
 1

AMP: An Affinity-based Metadata Prefetching Scheme in Large-Scale
Distributed Storage Systems

Lin Lin

1, 2
, Xuemin Li

2
, Hong Jiang

1
, Yifeng Zhu

3
, Lei Tian

1,4

1
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

{lilin, jiang}@cse.unl.edu
2
College of Computer Science, Chongqing University, Chongqing, China 400030

lixuemin@cqu.edu.cn
3
Electrical and Computer Engineering, University of Maine Orono, ME 04469

zhu@eece.maine.edu
4
Department of Computer Science, Huazhong University of Science and Technology, Wuhan, China 430074

ltian@mail.hust.edu.cn

Abstract Prefetching is an effective technique for

improving file access performance, which can

significantly reduce access latency for I/O systems. In

distributed storage systems, prefetching for metadata files

is critical for the overall system performance. In this

paper, an Affinity-based Metadata Prefetching (AMP)

scheme is proposed for metadata servers in large-scale

distributed storage systems to provide aggressive

metadata prefetching. Through mining useful information

about metadata accesses from past history, AMP can

discover metadata file affinities accurately and

intelligently for prefetching. Compared with LRU and

some of the latest file prefetching algorithms such as

Nexus and C-Miner, our trace-driven simulations show

that AMP can improve buffer cache hit rates by up to 12%,

4.5% and 4% respectively, while reduce the average

response time by up to 60%, 12% and 8%, respectively.

Index terms: Prefetching, metadata, distributed storage,

data mining

1. Introduction and Motivations

High-performance computer system designers have

long sought to improve the performance of file systems,

which have proved critical to the overall performance of

an exceedingly broad class of applications. The scientific

and high-performance computing communities in

particular have driven advances in the performance and

scalability of distributed storage systems. Since all I/O

requests can be classified into two categories, namely,

user data requests and metadata requests, the scalability of

accessing both data and metadata has to be carefully

maintained to avoid any potential performance bottleneck

along all data paths. A novel decoupled storage

architecture diverting actual file data flows away from

metadata traffic has emerged to be an effective approach

to alleviating the I/O bottleneck in modern storage

systems [1]-[4], as shown in Figure 1. In such a system a

client will consult the metadata server (MDS) cluster,

which is responsible for maintaining the file system

namespace, to receive permission to open a file and

information specifying the location of its contents.

Subsequent reading or writing takes place independently

of the MDS cluster by communicating directly with one

or more storage devices [5][6]. Previous studies on this

new storage architecture mainly focus on optimizing the

scalability and efficiency of file data accesses by using

RAID-styled striping [7], [8], caching [9], prefetching

[14], scheduling [10], and networking schemes [11].

However, while the scalability of metadata operations

is also very critical, it tends to be ignored or under

estimated. Metadata not only provides file attributes and

data block addresses, but also synchronizes concurrent

updates, enforces access control, supports recovering and

maintains consistency between user data and file metadata.

A study on the file system traces collected in different

environments over a course of several months shows that

metadata operations may make up over 50% of all file

system operations [13], making the performance of the

MDS cluster critically important. Furthermore, while the

overall capacity of the storage server cluster can easily

scale by increasing the number of (relatively

independently operating) devices, metadata exhibits a

higher degree of interdependence, making the design of a

scalable system much more challenging.

Figure 1 System architecture

 2

Existing caching and prefetching schemes designed

for and applied on actual file data typically ignore

metadata characteristics [14]. The most important

characteristic of metadata is its much smaller size relative

to actual file contents. Conventional data prefetching

algorithms are usually very conservative and only

prefetch one or two files upon each cache miss. They are

not efficient for metadata prefetching. Because of the

relatively small size of metadata, the miss-prefetching

penalty for metadata on both the disk side and the

memory cache side is likely much less than the penalty for

file data miss-prefetching [14]. Hence, an aggressive

prefetching algorithm is desirable for metadata in order to

handle large-volume of metadata traffic.

This paper proposes an Affinity-based Metadata

Prefetching (AMP) scheme that applies data mining

techniques to discover and identify the affinities existing

among metadata accesses from past history and then uses

these affinities as hints to judiciously perform aggressive

metadata prefetching. The main technical contribution of

this paper includes.

1. It develops an aggressive but efficient affinity-based

metadata prefetching algorithm based on data mining

techniques. The experimental results show that we

can prefetch up to 6 metadata files at one time.

2. AMP explores the impacts of different parameters

(such as prefetching group size, server-oriented vs.

client-oriented prefetching, group header size) to

optimize the tradeoff between the efficiency of

metadata prefetching, and the memory and network

overhead.

3. It compares AMP with some of the state-of-the-art

prefetching schemes, including the Nexus metadata

prefetching algorithm [31] and the block-correlation-

discovery C-Miner algorithm [30], qualitatively and

quantitatively. Comparison results show that AMP

consistently outperforms both Nexus and C-Miner.

The rest of the paper is organized as follows. Section

2 outlines existing relevant algorithms to provide a

background for AMP. Section 3 describes the proposed

algorithm and discusses its design issues. The simulation

methodology and performance evaluations are presented

in Section 4. Section 5 concludes the paper.

2. Related Work

In this section, we briefly discuss some representative

work that is closely related to this paper. Data prefetching

has been studied extensively in databases, file systems

and I/O-intensive applications. Most of previous

prefetching work either relies on applications to pass hints

[15-19] or is based on simple heuristics such as sequential

accesses. Ref. [20] is an example of prefetching in disk

caches. I/O prefetching for out-of-core applications

including compiler-assisted prefetching is proposed in [21,

22] and prefetching through speculative execution is

introduced in [23].

STEP [32] proposed a sequentiality and thrashing

detection-based prefetching scheme to aggressively

prefetch disk data based on cost-benefit analysis for two

typical storage access patterns: sequential access patterns

and disk thrashing patterns.

In the spectrum of sophisticated prefetching schemes,

research has been conducted for semantic distance-based

file prefetching for mobile or networked file servers. The

SEER project from UCLA [24, 25] groups related files

into clusters by keeping track of semantic distances

between files and downloading as many complete clusters

as possible onto the mobile station. Kroeger extends the

probability graph to a tree with each node representing the

sequence of consecutive file accesses from the root to the

node [26]. Lei and Duchamp also use a similar structure

by building a probability tree [27].

There are also some studies on metadata prefetching.

Nexus [31] is a weighted-graph-based prefetching

technique, built on successor relationship, to gain

performance benefit from prefetching specifically for

clustered metadata servers.

Data mining methods have been mostly used to

discover patterns in sales, finance or bio-informatics

databases [29]. A few studies have applied them in

storage systems. For example, Li et al. [30] proposed C-

Miner using data mining techniques to find block

correlations on storage server to direct prefetching.

3. Affinity-based Metadata Prefetching Scheme

In this section, we will introduce our new data mining

based metadata prefetching algorithm AMP. AMP

explores deep affinities from metadata files and involves

two steps: (1) It first analyzes past metadata access history

and extracts connotative relevancy for each file metadata

and (2) It then utilizes the small size characteristic of file

metadata and aggressively prefetches multiple metadata

simultaneously. Since file metadata typically are much

smaller than actual file contents, the penalty for metadata

miss-prefetching would be significantly smaller

compared to data miss-prefetching.

A. Metadata Affinities

Metadata affinities widely exist in storage systems.

The metadata of two or more files are affined if they are

“linked” together either spatially or temporally. For

example, the directory of /usr always has a strong spatial

affinity with /usr/bin, /usr/bin/ls and /usr/bin/ps. If we can

find out the strong affinities between these metadata, we

could prefetch all these metadata files into cache

simultaneously. This can potentially significantly reduce

the response time, especially in distributed storage

systems, where such metadata files must be obtained from

remote MDS.

B. Affinity Identification

AMP uses the recent metadata access history and

applies data mining techniques to discover metadata

affinities. For example, it can use one week’s trace to

 3

extract the affinities, and then use this affinity information

for metadata prefetching during the next week. A

prefetching window with a fixed capacity is adopted in

AMP. The prefetching window will move when a new

request arrives. In the prefetching window, we fix the first

two items as a header and concatenate the rest items with

the header to form a sub–sequence. The pseudo-code of

our algorithm above is provided to describe how AMP

works.

We use an example to illustrate the basic idea of our

algorithm. Suppose that the history window size is six and

a request sequence is given as follows

D= {ABCADEFABE}

As illustrated in Figure 2 the procedure divides the

sequence into fixed-length segments by moving the

history window sequentially.

For each segment, the first two file metadata are

considered as the prefix group and the set of the latter four

file metadata excluding those already present in the prefix

are the affix group. For example, in the segment

{ABCADE}, the affix {CDE} does not include A since A

is present in the prefix. The basic idea is that a prefix

group gives positive support for prefetching to all

elements in the affix. For example, for the segment

{AB:CDE} if A and B are accessed, {CDE}are likely to be

accessed again in the future. The following shows the

details of all prefix and affix groups for all segments

obtained by moving the window sequentially along the

access sequence.

 An access forest will be built with all accessed file

metadata in the near past as roots, as shown in Figure 4.

Then, each root node is extended into a weighted

access tree by adding all prefix-affix pairs. For example,

for the prefix-affix pair {AB:CDE}, AB will be added to

the tree as level one node. Then ABC, ABD, ABE will be

added to the tree as level 2 nodes. After that, ABCD,

Figure 2 History window movements

1 F � NULL //F is a forest

2 for each item mi of M do

3 if (mi does not exist in F)

4 add mi to F

5 end for

6 for i←1 to n-1

7
i

G =mi m(i+1)…m(i+w-1) // history window size w

8
i

G ←filter (
i

G) //filter: fix first two items in
i

G and remove same items in
i

G

9 group
i

S ←mi m(i+1)+ subset(
i

G =m(i+2)…mk) //fix first two items of
i

G , concatenate with the rest items in
i

G

10 for each
i

S do

11 search mi in F

12 if (children of node mi do not contain node mi m (i+1))

13 add node mi m(i+1) under node mi

14 else

15 frequency of node mi m(i+1) + 1

16 j←3

17 while j<=length (
i

S)

18 find mi mi+1 … mj-1

19 if (children of mi mi+1 … mj-1do not contain mi mi+1 … mj)

20 add node mi mi+1 … mj under mi mi+1 … mj-1

21 else

22 frequency of mi mi+1 … mj +1

23 j++

24 end while

25 end for

26 end for

27 MaxGroups(all trees in F) //for each tree, compare frequency of every node under level 2 and find out the node who has the biggest frequency

Figure 4 tree root nodes

Figure 3 Group information

 4

ABCE, ABDE will be added to the tree. Then, the last one

ABCDE would be added to the tree, as shown in Figure 5.

From the training result of A, as shown in Figure 5, we

can find that the frequency of node ABE is 2, which is

larger than the weights of all other paths rooted from A.

This indicates that ABE has a strong affinity. When item A

or AB appears, E is most likely to be accessed in the very

near future. This obtained affinity is what we need for

prefetching.

Many prefeching algorithms use only the currently

accessed object to predict the objects that are likely to be

accessed in the near future. Such approaches are believed

to be neither accurate nor adequate. Accordingly, AMP

chooses to use multiple related objects, instead of the

currently accessed one, to perform more accurate

predictions. For example, given a group ABCDEF, if A is

already in the cache, and a cache miss happens on B, the

prefetching affinity should be AB CDEF→ , instead

of B CDEF→ . Using AB simultaneously provides a

higher prefetching accuracy. This is based on the fact that

1 1 2(|) (|)P Group X P Group X X<

To sum up, AMP has the following major advantages.

Firstly, the most significant difference between AMP and

other probability based approaches is that AMP is not

limited to predicting the most immediate successor. AMP

aims to provide a deeper insight into the future and aims

to predict a group of metadata that are likely to be

accessed for aggressive prefetching.

Secondly, AMP provides more accurate predictions.

Nexus constructs a graph for all items and selects those

items with largest weight for prefetching. The relations

between file metadata are relatively simple and

straightforward. In addition, the affinity identified by

Nexus is sometimes inaccurate under some circumstances.

Typical prefetching rules in Nexus are similar to this:

A CD→ (Upon a miss on A, Nexus prefetches C and D).

AMP explores the affinity with longer prefix, such as

AB CD→ in which A is in cache and a miss happens on

B. AMP uses both A and B to determine the prefetching of

CD. This design with longer prefix helps to reduce mis-

predictions and also improves the capability of predicting

further into the future. In addition, our experiments show

that when the prefix length increases to 3 or 4, the

prefetching accuracy almost has no significant

improvement, while the algorithm complexity increases

exponentially.

 Thirdly, AMP is more aggressive than Nexus by taking

advantage of the fact that file metadata typically are small

in size and its improved ability to infer deeper metadata

affinity. In real-trace experiments, we have found that

AMP can prefetch up to 6 file metadata during a cache

miss, while Nexus only perfetches 2 file metadata.

 Similarly to other algorithms, AMP can also perform

affinity discovery in a quasi-on-line fashion without

system-level intervention. For example, AMP can train

each day trace at midnight and use the training results for

the second day's prefetching. The new training results are

accumulated into the database while old results in the

database are either replaced or aged over the time. In this

aspect, AMP differs from C-Miner that only uses recent

traces for training and training results are not accumulated.

Another important difference between AMP and C-

Miner is that AMP has less overhead. AMP places more

focus on affinity and less on strict access orders. For

example, AMP treats the following prefix-affix pair

exactly the same in identifying affinity:

A BCDE→ and A DEBC→ , while C-Miner considers

them to be different for prefetching. Accordingly, C-

Miner identifies few affinity sequences, thus less accurate.

C. Design issues

 In order to optimize AMP, we choose all the AMP

parameters such as prefetch group size, header size

through experiments. All the experiments are conducted

using the HP traces [34], which is a 10-day long, 500GB

trace.

C.1 Prefetch group size

The size of file metadata is typically uniform and

much smaller than the size of file contents in most file

systems. With a relatively small size, the penalty for miss-

prefetching on both the disk side and the memory cache

side is likely much less than that for file data, allowing the

opportunity for exploring and adopting more aggressive

prefetching algorithms. We study the impact of prefetch

group size from 3 to 9, as shown in Figure 6. It is

interesting to observe that the hit rate remains almost

unchanged when the group size increases from 7 to 9.

Thus, in this paper, we choose to use 8 as the group size.

This means that when the size of prefix group is two, we

can prefetch up to 6 items for one cache miss.

C.2 Header size

In this part, we will analyze the hit rate and the

prefetching header size. This header size is also referred

to as the prefix N is the N-gram scheme of the data-

Figure 5 Training results

 5

mining technology. N-grams are used in various areas of

statistical natural language processing and genetic

sequence analysis. When we fix the first item of the group,

we call it 2-gram, while fixing the first two items of the

group renders it 3-gram and so on. Instinctively, when the

header size increases, the prefetching accuracy is expected

to increase, while the algorithm’s complexity increases

exponentially. Figure 7 shows the prefetching

performance of 2-gram, 3-gram, 4-gram and 5-gram in the

context of our AMP and some real-life traces. Compared

with 3-gram, 4-gram or 5-gram cannot provide more

improvement. Thus, in this paper, 3-gram is chosen in

AMP.

C.3 Server-oriented grouping vs. client-oriented grouping

There are two different approaches to affinity

discovery: 1) obtain affinities for all requests received by

a particular metadata server; or 2) obtain affinities for

requests sent separately from individual clients. In this

paper, we refer to the former as server-oriented access

grouping, and the latter as client-oriented access grouping

[31]. Our experimental results, shown in Figures 8 and 9,

prove that the client-oriented scheme always out-performs

the server-oriented scheme. Thus, the client-oriented

grouping is chosen in our design.

4. Performance Evaluation

We use trace-driven simulations to evaluate our

design based on several large traces collected in real

systems. We have developed a metadata management

simulator that incorporates the widely used DiskSim

simulator [33].

A. workloads

 To the best of our knowledge, there are no publicly

available file system traces that have been collected from

a large scale cluster with thousands of nodes. We conduct

our simulations on two public traces: the HP traces [34]

and the Harvard SOS Traces [28]. HP traces are 10-day

long file system traces collected on a time-sharing server

with a total of 500GB storage capacity and 236 users. To

emulate the I/O behaviors of such a large system and

facilitate a meaningful simulation, we artificially scale up

the workloads from 200 clients to about 8000 clients by

merging multiple trace files into one, thus increasing the

access density while maintaining the time order of access

sequences. The Harvard SOS traces are collected from

some departments and main campus general-purpose

servers with a total capacity of 160 GB. We use the one

collected from the main campus general-purpose

servers for our simulation.

Figure 6 Group size comparison.

Figure 7 N-Gram header size.

Figure 9 Server-oriented grouping vs. client-

oriented grouping, cache size=750.

Figure 8 Server-oriented grouping vs. client-

oriented grouping, cache size=400.

 6

B. Simulation framework

In order to obtain the pure prefetching effect, we first

experiment on a local machine that only consists of local

cache and local disk. The prefetching result in local client

can directly influence the performance of the whole

system. Figure 10 shows the hit rates of several

prefetching algorithms, namely, LRU, Nexus, C-Miner,

OPT, and our AMP. OPT represents the optimal cache

replacement policy assuming perfect knowledge of the

access sequence but does not involve any prefetching.

In order to simulate a distributed storage system, we

develop a system simulator to study the clustered-MDS

based storage system. In our simulation framework, the

storage system consists of four layers: 1) client cache, 2)

metadata server cache, 3) cooperative cache, and 4)

metadata server hard disks. When one client needs to

obtain a file metadata, it first checks its local cache (client

cache). Upon a cache miss, the client sends the request to

the corresponding MDS, for which corresponding

network latency would be added to the response time.

Since our main goal is to explore the distributed storage

system and prefetching, we assume that all nodes are

connected with a network delay of 0.3 ms; if the MDS

also sees a miss, the MDS looks up the cooperative cache,

which would add another network latency to the response

time. Otherwise, MDS can only fetch the metadata files

from the disk, which potentially experiences a relatively

long delay due to the slow disk access.

C. Hit rate comparison

The overall cache hit rate includes three components:

client local hit, metadata server memory hit, and

cooperative cache hit. Obviously, local hit rate directly

reflects the effectiveness of the prefetching algorithm

because the prefetching algorithm is executed in this layer.

We have collected the hit rate for all these three levels.

The client cache is the most important part, because it

directly reflects the effectiveness of prefetching and

greatly influences the hit rate and response time. Figures

11 and 12 show the hit rate when the system contains

different clients. It shows that AMP always has the best

local hit rate, which is consistent with the local hit rate

experiment. Also, we can see that the three prefetching

algorithms, AMP, C-miner and Nexus, all beat the off-line

optimal cache replacement algorithm (OPT) that doesn’t

perform prefetching. This proves the effectiveness of

metadata prefetching.

Figure 10 Client local hit rate (HP trace).

A. System hit rate with 8MDS and

800 clients (HP trace).

B. System hit rate with 8MDS and

1600 clients(HP trace).

C. System hit rate with 8MDS and

2400 clients (HP trace).

Figure 11 System Hit Rates Comparisons under

the HP Traces

 7

D. Response time Comparison

The average response time is measured by

incorporating Disksim at layer 4. As explained earlier, the

whole system has four layers, including client cache,

MDS cache, cooperative cache and MDS disk. From

Figure 13 and Figure 14, we can see that AMP has the

best response time. Compared with LRU, Nexus and C-

miner, trace-driven simulations show that AMP can

improve the hit rates by up to 12%, 4.5% and 4%,

respectively, while reduce the average response time by

up to 60%, 12% and 8%, respectively.

800 1600 2400
0

10

20

30

40

50

60

70

80

90

100

Clients

A
v
e
ra

g
e
 r

e
s
p
o
n

s
e
 t

im
e

LRU

OPT

NEXUS

C-miner

AMP

5. Conclusion

This paper proposes an Affinity-based Metadata

Prefetching (AMP) scheme for distributed large-scale

storage systems. By exploiting the past affinities between

file metadata, AMP can achieve aggressive but efficient

prefetching. AMP has the following contributions:

• By analyzing the past access requests, AMP can

discover deeper and more accurate metadata affinities.

• AMP takes advantages of the small-size characteristic

of metadata files and performs more aggressive

prefetching than state-of-the-art prefetching

algorithms.

• AMP has small overhead and can be implemented as

a quasi-online prefetching algorithm.

Both analytical and simulation results

show that AMP improves the cache hit rate and reduces

metadata access time significantly.

Acknowledgements

This work was supported in part by the US National

Science Foundation under Grants CCF-0621526, CCF-

0621493, CNS-0723093, and DRL-0737583, Natural

Science Foundation Project of Chongqing, China, under

Grant CSTC-2007BB2178, and China’s National Basic

Research 973 Program under Grant 2004CB318201.

Figure 13 Average response time for 8 MDS

(HP traces).

A. System hit rate with 8MDS and

800 clients (Harvard SOS trace).

B. System hit rate with 8MDS and

1600 clients (Harvard SOS trace).

C. System hit rate with 8MDS and 2400

clients (Harvard SOS trace).

Figure 12 System Hit Rates Comparisons under the

Harvard Traces

Figure 14 Average response time for 8 MDS

(Harvard SOS traces).

 8

References
[1] “Lustre: A scalable, high-performance file system,” Cluster

File Systems Inc. white paper, version 1.0, Nov. 2002.

[2] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical bloom filter

arrays (hba):a novel, scalable metadata management system

for large cluster-based storage,” in Cluster Computing, 2004

IEEE International Conference on, 2004, pp. 165–174.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,

“PVFS: A parallel file system for linux clusters,” in

Proceedings of the 4th Annual Linux Showcase and

Conference. Atlanta, GA: USENIX Association, 2000, pp.

317–327.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file

system,” in SOSP, 2003, pp. 29–43.

[5] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed

disk striping to provide high I/O data rates. Computing

Systems, 4(4):405–436, 1991.

[6] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,

H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J.

Zelenka. A cost-effective, high-bandwidth storage

architecture. In Proceedings of the 8th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 92–

103,San Jose, CA, Oct. 1998.

[7] J. H. Hartman and J. K. Ousterhout, “The Zebra striped

network file system,” in High Performance Mass Storage

and Parallel I/O:Technologies and Applications, H. Jin, T.

Cortes, and R. Buyya, Eds. New York, NY: IEEE Computer

Society Press and Wiley, 2001, pp.309–329.

[8] E. J. Otoo, D. Rotem, and A. Romosan, “Optimal file-bundle

caching algorithms for data-grids,” in SC’2004 Conference

CD. Pittsburgh, PA: IEEE/ACM SIGARCH, Nov. 2004,

lBNL.

[9] M. Gupta and M. Ammar, “A novel multicast scheduling

scheme for multimedia servers with variable access

patterns,” Dec. 26 2002.

[10] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-

bandwidth network file system,” in SOSP, 2001, pp. 174–

187.

[11] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller,

“Dynamic metadata management for petabyte-scale file

systems,” in SC’2004Conference CD. Pittsburgh, PA:

IEEE/ACM SIGARCH, Nov. 2004,

[12] D. Roselli, J. Lorch, and T. Anderson. A comparison of file

system workloads. In Proceedings of the 2000 USENIX

Annual Technical Conference, pages 41–54, June 2000.

[13] D. Roselli, J. Lorch, and T. Anderson. A comparison of file

system workloads. In Proceedings of the 2000 USENIX

Annual Technical Conference, pages 41–54, June 2000.

[14] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: A novel

weightedgraph-based prefetching algorithm for metadata

servers in petabyte-scale storage systems,” Proc. 6th IEEE

Int’l Symp. on Cluster Computing and the Grid, pp. 409–

416, 2006.

[15] P. Cao, E. Felten, and K. Li. Application-controlled file

caching policies. In USENIX Summer 1994 Technical

Conference, pages 171–182, June 1994.

[16] P. Cao, E.W. Felten, A. Karlin, and K. Li. A study of

integrated prefetching and caching strategies. In

Proceedings of ACM SIGMETRICS, May 1995.

[17] A. Tomkins, R. H. Patterson, and G. Gibson. Informed

multi-process prefetching and caching. In Proceedings of

the 1997 ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pages 100–114. ACM

Press, 1997.

[18] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P.

Cao, E. Felten, G. Gibson, A. R. Karlin, and K. Li. A trace-

driven comparison of algorithms for parallel prefetching

and caching. In Proceedings of the 1996 Symposium on

Operating Systems Design and Implementation, pages 19–

34. USENIX Association, 1996.

[19] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,

and J. Zelenka. Informed prefetching and caching. In the

15th ACM Symposium on Operating System Principles,

1995.

[20] V. Soloviev. Prefetching in segmented disk cache for multi-

disk systems. In Proceedings of the fourth workshop on I/O

in parallel and distributed systems, pages 69–82. ACM

Press, 1996.

[21] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-

based I/O prefetching for out-of-core applications. ACM

Transactions on Computer Systems, 19(2):111–170, 2001.

[22] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic

compiler-inserted I/O prefetching for out-of-core

applications. In Proceedings of the 1996 Symposium on

Operating Systems Design and Implementation, pages 3–17.

USENIX Association, Oct. 1996.

[23] F. W. Chang and G. A. Gibson. Automatic I/O hint

generation through speculative execution. In Operating

Systems Design and Implementation, pages 1–14, 1999.

[24] G. Kuenning. Design of the SEER predictive caching

scheme. In Workshop on Mobile Computing Systems and

Applications, 1994.

[25] G. H. Kuenning and G. J. Popek. Automated hoarding for

mobile computers. In Proceedings of the 15th Symposium

on Operating Systems Principles, pages 264–275, St. Malo,

France, Oct. 1997. ACM.

[26] T. M. Kroeger and D. D. E. Long. Predicting file-system

actions from prior events. In 1996 USENIX Annual

Technical Conference, pages 319– 328, 1996.

[27] H. Lei and D. Duchamp. An analytical approach to file

prefetching. In 1997 USENIX Annual Technical

Conference, Anaheim, California, USA, 1997.

[28] “SOS Project Traces,” [online]. Available:

http://www.eecs.harvard.edu/sos/traces.html.

[29] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann Publishers, 2001.

[30] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner:

Mining block correlations in storage systems. In

Proceedings of the 3rd USENIX Conference on File and

Storage Technologies (FAST), pages 173–186, 2004.

[31] Peng Gu, Yifeng Zhu, Hong Jiang, Jun Wang, Nexus: A

Novel Weighted-Graph-Based Prefetching Algorithm for

Metadata Servers in Petabyte-Scale Storage Systems.

International Symposium on Cluster Computing and the

Grid, 2006.

[32] Shuang Liang, Song Jiang, Xiaodong Zhang. STEP:

Sequentiality and Thrashing Detection Based Prefetching to

Improve Performance of Networked Storage Servers. In

Proceedings of the ICDCS'07, Toronto, Canada, June 2007.

[33] G. Ganger. Systemoriented evaluation of I/O subsystem

performance. Technical Report CSE-TR-243-95, University

of Michigan, June 1995.

[34] E. Riedel, M. Kallahalla, and R. Swaminathan, “A

framework for evaluating storage system security,” in

FAST, 2002, pp. 15–30.

