate,
J. Dalton, S. Aitken. KAoS policy management for semantic
web services. IEEE Intelligent Systems, July/August, 19(4),
pages 32-41, 2004.

[24] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Green-
wood. A suite of daml+oil ontologies to describe bioinfor-
matics web services and data. International Journal of Co-
operative Information Systems, 2003.

