
The Computational and Storage Potential

of Volunteer Computing

David P. Anderson
1
 and Gilles Fedak

2

1
 Space Sciences Laboratory, U.C. Berkeley, davea@ssl.berkeley.edu

2
 INRIA, fedak@lri.fr

Abstract – “Volunteer computing” uses Internet-

connected computers, volunteered by their owners, as a

source of computing power and storage. This paper

studies the potential capacity of volunteer computing. We

analyzed measurements of about 200,000 hosts

participating in a volunteer computing project. These

measurements include processing power, memory, disk

space, network throughput, host availability, user-

specified limits on resource usage, and host churn. We

show that volunteer computing can support applications

that are significantly more data-intensive, or have high

memory and storage requirements, than those in current

projects.

1) Introduction

Volunteer computing (also called “peer-to-peer

computing” or “global computing”) uses computers

volunteered by the general public to do distributed

scientific computing. Volunteer computing is being

used in high-energy physics, molecular biology,

medicine, astrophysics, climate study, and other areas.

These projects have attained unprecedented computing

power. For example, SETI@home has sustained a

processing rate of about 60 TeraFLOPS for several

years [3].

Most existing volunteer computing projects are

throughput-oriented (i.e. they have minimal latency

constraints), and have relatively small memory, disk,

and network bandwidth requirements. To what extent

is volunteer computing useful for more demanding

applications? To explore this question, we studied the

resources in the SETI@home host pool, and the

various factors that limit their use.

We conclude that the potential of volunteer

computing extends well beyond CPU-intensive tasks

like SETI@home, and encompasses applications that

require significant memory, disk space, and network

throughput.

2) Resource measurements

SETI@home uses BOINC (Berkeley Open

Infrastructure for Network Computing), a middleware

system for volunteer computing [4]. BOINC facilitates

the creation of volunteer computing projects; there are

currently about 20 BOINC-based projects.

Volunteers participate by running a BOINC client

program on their computers. They can attach each host

to any set of projects, can control the resource share

devoted to each project, and can limit when and how

BOINC uses their computer resources.

The BOINC client periodically measures the

hardware characteristics of the host. It also measures

availability parameters such as the fraction of time the

host is running and the fraction of time it has a network

connection.

The BOINC client periodically contacts a

scheduling server at each attached project, reporting

the host’s hardware and availability data. The

scheduling server replies with a set of instructions for

downloading executable files and input files, running

the applications against the input files, and uploading

the resulting output files.

This paper reflects the SETI@home host pool as of

November 18, 2005, including only hosts that had

successfully completed work within the past two

weeks. Most of the data is available on the web at

http://setiathome.berkeley.edu/stats/.

2.1) CPU performance

The BOINC client periodically executes the

Whetstone [7] and Dhrystone [18] benchmarks. The

results are interpreted as floating-point and integer

operations per second, respectively.

Of the participating hosts, 25% have 2 or more

CPUs, and 2% have 4 or more. A multiprocessor

machine with N CPUs typically has lower performance

than N times the speed of a single CPU. The difference

is especially large for multi-core architectures, such as

Intel “hyperthreaded” CPUs, which share a single

floating-point unit between cores. To reflect this,

BOINC benchmarks all CPUs simultaneously.

The CPU benchmark results are shown in Figures 1

and 2.

Figure 1: Floating-point computing power

Figure 2: Integer computing power

The participating hosts run a variety of CPU types

and operating systems, listed in Tables 1 and 2.

Microsoft Windows, which accounts for 86.8% of the

hosts and 90.0% of the FLOPS, is subdivided into

versions.

CPU type Number

of hosts

GFLOPS

per host

GFLOPS

total

Intel 141,887 1.543 218,932

AMD 64,921 1.698 110,236

PowerPC 9,005 1.079 9,716

SPARC 590 0.906 535

Others 1,148 1.609 1,847

Total 217,551 1.568 341,120

Table 1: CPU type breakdown

Operating

system

Number

of hosts

GFLOPS

per host

GFLOPS

total

Windows total 189,010 1.626 307,330

 XP 148,106 1.672 247,633

 2000 27,734 1.299 36,026

 2003 7,715 2.526 19,488

 98 3,550 0.697 2,474

 Millennium 980 0.806 790

 NT 782 0.782 612

 Longhorn 109 1.940 211

 95 34 0.402 14

Linux 18,227 1.230 22,419

Darwin 9,006 1.079 9,717

SunOS 715 1.536 1,098

Others 593 1.223 725

Total 217,551 1.568 341,120

Table 2: Operating system breakdown

2.2) Memory

The BOINC client measures and reports the amount

of physical memory (RAM) and swap space. Averages

are 806 MB RAM and 1.78 GB swap. SETI@home

uses about 32 MB of RAM.

Figure 3: RAM distribution

Figure 4: Swap space distribution

BOINC doesn’t measure the usage of RAM or swap

space by other applications.

2.3) Network throughput

The BOINC client measures throughput during

periods when file transfers are in progress (many

transfers may be active simultaneously) and maintains

an exponentially weighted average of these values.

These measurements reflect several factors: the

network bandwidth between host and server, the speed

with which the BOINC client transfers data, and the

speed of the data server. We show only download

throughput; SETI@home’s upload files are too small to

give meaningful data. The average throughput is 289

Kbps, and the distribution is shown in Figure 5.

Figure 5: Network download throughput

distribution

2.4) Disk space

The BOINC client measures the amount of total and

free disk space on the volume where it is installed.

Averages are 60 GB and 35 GB respectively

(SETI@home uses about 10 MB per host). The total

free space is 7.74 Petabytes. The distributions are

shown in Figures 5 and 6.

Figure 6: Number of hosts versus total disk

space

Figure 7: Number of hosts versus free disk space

BOINC doesn’t measure space on volumes other

than the one on which it is installed, so it may

underestimate available disk space on some machines.

It may overestimate disk space in situations where

several hosts run BOINC from a shared network-

accessible volume.

2.5) Combinations of resources

Hardware resources are meaningless in isolation.

Disk space is useful only if there is network bandwidth

available to access it, and CPU power is useful only if

there is memory in which to execute. Figures 8 through

11 show various combinations of resources. Each

graph shows the total amount of one resource given

that the per-host amount of a second resource (shown

on the X axis) exceeds a given value. Figures 8 to 10

are relevant to applications with large storage, memory,

and network requirements respectively, while Figure 11

is relevant to applications involving data storage and

retrieval.

Figure 8: Computing power versus free disk

space

Figure 9: Computing power versus network

throughput

Figure 10: Computing power versus memory

size

Figure 11: Free disk space versus network

throughput

2.6) Host location

BOINC users, during the registration process, can

specify their country. In this way hosts are associated

with countries. The breakdown is shown in Table 3.

Country Number

of hosts

GFLOPS

per host

Disk

free, GB

Through-

put, Kbps

USA 83,225 1.53 41.99 216.28

Germany 24,851 1.58 26.80 128.86

UK 16,998 1.79 41.36 161.54

Canada 9,475 1.54 38.24 301.01

Japan 6,348 1.48 37.49 209.81

France 6,126 1.60 28.25 142.03

Australia 5,524 1.59 34.00 174.15

Netherlands 4,628 1.60 27.24 151.13

Italy 4,586 1.77 31.07 106.54

Spain 4,528 1.59 30.90 88.84

Table 3: Breakdown by country

BOINC doesn’t verify that users are actually from

the country they indicate. However, the breakdown

roughly agrees with time zone (offset from Greenwich

Mean Time) reported by the BOINC client. The

distribution of time zones is shown in Figure 12.

Figure 12: Time zone distribution

Users can specify whether hosts are at home,

school, or work. We call this their venue. If users have

multiple hosts, they can assign them different venues,

and can define a different set of preferences (see

Section 5) to each venue. For example, hosts at work

might run BOINC applications only at night. The

breakdown among venues is shown in Table 4.

Venue Number

of hosts

GFLOPS

per host

Disk free,

GB

Through-

put, Kbps

Home 141,336 1.55 35.67 156.63

Work 39,015 1.68 32.31 219.72

School 8,472 1.45 31.56 204.78

None 28,728 1.53 34.16 212.75

Table 4: Breakdown by venue

3) Participation

3.1) Number of hosts

The dominant factor in a volunteer computing

project’s capacity is the number of participating hosts.

This depends on many factors: the merit and public

appeal of the application, the media coverage and other

public relations activity, the incentives provided to

users, and so on [6].

We expect that the number of hosts participating in

volunteer computing will increase significantly, and

that there will be many projects with hundreds of

thousands of hosts. Currently, on the order of 1 million

hosts participate – a few hundred thousand each for

BOINC-based projects, GIMPS, distributed.net,

Folding@home, Grid.org and World Community Grid.

There are, according to current research, about 1

billion PCs in operation [9], so only about 0.1 percent

of these participate. As volunteer projects appear in a

wider range of areas, and are publicized and marketed

more systematically, this percentage could increase by

one or two orders of magnitude.

3.2) Host churn

A volunteer computing project’s pool of hosts is

dynamic: hosts continually arrive and leave. In

addition, users occasionally reset the BOINC client on

a given host, which has the effect of destroying one

host and creating another.

We measured host “lifetime”: the interval from

creation to last communication for hosts that had not

communicated in at least one month (this

underestimates lifetime because it omits active hosts).

The average host lifetime is 89.5 days, and the

distribution is shown in Figure 13.

Figure 13: Host lifetime distribution

Host churn is important to applications that rely on

their persistence on hosts. Examples include long-term

storage applications like Oceanstore [14] and

applications that do extremely long computations (such

as Climateprediction.net, whose tasks take several

months of CPU time on a typical host [6]).

The average number of active hosts is the average

arrival rate times the average lifetime. The arrival rate

can change over time. The arrival history for

SETI@home is shown in Figure 14. Spikes in the

graph correspond to public-relations events; gaps

correspond to server outages.

Table 14: Host arrival history

3.3) Number of hosts per user

We analyzed the number of hosts per user (see

Table 5 and Figure 15). The top three users had 2179,

1738 and 1491 hosts. Most users have a single host,

but most hosts belong to a user with multiple hosts.

Hosts per

user

Number

of users

Number

of hosts

Percentage

total hosts

1 83,870 83,870 38.6%

2-10 32,257 97,770 44.9%

11-100 1,217 25,620 11.7%

101-1000 27 4,884 2.2%

1000+ 3 5,408 2.4%

Table 5: Number of hosts per user

Figure 15: Number of hosts per user

4) Host availability

The BOINC client measures several aspects of host

usage. The fraction of real time during which the

BOINC client is running on the host is called the on-

fraction. On most hosts, this is about the same as the

fraction of time the host is powered on, since BOINC

starts automatically at boot-up and runs in the

background all the time. The mean on-fraction is 0.81.

The fraction (of the time that BOINC is running,

not real time) that a physical network connection exists

is called the connected-fraction. For hosts with LAN

and DSL connections, this is close to 1. For hosts with

telephone-based (ISDN or modem) or wireless

connections, it may be lower. The mean connected-

fraction is 0.83.

There may be periods when BOINC is running but

is not allowed to execute applications or transfer files.

This occurs when 1) the host is in use and user

preferences are to not run when in use, 2) the time of

day is outside a user-specified range, or 3) the user has

explicitly suspended BOINC activity (via a command

in the BOINC graphical interface). The fraction (of the

time that BOINC is running, not real time) when

BOINC is allowed to compute and communicate is

called the active-fraction. The average active-fraction

is 0.84.
Not all CPU time is available to BOINC: other

CPU-intensive programs may run on some hosts.

BOINC does not directly measure CPU load. Instead, it

maintains, for each project, the CPU efficiency,

defined as the average number of CPU seconds

accumulated by that project’s applications per second

of real time during which they are runnable. This

reflects CPU used for BOINC application graphics,

CPU usage by non-BOINC applications, and I/O

activity by the BOINC application.

In the case of SETI@home, which does very little

I/O, CPU efficiency reflects primarily non-BOINC

CPU load. The average CPU efficiency is 0.899.

5) User preferences

BOINC allows users to specify various preferences

that limit how and when BOINC uses their resources.

These preferences include:

Run if user active: whether BOINC should be

active if there has been mouse or keyboard input in the

last three minutes. The default is No, and 71.9%

selected Yes.

Active hours: a range of hours during which

BOINC may compute or communicate. 3.3% of users

specified a range, with average duration 12.41 hours.

Communication hours: a range of hours during

which BOINC may communicate. 0.8% of users

specified a range, with average duration 12.18 hours.

Confirm before connecting: whether BOINC

should get user permission before communicating. This

is relevant to modem users and to low-latency

applications. The default is No, and 8.4% selected Yes.

Minimum connection interval: a target minimum

time between network connections. This has two

purposes: 1) it lets modem users (who often pay a fee

per connection) concentrate communication into

infrequent bursts; 2) if a host (e.g. a laptop) is

sporadically connected, the user can ensure that enough

work is fetched to keep the host busy. The default is

0.1 days, and the average setting is 0.69 days.

Disk access interval: a minimum time between

disk accesses. This is relevant to laptops with a low-

power mode in which the disk turns off. The default is

60 seconds; the average setting is 78.9 seconds.

Disk maximum used: the maximum amount of disk

space used by BOINC. The default is 100 GB. The

average setting is 63.6 GB.

Disk maximum percent used: the maximum

percentage of total disk space used by BOINC. The

default is 50%. The average setting is 42.6%.

Disk minimum free: the minimum amount of free

disk space. The default is 0.1 GB, and average setting

is 0.97 GB.

In addition to these preferences, which apply to all

projects to which a host is attached, users can specify a

per-project resource share that determines how

bottleneck resources are allocated. 16.8% of

SETI@home users participate in other BOINC

projects, and the average resource share of

SETI@home (including those not participating in other

projects) is 0.917.

6) Analysis

6.1) Total processing capacity

Because anonymously volunteered computers can’t

be trusted, many volunteer computing projects use

redundant computing to minimize the effect of

malicious or malfunctioning hosts. In this technique,

each task is executed on two hosts belonging to

different volunteers. If the results agree within

application-defined tolerances, they are accepted;

otherwise a third instance is executed, and so on. If the

fraction of inconsistent results is low, redundant

computing decreases effective computing power by a

factor of slightly more than two.

Combining the factors we have presented in

Sections 2, 3 4 and 5, and assuming that these factors

are statistically independent, we have the following

expression for the total floating-point computing power

X available to a project:

X = Xarrival * Xlife * Xncpus * Xflops * Xeff

 * Xonfrac * Xactive * Xredundancy * Xshare

Where Xarrival is the average arrival rate of hosts,

Xlife is the average lifetime of hosts, Xncpus is the

average number of CPUs per host, Xflops is the average

FLOPS per CPU, Xeff is the average CPU efficiency,

Xonfrac is the average on-fraction, Xactive is the average

active-fraction, Xredundancy is the reciprocal of the

average redundancy, and Xshare is the average resource

share (relative to other CPU-intensive projects).

For applications that use large amounts of RAM or

disk, this estimate must be scaled by the factors

described in sections 2.5 and 6.2. Analogous

expressions estimate the limits of storage capacity and

network transfer.

In the case of SETI@home, the product of the first

4 factors (i.e. the hardware resource) is about 341

TeraFLOPS. The product of the remaining 5 factors is

0.28. Thus SETI@home, at the time of this study, had

a potential processing rate of 95.5 TeraFLOPS.

6.2) Data-intensive applications

To what extent can volunteer computing handle

data-intensive tasks (i.e. those with large input files)?

Foster and Iamnitchi discuss this question [10], and

point out that while SETI@home processes about 25

KB of data per CPU hour, some applications have a

much higher ratio. They cite astrophysics applications

that process 60 MB and 660 MB per CPU hour.

To study this question, we define the data rate R of

an application to be the average number of Mbytes of

data it processes using 3.6e12 floating-point operations

(i.e. one hour of CPU time on a 1 GFLOPS computer).

We assume that a client is able to do both computation

and communication nearly all the time (the BOINC

client overlaps these activities, and network

communication takes little CPU time).

Suppose a 1 GFLOPS computer has a 1 Mbps

network connection. Then it can download 450 MB per

hour. If it runs an application for which R=450, both

network and CPU are saturated (i.e. busy all the time).

If R < 450, the network is not saturated; if R > 450, the

CPU is not saturated (of course, the excess CPU time

could be used by a less data-intensive project).

This critical value of R varies with the host; it will

be smaller if the host has a faster CPU or a slower

network connection. For a given value of R, some hosts

will be network-saturated and won’t be able to devote

all their CPU time to the application. Figure 15

illustrates this effect, showing the computing power

available as a function of R. The shaded line shows the

fraction of hosts whose CPUs are not saturated at the

given data rate.

Figure 15: Computing power versus data rate

It can be seen that considerable processing power

(tens or hundreds of TeraFLOPS) is available even to

applications with R = 100 or 1,000. Thus volunteer

computing can potentially handle data-intensive

applications.

This analysis omits some important factors:

saturating lots of client network connections could

swamp the outgoing server links, ISP backbone

networks, and shared incoming links. Solving these

problems raises numerous research issues; we believe

that an approach based on gleaning unused network

bandwidth could be effective.

7) Related work

Sarmenta [17] articulated the idea of volunteer

computing, and explored many of its technical issues.

The Entropia [5] and XtremWeb [11] projects studied

the speedup of specific applications in the context of

volunteer computing. Gray [12] analyzed the

economics of volunteer computing.

The Condor project [15] pioneered using the idle

time of organizational workstations to do parallel

computing. Other projects have studied the statistics of

host availability [2, 13, 19]. Acharya and Setia [1]

studied the availability of idle RAM on workstation

pools. Eggert and Touch [8] studied operating system

mechanisms for efficient use of idle resources.

Workstation cycle-stealing (and Grid computing in

general) differs fundamentally from volunteer

computing. It generally requires that parallel tasks run

simultaneously, so that they may communicate; this in

turn requires the ability to migrate running tasks.

Resources are trusted, so that validation techniques like

redundant computing are not needed. Workstations

can be contacted dynamically (in BOINC, all

communication is client-initiated, so that firewalls and

NATs can be traversed).

8) Conclusion

We have analyzed the hardware characteristics of

the hosts participating in a typical volunteer computing

project, and have described various factors that affect

the computing power and storage capacity available to

the project. The host pool provides processing at a

sustained rate of 95.5 TFLOPS. We have shown that it

can provide lesser but still significant processing power

for data-intensive applications. It also has the potential

to provide 7.74 Petabytes of storage, with an access

rate of 5.27 Terabytes per second.

We have provided a variety of data about host type

and location. This data can be used to help volunteer

computing projects decide what platforms to support

and how to recruit participants.

In the future we plan to extend BOINC to allow

peer-to-peer communication, as this will increase its

capacity for applications with large intermediate files

or replicated input files. This will require knowledge

of peer-to-peer connectivity and bandwidth; we may

use an existing system such as DIMES [17] for this

purpose. We also plan to use BOINC data to study the

change in Internet resources over time. We currently

have about 10 months of historical host information,

but the rapid change in the host pool makes it hard to

derive meaningful conclusions from this data.

We thank Rom Walton, Matt Lebofsky, and many

volunteer programmers for their help in collecting

performance data, and we thank several colleagues who

read and commented on the paper. This work was

supported by the National Science Foundation under

grants SCI-0221529 and SCI-0438443.

References

[1] A. Acharya and S. Setia. “Availability and Utility of

Idle Memory in Workstation Clusters”. SIGMETRICS

99. Atlanta, May 1-4 1999.

[2] A. Acharya, G. Edjlali, and J. Saltz. “The Utility of

Exploiting Idle Workstations for Parallel Computation”.

SIGMETRICS 97. Seattle, June 15-18 1997.

[3] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D.

Werthimer. “SETI@home: An Experiment in Public-

Resource Computing”. Communications of the ACM,

45(11), November 2002, 56-61.

[4] D.P. Anderson. “BOINC: A System for Public-Resource

Computing and Storage”. 5th IEEE/ACM International

Workshop on Grid Computing, pp. 365-372, Nov. 8

2004, Pittsburgh, PA.

[5] A. Chien, B. Calder, S. Elbert, and K. Bhatia.

“Entropia: architecture and performance of an enterprise

desktop grid system”. J. Parallel Distrib. Comput.

63(2003) 597-610.

[6] C. Christensen, T. Aina and D. Stainforth. “The

Challenge of Volunteer Computing With Lengthy

Climate Model Simulation”. To appear in 1st IEEE

International Conference on e-Science and Grid

Computing, Melbourne, Dec 5-8 2005.

[7] H.J. Curnow and B.A. Wichmann. “A Synthetic

Benchmark”. The Computer Journal 19(1), pp. 43-49.

1976.

[8] L. Eggert and J. Touch. “Idletime Scheduling with

Preemption Intervals”. 20th ACM Symposium on

Operating Systems Principles, Oct. 23-26 2005,

Brighton, UK.

[9] eTForecasts. http://www.etforecasts.com

[10] I. Foster and A. Iamnitchi. “On Death, Taxes, and the

Convergence of Peer-to-Peer and Grid Computing”.

2nd International Workshop on Peer-to-Peer Systems.

Berkeley, February 20-21 2003.

[11] C. Germain, V Neri, G. Fedak and F. Cappello.

“XtremWeb: Building an Experimental Platform for

Global Computing”. First IEEE/ACM International

Workshop on Grid Computing. December 17-20, 2000,

Bangalore, India.

[12] J. Gray. “Distributed Computing Economics”.

Microsoft Research Technical Report MSR-TR-2003-

24, March 2003.

[13] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, A.

Chien. “Characterizing and Evaluating Desktop Grids:

An Empirical Study” in Proceedings of the International

Parallel and Distributed Processing Symposium

(IPDPS'04), Santa Fe, NM, April 2004.

[14] J. Kubiatowicz, et al. OceanStore: An Architecture for

Global-Scale Persistent Storage. ASPLOS, December

2000.

[15] M.J. Litzkow, M. Livny, M.W. Mutka. “Condor - A

Hunter of Idle Workstations”. Proceedings of the 8th

International Conference of Distributed Computing

Systems, pages 104-111, June, 1988.

[16] L.F.G. Sarmenta, “Bayanihan: Web-Based Volunteer

Computing Using Java”. Lecture Notes in Computer

Science 1368, Springer-Verlag, 1998. pp. 444-461.

[17] Y. Shavitt and E. Shir. “DIMES: Let The Internet

Measure Itself”. Computer Communication Review 35

(5), October 2005, 71-74.

[18] R. P. Weicker. “Dhrystone: A Synthetic Systems

Programming Benchmark”. Communications of the

ACM 27 (10), October 1984, pp. 1013-1030.

[19] R. Wolski, D. Nurmi, J. Brevik, H. Casanova, and A.

Chien. “Models and Modeling Infrastructures for

Global Computational Platforms”, Workshop on Next

Generation Software, IPDPS, April 2005.

