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Abstract Prefetching is an effective technique for 

improving file access performance, which can 

significantly reduce access latency for I/O systems. In 

distributed storage systems, prefetching for metadata files 

is critical for the overall system performance. In this 

paper, an Affinity-based Metadata Prefetching (AMP) 

scheme is proposed for metadata servers in large-scale 

distributed storage systems to provide aggressive 

metadata prefetching. Through mining useful information 

about metadata accesses from past history, AMP can 

discover metadata file affinities accurately and 

intelligently for prefetching. Compared with LRU and 

some of the latest file prefetching algorithms such as 

Nexus and C-Miner, our trace-driven simulations show 

that AMP can improve buffer cache hit rates by up to 12%, 

4.5% and 4% respectively, while reduce the average 

response time by up to 60%, 12% and 8%, respectively. 
 

Index terms: Prefetching, metadata, distributed storage, 

data mining 

 

 

1. Introduction and Motivations 

 

High-performance computer system designers have 

long sought to improve the performance of file systems, 

which have proved critical to the overall performance of 

an exceedingly broad class of applications. The scientific 

and high-performance computing communities in 

particular have driven advances in the performance and 

scalability of distributed storage systems. Since all I/O 

requests can be classified into two categories, namely, 

user data requests and metadata requests, the scalability of 

accessing both data and metadata has to be carefully 

maintained to avoid any potential performance bottleneck 

along all data paths. A novel decoupled storage 

architecture diverting actual file data flows away from 

metadata traffic has emerged to be an effective approach 

to alleviating the I/O bottleneck in modern storage 

systems [1]-[4], as shown in Figure 1. In such a system a 

client will consult the metadata server (MDS) cluster, 

which is responsible for maintaining the file system 

namespace, to receive permission to open a file and 

information specifying the location of its contents. 

Subsequent reading or writing takes place independently 

of the MDS cluster by communicating directly with one 

or more storage devices [5][6]. Previous studies on this 

new storage architecture mainly focus on optimizing the 

scalability and efficiency of file data accesses by using 

RAID-styled striping [7], [8], caching [9], prefetching 

[14], scheduling [10], and networking schemes [11].  

However, while the scalability of metadata operations 

is also very critical, it tends to be ignored or under 

estimated. Metadata not only provides file attributes and 

data block addresses, but also synchronizes concurrent 

updates, enforces access control, supports recovering and 

maintains consistency between user data and file metadata. 

A study on the file system traces collected in different 

environments over a course of several months shows that 

metadata operations may make up over 50% of all file 

system operations [13], making the performance of the 

MDS cluster  critically important. Furthermore, while the 

overall capacity of the storage server cluster can easily 

scale by increasing the number of (relatively 

independently operating) devices, metadata exhibits a 

higher degree of interdependence, making the design of a 

scalable system much more challenging. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 System architecture 
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Existing caching and prefetching schemes designed 

for and applied on actual file data typically ignore 

metadata characteristics [14]. The most important 

characteristic of metadata is its much smaller size relative 

to actual file contents. Conventional data prefetching 

algorithms are usually very conservative and only 

prefetch one or two files upon each cache miss. They are 

not efficient for metadata prefetching. Because of the 

relatively small size of metadata, the miss-prefetching 

penalty for metadata on both the disk side and the 

memory cache side is likely much less than the penalty for 

file data miss-prefetching [14]. Hence, an aggressive 

prefetching algorithm is desirable for metadata in order to 

handle large-volume of metadata traffic. 

This paper proposes an Affinity-based Metadata 

Prefetching (AMP) scheme that applies data mining 

techniques to discover and identify the affinities existing 

among metadata accesses from past history and then uses 

these affinities as hints to judiciously perform aggressive 

metadata prefetching. The main technical contribution of 

this paper includes. 

1. It develops an aggressive but efficient affinity-based 

metadata prefetching algorithm based on data mining 

techniques. The experimental results show that we 

can prefetch up to 6 metadata files at one time.  

2. AMP explores the impacts of different parameters 

(such as prefetching group size, server-oriented vs. 

client-oriented prefetching, group header size) to 

optimize the tradeoff between the efficiency of 

metadata prefetching, and the memory and network 

overhead. 

3. It compares AMP with some of the state-of-the-art 

prefetching schemes, including the Nexus metadata 

prefetching algorithm [31] and the block-correlation-

discovery C-Miner algorithm [30], qualitatively and 

quantitatively. Comparison results show that AMP 

consistently outperforms both Nexus and C-Miner. 

 

The rest of the paper is organized as follows. Section 

2 outlines existing relevant algorithms to provide a 

background for AMP. Section 3 describes the proposed 

algorithm and discusses its design issues. The simulation 

methodology and performance evaluations are presented 

in Section 4. Section 5 concludes the paper. 

 

2. Related Work 

In this section, we briefly discuss some representative 

work that is closely related to this paper. Data prefetching 

has been studied extensively in databases, file systems 

and I/O-intensive applications. Most of previous 

prefetching work either relies on applications to pass hints 

[15-19] or is based on simple heuristics such as sequential 

accesses. Ref. [20] is an example of prefetching in disk 

caches. I/O prefetching for out-of-core applications 

including compiler-assisted prefetching is proposed in [21, 

22] and prefetching through speculative execution is 

introduced in [23]. 

STEP [32] proposed a sequentiality and thrashing 

detection-based prefetching scheme to aggressively 

prefetch disk data based on cost-benefit analysis for two 

typical storage access patterns: sequential access patterns 

and disk thrashing patterns. 

In the spectrum of sophisticated prefetching schemes, 

research has been conducted for semantic distance-based 

file prefetching for mobile or networked file servers. The 

SEER project from UCLA [24, 25] groups related files 

into clusters by keeping track of semantic distances 

between files and downloading as many complete clusters 

as possible onto the mobile station. Kroeger extends the 

probability graph to a tree with each node representing the 

sequence of consecutive file accesses from the root to the 

node [26]. Lei and Duchamp also use a similar structure 

by building a probability tree [27]. 

There are also some studies on metadata prefetching. 

Nexus [31] is a weighted-graph-based prefetching 

technique, built on successor relationship, to gain 

performance benefit from prefetching specifically for 

clustered metadata servers. 

Data mining methods have been mostly used to 

discover patterns in sales, finance or bio-informatics 

databases [29]. A few studies have applied them in 

storage systems. For example, Li et al. [30] proposed C-

Miner using data mining techniques to find block 

correlations on storage server to direct prefetching. 

 

3. Affinity-based Metadata Prefetching Scheme  

In this section, we will introduce our new data mining 

based metadata prefetching algorithm AMP. AMP 

explores deep affinities from metadata files and involves 

two steps: (1) It first analyzes past metadata access history 

and extracts connotative relevancy for each file metadata 

and (2) It then utilizes the small size characteristic of file 

metadata and aggressively prefetches multiple metadata 

simultaneously. Since file metadata typically are much 

smaller than actual file contents, the penalty for metadata 

miss-prefetching would be significantly  smaller 

compared to data miss-prefetching. 

 

A. Metadata Affinities 

Metadata affinities widely exist in storage systems. 

The metadata of two or more files are affined if they are 

“linked” together either spatially or temporally. For 

example, the directory of /usr always has a strong spatial 

affinity with /usr/bin, /usr/bin/ls and /usr/bin/ps. If we can 

find out the strong affinities between these metadata, we 

could prefetch all these metadata files into cache 

simultaneously. This can potentially significantly reduce 

the response time, especially in distributed storage 

systems, where such metadata files must be obtained from 

remote MDS.  

 

B. Affinity Identification 

AMP uses the recent metadata access history and 

applies data mining techniques to discover metadata 

affinities. For example, it can use one week’s trace to  
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extract the affinities, and then use this affinity information 

for metadata prefetching during the next week. A 

prefetching window with a fixed capacity is adopted in 

AMP. The prefetching window will move when a new 

request arrives. In the prefetching window, we fix the first 

two items as a header and concatenate the rest items with 

the header to form a sub–sequence. The pseudo-code of 

our algorithm above is provided to describe how AMP 

works. 

We use an example to illustrate the basic idea of our 

algorithm. Suppose that the history window size is six and 

a request sequence is given as follows 

D= {ABCADEFABE} 

As illustrated in Figure 2 the procedure divides the 

sequence into fixed-length segments by moving the 

history window sequentially.  

 
For each segment, the first two file metadata are 

considered as the prefix group and the set of the latter four 

file metadata excluding those already present in the prefix 

are the affix group. For example, in the segment 

{ABCADE}, the affix {CDE} does not include A since A 

is present in the prefix.  The basic idea is that a prefix 

group gives positive support for prefetching to all  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elements in the affix. For example, for the segment 

{AB:CDE} if A and B are accessed, {CDE}are likely to be 

accessed again in the future. The following shows the 

details of all prefix and affix groups for all segments 

obtained by moving the window sequentially along the 

access sequence.  

 
 

 

    An access forest will be built with all accessed file 

metadata in the near past as roots, as shown in Figure 4.  

 

  
 

 

Then, each root node is extended into a weighted 

access tree by adding all prefix-affix pairs. For example, 

for the prefix-affix pair {AB:CDE}, AB will be added to 

the tree  as level one node. Then ABC, ABD, ABE will be 

added to the tree as level 2 nodes. After that, ABCD, 

Figure 2 History window movements 

1   F � NULL //F is a forest 

2   for each item mi of M do 

3      if (mi does not exist in F) 

4        add mi to F 

5   end for 

6   for i←1 to n-1 

7      
i

G =mi m(i+1)…m(i+w-1) // history window size w 

8      
i

G ←filter (
i

G ) //filter: fix first two items in
i

G and remove same items in
i

G  

9      group 
i

S ←mi m(i+1)+ subset(
i

G =m(i+2)…mk ) //fix first two items of 
i

G , concatenate with the rest items in 
i

G   

10        for each 
i

S  do  

11          search mi in F 

12          if (children of node mi do not contain node mi m (i+1)) 

13            add node mi m(i+1) under node mi 

14          else 

15            frequency of node mi m(i+1) + 1 

16          j←3 

17          while j<=length (
i

S )        

18            find mi mi+1 … mj-1 

19              if (children of mi mi+1 … mj-1do not contain mi mi+1 … mj) 

20                add node mi mi+1 … mj under mi mi+1 … mj-1 

21              else 

22                  frequency of mi mi+1 … mj +1 

23              j++ 

24          end while 

25        end for 

26   end for 

27   MaxGroups(all trees in F) //for each tree, compare frequency of every node under level 2 and find out the node who has the biggest frequency 

Figure 4 tree root nodes 

Figure 3 Group information 
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ABCE, ABDE will be added to the tree. Then, the last one 

ABCDE would be added to the tree, as shown in Figure 5. 

 
 

 

 

 

 
 

 

From the training result of A, as shown in Figure 5, we 

can find that the frequency of node ABE is 2, which is 

larger than the weights of all other paths rooted from A. 

This indicates that ABE has a strong affinity. When item A 

or AB appears, E is most likely to be accessed in the very 

near future. This obtained affinity is what we need for 

prefetching. 

Many prefeching algorithms use only the currently 

accessed object to predict the objects that are likely to be 

accessed in the near future. Such approaches are believed 

to be neither accurate nor adequate. Accordingly, AMP 

chooses to use multiple related objects, instead of the 

currently accessed one, to perform more accurate 

predictions. For example, given a group ABCDEF, if A is 

already in the cache, and a cache miss happens on B, the 

prefetching affinity should be AB CDEF→ , instead 

of B CDEF→ . Using AB simultaneously provides a 

higher prefetching accuracy. This is based on the fact that  

1 1 2( | ) ( | )P Group X P Group X X<  

To sum up, AMP has the following major advantages. 

Firstly, the most significant difference between AMP and 

other probability based approaches is that AMP is not 

limited to predicting the most immediate successor. AMP 

aims to provide a deeper insight into the future and aims 

to predict a group of metadata that are likely to be 

accessed for aggressive prefetching.  

Secondly, AMP provides more accurate predictions. 

Nexus constructs a graph for all items and selects those 

items with largest weight for prefetching. The relations 

between file metadata are relatively simple and 

straightforward. In addition, the affinity identified by 

Nexus is sometimes inaccurate under some circumstances. 

Typical prefetching rules in Nexus are similar to this: 

A CD→  (Upon a miss on A, Nexus prefetches C and D).  

AMP explores the affinity with longer prefix, such as 

AB CD→  in which A is in cache and a miss happens on 

B. AMP uses both A and B to determine the prefetching of 

CD. This design with longer prefix helps to reduce mis-

predictions and also improves the capability of predicting 

further into the future. In addition, our experiments show 

that when the prefix length increases to 3 or 4, the 

prefetching accuracy almost has no significant 

improvement, while the algorithm complexity increases 

exponentially.  

    Thirdly, AMP is more aggressive than Nexus by taking 

advantage of the fact that file metadata typically are small 

in size and its improved ability to infer deeper metadata 

affinity. In real-trace experiments, we have found that 

AMP can prefetch up to 6 file metadata during a cache 

miss, while Nexus only perfetches 2 file metadata.  

    Similarly to other algorithms, AMP can also perform 

affinity discovery in a quasi-on-line fashion without 

system-level intervention. For example, AMP can train 

each day trace at midnight and use the training results for 

the second day's prefetching. The new training results are 

accumulated into the database while old results in the 

database are either replaced or aged over the time. In this 

aspect, AMP differs from C-Miner that only uses recent 

traces for training and training results are not accumulated. 

Another important difference between AMP and C-

Miner is that AMP has less overhead. AMP places more 

focus on affinity and less on strict access orders. For 

example, AMP treats the following prefix-affix pair 

exactly the same in identifying affinity: 

A BCDE→ and A DEBC→ , while C-Miner considers 

them to be different for prefetching. Accordingly, C-

Miner identifies few affinity sequences, thus less accurate. 

 

C. Design issues 

     In order to optimize AMP, we choose all the AMP 

parameters such as prefetch group size, header size 

through experiments. All the experiments are conducted 

using the HP traces [34], which is a 10-day long, 500GB 

trace. 

C.1 Prefetch group size 

The size of file metadata is typically uniform and 

much smaller than the size of file contents in most file 

systems. With a relatively small size, the penalty for miss-

prefetching on both the disk side and the memory cache 

side is likely much less than that for file data, allowing the 

opportunity for exploring and adopting more aggressive 

prefetching algorithms. We study the impact of prefetch 

group size from 3 to 9, as shown in Figure 6. It is 

interesting to observe that the hit rate remains almost 

unchanged when the group size increases from 7 to 9. 

Thus, in this paper, we choose to use 8 as the group size. 

This means that when the size of prefix group is two, we 

can prefetch up to 6 items for one cache miss.  

C.2 Header size 

In this part, we will analyze the hit rate and the 

prefetching header size. This header size is also referred 

to as the prefix N is the N-gram scheme of the data-

Figure 5 Training results 
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mining technology. N-grams are used in various areas of 

statistical natural language processing and genetic 

sequence analysis. When we fix the first item of the group, 

we call it 2-gram, while fixing the first two items of the 

group renders it 3-gram and so on. Instinctively, when the 

header size increases, the prefetching accuracy is expected 

to increase, while the algorithm’s complexity increases 

exponentially. Figure 7 shows the prefetching 

performance of 2-gram, 3-gram, 4-gram and 5-gram in the 

context of our AMP and some real-life traces. Compared 

with 3-gram, 4-gram or 5-gram cannot provide more 

improvement. Thus, in this paper, 3-gram is chosen in 

AMP. 

 

 
 

 
 

 

C.3 Server-oriented grouping vs. client-oriented grouping 

There are two different approaches to affinity 

discovery: 1) obtain affinities for all requests received by 

a particular metadata server; or 2) obtain affinities for 

requests sent separately from individual clients. In this 

paper, we refer to the former as server-oriented access 

grouping, and the latter as client-oriented access grouping 

[31]. Our experimental results, shown in Figures 8 and 9, 

prove that the client-oriented scheme always out-performs 

the server-oriented scheme. Thus, the client-oriented 

grouping is chosen in our design. 

 

4. Performance Evaluation  

We use trace-driven simulations to evaluate our 

design based on several large traces collected in real 

systems. We have developed a metadata management 

simulator that incorporates the widely used DiskSim 

simulator [33].  

A. workloads 

   To the best of our knowledge, there are no publicly 

available file system traces that have been collected from 

a large scale cluster with thousands of nodes. We conduct 

our simulations on two public traces: the HP traces [34] 

and the Harvard SOS Traces [28]. HP traces are 10-day 

long file system traces collected on a time-sharing server 

with a total of 500GB storage capacity and 236 users. To 

emulate the I/O behaviors of such a large system and 

facilitate a meaningful simulation, we artificially scale up 

the workloads from 200 clients to about 8000 clients by 

merging multiple trace files into one, thus increasing the 

access density while maintaining the time order of access 

sequences. The Harvard SOS traces are collected from 

some departments and main campus general-purpose 

servers with a total capacity of 160 GB. We use the one 

collected from the main campus general-purpose 

servers for our simulation. 

 
 

 

 

 
 

 

 

 

 

Figure 6 Group size comparison. 

Figure 7 N-Gram header size. 

Figure 9 Server-oriented grouping vs. client-

oriented grouping, cache size=750. 

Figure 8 Server-oriented grouping vs. client-

oriented grouping, cache size=400. 
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B. Simulation framework 

In order to obtain the pure prefetching effect, we first 

experiment on a local machine that only consists of local 

cache and local disk. The prefetching result in local client 

can directly influence the performance of the whole 

system. Figure 10 shows the hit rates of several 

prefetching algorithms, namely, LRU, Nexus, C-Miner, 

OPT, and our AMP. OPT represents the optimal cache 

replacement policy assuming perfect knowledge of the 

access sequence but does not involve any prefetching. 

 
  

 

In order to simulate a distributed storage system, we 

develop a system simulator to study the clustered-MDS 

based storage system. In our simulation framework, the 

storage system consists of four layers: 1) client cache, 2) 

metadata server cache, 3) cooperative cache, and 4) 

metadata server hard disks. When one client needs to 

obtain a file metadata, it first checks its local cache (client 

cache). Upon a cache miss, the client sends the request to 

the corresponding MDS, for which corresponding 

network latency would be added to the response time. 

Since our main goal is to explore the distributed storage 

system and prefetching, we assume that all nodes are 

connected with a network delay of 0.3 ms; if the MDS 

also sees a miss, the MDS looks up the cooperative cache, 

which would add another network latency to the response 

time. Otherwise, MDS can only fetch the metadata files 

from the disk, which potentially experiences a relatively 

long delay due to the slow disk access.  

 

C. Hit rate comparison 

The overall cache hit rate includes three components: 

client local hit, metadata server memory hit, and 

cooperative cache hit.  Obviously, local hit rate directly 

reflects the effectiveness of the prefetching algorithm 

because the prefetching algorithm is executed in this layer. 

We have collected the hit rate for all these three levels. 

The client cache is the most important part, because it 

directly reflects the effectiveness of prefetching and 

greatly influences the hit rate and response time.  Figures 

11 and 12 show the hit rate when the system contains 

different clients. It shows that AMP always has the best 

local hit rate, which is consistent with the local hit rate 

experiment. Also, we can see that the three prefetching 

algorithms, AMP, C-miner and Nexus, all beat the off-line 

optimal cache replacement algorithm (OPT) that doesn’t 

perform prefetching. This proves the effectiveness of 

metadata prefetching.   

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 10 Client local hit rate (HP trace). 

A. System hit rate with 8MDS and 

800 clients (HP trace). 

B. System hit rate with 8MDS and 

1600 clients(HP trace). 

C. System hit rate with 8MDS and 

2400 clients (HP trace). 

Figure 11 System Hit Rates Comparisons under 

the HP Traces 
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D. Response time Comparison 

The average response time is measured by 

incorporating Disksim at layer 4. As explained earlier, the 

whole system has four layers, including client cache, 

MDS cache, cooperative cache and MDS disk. From 

Figure 13 and Figure 14, we can see that AMP has the 

best response time. Compared with LRU, Nexus and C-

miner, trace-driven simulations show that AMP can 

improve the hit rates by up to 12%, 4.5% and 4%, 

respectively, while reduce the average response time  by 

up to 60%, 12% and 8%, respectively. 
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5. Conclusion 

This paper proposes an Affinity-based Metadata 

Prefetching (AMP) scheme for distributed large-scale 

storage systems. By exploiting the past affinities between 

file metadata, AMP can achieve aggressive but efficient 

prefetching. AMP has the following contributions: 

• By analyzing the past access requests, AMP can 

discover deeper and more accurate metadata affinities. 

• AMP takes advantages of the small-size characteristic 

of metadata files and performs more aggressive 

prefetching than state-of-the-art prefetching 

algorithms. 

• AMP has small overhead and can be implemented as 

a  quasi-online prefetching algorithm. 

Both analytical and simulation results 

show that AMP improves the cache hit rate and reduces 

metadata access time significantly. 
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Figure 13 Average response time for 8 MDS 

(HP traces). 

A. System hit rate with 8MDS and 

800 clients (Harvard SOS trace). 

B. System hit rate with 8MDS and 

1600 clients (Harvard SOS trace). 

C. System hit rate with 8MDS and 2400 

clients (Harvard SOS trace). 

Figure 12 System Hit Rates Comparisons under the 

Harvard Traces 

Figure 14 Average response time for 8 MDS 

(Harvard SOS traces). 
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