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Clustered Workflow Execution of Retargeted Data Analysis Scripts ∗

Daniel L. Wang, Charles S. Zender, and Stephen F. Jenks
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{wangd, zender, stephen.jenks}@uci.edu

Abstract

Supercomputing advances have enabled computational

science data volumes to grow at ever increasing rates, com-

monly resulting in more data produced than can be practi-

cally analyzed. Whole-dataset download costs have grown

to impractical heights, even with multi-Gbps networks, forc-

ing scientists to rely on server-side subsetting and limiting

the scope of data they can analyze on a workstation.

Our system supplements existing scientific data ser-

vices with lightweight computational capability, providing a

means of safely relocating analysis from the desktop to the

server where clustered execution can be coordinated, ex-

ploiting data locality, reducing unnecessary data transfer,

and providing end-users with results several times faster.

We show how dataflow and other compiler-inspired analy-

ses of shell scripts of scientists’ most common analysis tools

enables parallelization and optimizations in disk and net-

work I/O bandwidth. We benchmark using an actual geo-

science analysis script, illustrating the crucial performance

gains of extracting workflows defined in scripts and optimiz-

ing their execution. Current results quantify significant im-

provements in performance, showing the promise of bring-

ing transparent high-performance analysis to the scientist’s

desktop.

1 Introduction

Now that multi-core processors have flooded the main-

stream, parallel programming and applications have be-

come necessities in delivering ever-increasing performance.

While scientists are promised virtual supercomputers by

computational grids and universal, locatable, replicated,

and distributed filesystems in data grids, few solutions ad-

dress the problem of how to analyze this new avalanche of

data. Simple terabyte data analyses are too computation-

ally simple to submit to compute grids, and too bulky to

∗This work is supported by the National Science Foundation under

grants ATM-0231380 and IIS-0431203.

download from data grids, which expect transfer sizes of

100 megabytes or less–sizes that are orders of magnitude

too small.

Our medium-scale system bridges the gap between tera-

or petascale data production and hundred-megabyte desk-

top data inspection and visualization. In this paper we

show how the Script Workflow Analysis for MultiProcess-

ing (SWAMP) system enables generation of directed acyclic

graph (DAG) workflows automatically from unmodified

shell scripts, and the resulting parallelization and execution

of these workflows on commodity cluster installations. We

explain the case for using script-defined workflows, the spe-

cial importance of locality that motivates integrating com-

putation with data service, and problems with scheduling

algorithms not fundamentally influenced by I/O considera-

tions. Our results show large performance improvements,

which, coupled with a nearly transparent interface, should

enable scientists to analyze datasets of far broader scope.

By drastically reducing the barrier to data-intensive data

analysis, we enable scientists to ask questions of a differ-

ent, more expansive nature.

2 Scripted Workflows

2.1 Background

Grid computing implementations have focused on two

approaches. Computational grids expose raw computational

power and data grids expose distributed, replicated storage.

Both provide a unified interface to heterogeneous resources.

Workflow scheduling is a well-studied topic in the form

of business workflows[20] and constraint systems [8]. Re-

search in computational workflows has focused on optimiz-

ing performance and resource utilization in machines, clus-

ters, batch systems, and grids. Current research, however,

has shown the difficulty of applying workflow technology

in the sciences without careful understanding of scientists’

usage.
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2.2 Existing Systems

Grid workflow systems such as Pegasus[9] and Kepler[2]

require workflows to be specified using XML [3] or other

custom workflow languages, usually providing a GUI de-

sign tool to assist users in workflow construction. These

systems allow workflows to be defined flexibly and ex-

plicitly so that they may be efficiently scheduled with a

workflow-aware grid scheduler, and are suited for opera-

tional workflows, i.e. workflows whose parameters may

change rapidly, but whose task graphs are approximately

constant for particular analyses. In some systems e.g.

[9], users create abstract workflows which are subsequently

transformed into concrete workflows by a planner, whereas

other systems execute workflows directly[1]. Examples

of workflow specification standards include Grid Services

Flow Language (GSFL) [15], IBM’s Web Services Flow

Language (WSFL) [16], and the Open Grid Services Archi-

tecture Basic Execution Standard (OGSA-BES) [12]. The

Job Submission Description Language (JSDL) [4] standard-

izes methods for single job submission, and can be used as

part of workflows. While these workflow languages employ

similar semantics, they are mutually incompatible, with few

exceptions. Because of such customization, these work-

flows are difficult to develop and debug outside of their own

systems.

An important characteristic common to many existing

workflow systems is their target task size. Indeed, computa-

tional workflow systems are almost universally targeted at

the highest computational tasks. Thus, they provide rich,

full-featured workflow definition, allowing developers to

fine-tune their workflows for optimum performance. In-

deed, the significant effort required to define such work-

flows is amortized over execution times often measured in

days, and over many workflow executions. For scientists

who conceive of an idea in the morning and want answers

in the afternoon, however, such features make those systems

unsuitable for use with simple one-off data analyses.

2.3 Workflow Definition Alternatives

An alternate method of defining workflows utilizes ex-

isting non-workflow-specific programming and scripting

languages. This complicates the task of mapping tasks

to processors, and likely requires a new implementation

of the language compiler or interpreter. These languages

also lack the ability to explicitly specify workflow-specific

constructs. However, the benefits of established debug-

ging practices, existing familiarity and comfort, and trans-

parency of execution make such a workflow system far

more usable to many computational scientists. Such a

system could be wrapped in an otherwise vanilla shell

interpreter that seamlessly and automatically invokes the

scripted workflow engine where appropriate, completing

the transparency of a distributed, scripted workflow system.

Workflows are, by definition, sets of tasks bound by

causal/temporal dependencies. Dataflow languages such as

SISAL [11], SAC [19], or other declarative or functional

languages are natural candidates for workflow use, but their

somewhat limited acceptance in the programming world

makes them no more familiar than grid workflow languages

to most users. Existing parallel processing models such as

skeletons in structured parallel programming [7] could be

used, but are as unfamiliar as dataflow languages to non-

computer scientists.

Other, more mainstream programming languages specify

programs in the form of causally and temporally dependent

expressions and statements that can be considered low-level

workflows. One project, GRID Superscalar [5] provides

a way to specify and execute workflows defined in a Perl

language-based syntax, illustrating the practicality of using

a mainstream imperative language for workflow definition.

Most general-purpose programming languages are de-

signed with semantics operating at granularities too fine to

be practically retargeted on grid and distributed systems.

High-level “glue” languages like shell-scripting languages,

on the other hand, exist to connect sequences of dependent

operations, such as applications written in common pro-

gramming languages.

2.4 Scripted Scientific Analysis

Because they are commonly used to bind sequences of

applications together, shell-scripting languages are well-

suited to defining workflows. Indeed, scientists often an-

alyze datasets using sequences of executables operating at

the file or dataset levels, bound together in shell scripts,

where more flexible tools as Matlab [13] or custom For-

tran code are too cumbersome or too slow because of their

fine granularity. Shell-scripting’s flexibility in invoking any

binary executable is also the primary difficulty in optimiza-

tion and parallelization. Argument syntax and semantics of

program invocations pose the greatest problem, thus forc-

ing any prospective optimizer to treat invocations as opaque

functions with unpredictable side-effects, and preventing

basic optimization. Although the practical impossibility of

extracting a program’s argument syntax and semantics in

the general case seems to present an insurmountable bar-

rier to optimization, a workable approach is to define limits

in syntax while maintaining the familiar usability of shell-

scripting.

We have observed that many shell-scripts, especially

those specifying long workflows, utilize a small subset of

the full syntax to invoke a similarly limited set of pro-

grams. Large and meaningful data analyses involving hun-

dreds of gigabytes can be specified using sequences of invo-
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srca=model1.nc

srcb=model2.nc

ncdiff \$srca \$srcb a-b.nc

ncbo --mult a-b.nc a-b.nc sqr.nc

ncwa sq.nc msqab.nc

Figure 1. Scripted computation of mean

squared difference

Source dataset

modela.nc modelb.nc

ncdiff modela.nc modelb.nc a-b.nc

Compute scalar difference

modela.ncmodelb.nc

ncbo a-b.nc a-b.nc sq.nc

Compute square

a-b.nc

ncwa --op_typ=avgsqr a-b.nc msqdiff.nc

Compute weighted average of squares

sq.nc

msqdiff.nc

Output file

msqdiff.nc

Figure 2. Resultant DAG from script in Fig-
ure 1

cations of handful of executables, each representing a well-

defined processing component. These scripts seldom uti-

lize control-flow constructs and rarely involve syntax more

complex than simple looping. Geoscience data analysis,

in particular, frequently involves relatively simple compu-

tations that iterate over large datasets to produce summary

statistics such as spatio-temporal averaging. The reduced

syntax and program set forms a domain-specific language

which is tractable to implement. The code in Figure 1 illus-

trates a sequence of NCO (see section 4.1) commands that

compute the mean squared difference between all variables

in two different files. This code is a simple example of a

script that can be submitted to our system. Its DAG work-

flow representation is illustrated in Figure 2.

Other scientific workflow systems such as Taverna[18]

and Triana[21] have recognized the immense utility in pro-

viding scientists with easy ways to compose and execute

workflows constructed with well-defined data sources and

a limited set of operations. In both systems, the interface

is graphical, and simple enough to empower scientists with

the ability to construct ad-hoc workflows without worrying

about execution.

A disadvantage of shell-script specification for work-

flows is its inability to explicitly specify traditional busi-

ness and grid workflow characteristics. Shell-scripts may

therefore be unsuitable for those applications. However, by

transforming ordinary shell scripts into workflows, a sys-

tem can bring high-performance concurrent execution to the

daily data analysis tasks of an individual scientist. By op-

erating at the granularity of program invocation, this syn-

tax could allow for workflows to be generically constructed

from existing and future programs, provided that the system

were extended to support their particular argument formats.

Additionally, providing workflow parallelism independent

of programs means that an additional level of parallelism

beyond what the programs themselves provide, whether

they be multithreaded, process-forked, MPI- or OpenMP-

enabled.

2.5 Relocation

The execution of an arbitrary program depends on its

context. Executables are isolated by virtual memory, but

their behavior often affects and depends on an underlying

filesystem. Indeed, in considering a sequence of program

invocations in a workflow as an application, the filesystem

becomes a context much as physical memory is to an ap-

plication. Just as traditional compiled programs must not

directly access memory with real physical addresses, script

workflows cannot be safely executed in general using di-

rectly specified filenames. An execution engine must safely

remap script filenames to physical filenames in order to

safely execute. Mapping workflows specified in grid work-

flow languages have similar problems and rely on explicit

dependency specification and well-defined semantics.

Mapping script filenames can be considered similar

to register renaming in modern out-of-order dynamically-

scheduled processor architectures. Script filenames, like

register specifiers, can be dynamically mapped to physical

equivalents in order to eliminate write-after-write (WAW),

and write-after-read (WAR) dependencies. Script work-

flows however, due to their typically low frequency of

control-flow dependencies, stand to benefit far more from

such renaming.

3 I/O-Driven Scheduling

The data produced by ever advancing high performance

computing continues to grow faster than such data can be

analyzed and digested. Grid workflow projects recognize

data movement as a crucial factor in scheduling workflow
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execution, but continue to target computationally-intense

workflows where bandwidth costs remain small in com-

parison to computation costs. With computational per-

formance increasing rapidly and long-haul network band-

width increasing relatively slowly in comparison, overall

time for end-user data analysis depends increasingly on net-

work bandwidth. In some classes of applications, such as

geoscience data analysis, these network transfer times have

become dominant. Because of the enormous cost of down-

loading data produced remotely, scientists only infrequently

perform such analyses, restricting their scope to small sub-

sets when downloading. On-demand dataset subsetting has

subsequently become a common feature in data centers such

as the National Center for Atmospheric Research’s Com-

munity Data Portal and the HUGO Genomic Nomenclature

Database, sometimes comprising 99% of download requests

[10].

In the class of applications exemplified by geoscience

data analysis, data movement costs often exceed computa-

tional costs, so a different approach to scheduling is needed.

Traditional scheduling methods typically consider data de-

pendence as an ordering constraint that affects correctness,

not as a primary determiner of performance. Instructions or

tasks that can be parallelized are issued in parallel as soon as

their inputs are available, moving input data to idle process-

ing units appropriately. When the input data to be moved

is measured in gigabytes or more, it is clear that it may be

more expensive to parallelize a series of processing tasks

among multiple nodes than it is to allow execution on a sin-

gle node.

I/O-driven scheduling implies that scheduling decisions

are made to minimize data movement costs rather than to

maximize processor utilization. Cases such as the above

where parallelization is unprofitable should ideally be de-

tected by such a scheduler. Unfortunately, such I/O costs

are difficult to determine a priori in the general case, sim-

ilarly as it is difficult to predict a program’s runtime heap

memory usage. In workflow execution, input data sizes and

thus approximate transfer costs for a future task are known

once the task is ready, thus allowing a dynamic scheduler to

utilize such information “just-in-time,” for future schedul-

ing, but less optimally compared to knowing transfer costs

in advance.

Although transfer costs are difficult to predict in the

general case, certain workflows are composed of opera-

tions or tasks whose output characteristics, including size,

are deterministic from input parameters and data charac-

teristics. Such operations are common in application do-

mains like geoscience data analysis. Representing work-

flows as directed acyclic graphs, this added information al-

lows approximation of transfer costs and possibly compu-

tation costs to form edge weights, facilitating the search

for an efficient schedule as a form of graph partitioning.

Figure 3. Block diagram of our system

Computer-aided design of VLSI layouts has historically

used such partitioning algorithms to minimize wire count in

layout, due to increasing on-chip signal latency. In some

of these algorithms, graph vertices have been duplicated

to reduce edge count. Similarly, an I/O driven workflow

scheduler may find it more efficient to duplicate an opera-

tion rather than incur transfer costs.

In recognition of the high cost of data movement and the

explosion of data production, it is clear that data-intensive

workflow execution should almost always occur near the

source of production. Since end-user (i.e. scientist) data

analysis is almost always representable as a data-intensive

workflow, this makes data-computation co-location an in-

evitability.

4 Architecture

We implemented our system, a workflow execution

framework to provide computation services integrated with

data services. Our first target application is geoscience data

analysis, whose data-intensive and computationally light

characteristics exemplify a class of computing which is not

well-served by existing solutions and will grow in impor-

tance as data production continues to explode. A block dia-

gram of our architecture is shown in Figure 3.

4.1 Interface

We chose a shell-script syntax for workflow specifica-

tion, motivated by the heavy use of shell-scripting in geo-

science data analysis. The syntax supports invocation of a

set of executables, the netCDF Operators (NCO)[23] each

of which operate on variables at a file-level granularity.

These operators are used individually interactively, and are
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Figure 4. A comparison of 16 different IPCC
climate simulations

often composed into sequences which define a rich set of

analyses on atmospheric, oceanic, and other gridded data.

Scripts of these operators commonly involve input data

sizes ranging from gigabytes to terabytes and result in out-

put data sizes far smaller. The chart in Figure 4 exempli-

fies our target class of applications. This plot compares the

predicted surface air temperature change in California from

2000 to 2100 according to 16 different Intergovernmental

Panel on Climate Change [14] models. To create this plot,

more than a terabyte of data was downloaded from remote

sources and analyzed using the same operators and scripts

we target in our system. The resultant data was just a few

megabytes.

Our shell-script syntax supports shell/environment vari-

ables and “#”-delimited comments, as well as standard sin-

gle and double-quoting. Control flow constructs, such as

for-loops and if-statements, and limited backquoted expres-

sions are also supported. A large fraction of existing scripts

require no modification beyond correcting file paths. Out-

put files are differentiated from temporary files, or inter-

mediate results, using a simple heuristic– output files are

defined as files produced at leaves of the workflow’s DAG.

4.2 Execution Engine

Execution begins with a scientist’s use of

a desktop client to submit of the script to the

SWAMP service at the data center. The syn-

tax is straightforward, e.g. swamp client.py

-u http://data.center.org:8080/SWAMP

analysis.swamp, and the submitted script is easy

to debug, because it can be executed on a personal

workstation.

Scripts submitted to the system are parsed for shell syn-

tax and to apply filename remapping, resulting in a di-

rected acyclic graph of the workflow. Each line must be

parsed for variable definition and interpolation, executable

recognition, and comment handling. Executable recogni-

tion verifies program invocations against the custom set of

allowed executable calls, exploiting knowledge of argument

syntax to determine inputs and outputs from raw argument

lists. Inputs are matched against outputs of previous lines

or the available source data, performing appropriate file-

name globbing to handle wildcards in both cases. Parsing

shell and environment variable definition and interpolation

is currently the most computationally intensive part of pars-

ing, forming roughly 80% of overall parsing time. We at-

tribute this performance to the use of a pure Python parsing

library that favored readability and ease of implementation

over performance.

After the parse step, the system searches the parsed list of

commands that are ready to run, in other words, commands

whose inputs do not belong to any unfinished commands,

creating a ready list. After initialization, the engine begins

its execute phase, in which it removes commands from the

ready list and dispatches them to worker nodes with idle

CPU slots. Commands in the ready list are sorted according

to their line number in the original script, allowing overall

execution to stay close to a sequential schedule and pro-

vide partial results earlier to end-users. For each command,

the engine selects an idle slot from nodes that host one or

more of the launching command’s input files, falling back

to round-robin if none of the hosting nodes have free slots.

This simple scheme significantly reduces I/O transfer, al-

though more complex schemes will be explored in the fu-

ture.

Each node hosts a replica of the data server’s data set

on local disk, reducing input data contention. This is a

reasonable limitation, because worker nodes are expected

to have fast interconnections with each other and the mas-

ter. However, since most commands in a workflow operate

on results of other commands, some amount of I/O transfer

is almost always required. Worker nodes must, therefore,

fetch inputs of commands assigned to them on-demand, re-

questing them from the peer workers that produced them.

Because the system favors spreading load among available

nodes, no single node becomes a bottleneck for source data.

To further reduce disk contention, worker nodes write all

command output to a Linux tmpfs RAM disk, switching to

local disk after a “high water mark” has been reached in

memory usage. Exploiting RAM is crucial in parallelizing

data-intensive operations and the RAM disk operates as an

explicit caching mechanism to prevent temporary files from

being written to disk. This dramatically reduces physical

disk contention, shifting disk access behavior towards se-
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quential rather than random.

Communication between nodes occurs using a combina-

tion of SOAP [6] and HTTP. Worker nodes operate as SOAP

and HTTP web services, using SOAP to service command

dispatching, status, and other requests, while deferring to

HTTP for bulk data transfer. Although each worker node

has its own replica of the entire script-referencable dataset,

no shared filesystem is used. We chose to restrict data

movement to HTTP to ease portability to an environment

where worker nodes are distributed geographically on the

Internet.

For the scientist, execution ends when the client code

downloads and writes the output files to disk on her work-

station. Because the inputs do not need to be downloaded,

she is able to get results to an analysis of data much larger

in scope and size than what her workstation could handle.

4.3 Limitations and Comparisons

The system implementation has significant limitations

that limit its applicability, but are acceptable for our tar-

get domain. Because it is impossible to automatically de-

termine a program’s argument format, our system is lim-

ited to handling the set of executables it is programmed to

parse. Extension to support additional programs is possible

by with added parsing code. A comparison to GRID su-

perscalar [5], which is similar in goals and approach, may

be instructive. In contrast, GRID superscalar supports arbi-

trary programs, as long as their task parameters are imple-

mented in an interface definition language, but user work-

flows must be specified in a Perl-like language. Since our

system is intended to be deployed for general access at sci-

entific data centers and reduced numbers of programs are

easier to secure, this is not a serious limitation. Indeed, data

center operators have remarked to us that a system that al-

lowed client-side specification of arbitrary programs would

be unsuitable for public deployment. If additional program

support is required, we anticipate that programmer effort to

support new programs is comparable to that of other work-

flow systems such as GRID superscalar, requiring between

a dozen lines of Python code to support programs with sim-

ple argument formats to a few dozen for more complex pro-

grams.

In clustered execution, our system assumes that the en-

tire data set is replicated among executing cluster nodes.

Although the system can be easily configured so that

nodes may access the same data via NFS from the mas-

ter node(or equivalent), this comes at a heavy performance

cost, considering that our application domain is frequently

performance-limited by disk I/O. Remote data sources can

be accessed in the existing system, but since we have not yet

implemented outward task migration, such accesses may

incur significant download cost. We are also investigating

support for enviroments where each executing node has dif-

ferent sets of input data. Worker nodes currently exchange

intermediate data (but not original input data) with each

other as necessary, although the scheduler attempts to min-

imize this by preferentially scheduling tasks where their in-

put data resides. Our system’s dispatcher is aware of data

locality, and could be modified to handle workers without

data replicas, but we have currently deferred such a feature

in favor of enhancing scientist usability.

Task coordination is completely done by the master

node, which may limit scalability for large scripts and large

numbers of workers. Parsing incurs significant costs for ex-

tremely long (tens of thousands of lines) scripts, but is diffi-

cult to parallelize or distribute, just as it is difficult for a C-

compiler to parallelize the compilation of a single file. An

earlier implementation utilized communicating peer work-

ers which scheduled work and reported progress through

a single database, but suffered in throughput due to con-

tention on the shared data.

5 Experimental Results

5.1 Benchmark

We tested our system with a shell script that applies cus-

tom subsampling to an input dataset of 8230MB, produc-

ing 228MB of output and 26GB in intermediate (tempo-

rary) files. Geoscience data analysis represents a class of

data intensive applications which are not computationally

intensive and not search-based in nature, as in computa-

tional high energy physics. Rather, they are analyses in-

volving iteration over entire datasets, reducing raw values

to summary statistics that illustrate large trends. The bench-

mark case we have chosen illustrates features common to a

large segment of geoscience analysis– large input datasets

reduced by computationally simple operations to summary

statistics that are a small fraction of the input size. Figure 5

summarizes the benchmark workflow.

The benchmark was tested on a cluster of dual Opteron

270s with 16GB of memory and dual 500GB SATA drives,

running CentOS 4.3 Linux. We tested execution with one

master and one, two, or three worker worker nodes, all con-

figured identically. We varied the number of executable

slots (number of parallel processes) allowed on each node

in order to study the benefit of using using more cores (four

available per-node) versus the increased I/O contention. Ta-

ble 1 and Figure 6 summarize the test results. Transfer

times listed are estimated assuming 3MBytes/s (3 ∗ 2
20)

bandwidth, based on NPAD pathdiag [17] measurement of

30Mbits/s bandwidth between UCI and the National Cen-

ter for Atmospheric Research(NCAR). In our example, a

scientist can avoid downloading nearly 8GB, obtaining just

228MB of output rather than the entire input dataset and
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Figure 5. DAG of Benchmark Workflow,

greatly simplified

Table 1. Overall Performance Table(times in

mm:ss)

Baseline 1

worker

x 1 slot

3 workers

x 4 slots

Parsing Time - 4:29 4:29

Computation Time 53:18 86:27 15:06

Transfer Time 45:43 1:16 1:16

Total Time 99:01 87:43 20:51

Normalized Speed 1.00 1.12 4.75

saving 44 minutes of transfer time. Our baseline case shows

the execution time of the original shell script and the time

to download the input data, and takes 99 minutes overall.

The parsing stage incurs significant overhead, due to

shell and environment variable handling in pure Python

code. In our benchmark case consisting of 14,000 com-

mands in 22,000 lines, parsing accounts for approximately

5 minutes of overhead. This benchmark represents a practi-

cal upper-bound on the length of script expected and can be

considered a “stress-test.” We expect the parsing overhead

to be reduced to insignificance for most scripts in future ver-

sions by implementing an early start mechanism that dis-

patches commands as soon as they are discovered as ready,

before parsing completes.

We first compare our system’s end-to-end performance

against the baseline case of non co-located operation, il-

lustrating the enormous speedup from co-locating compu-

tation with data. Secondly, we compare performance of our

system with a single worker node, while varying the num-

ber of available slots, illustrating the degree of parallelism

available in a typical geoscience workflow and our system’s

ability to extract and exploit it. Thirdly, we compare system

performance while varying the number of worker nodes, il-

lustrating the performance potential despite increased I/O

traffic.

5.2 Overall Performance

In Table 1 and graphically in Figure 6, we see that sav-

ings in transfer time dominate the overall benefit from using

our system. Even when configured to use only one slot on

one worker, transfer time savings make up for the consider-

able overhead. Recalling that transfer time was calculated

using 30Mbit/s as effective bandwidth and that actual effec-

tive bandwidth to the data center may be far less, the impor-

tance of reducing unnecessary network transfer cannot be

understated.
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Figure 6. Overall Performance
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The single-worker single-slot performance in Table 1

illustrates the maximum overhead incurred by using our

system. Parsing overhead can be largely eliminated as

described in Section 5.1 and coarser-grained scheduling

should significantly reduce the remaining overhead. Aside

from parsing overhead, we see that the computational per-

formance is unusually slow. This can be explained due

to communication overhead from dispatching commands

to and polling from workers. Since the master sleeps

100ms between polling nodes for completion, idleness

from polling cycles may contribute significant overhead.

With 14640 commands to be executed in the benchmark

script, and assuming that polling inaccuracy is uniformly

distributed between 0 to 100ms, we estimate that coarse

polling adds 50ms × 14640 = 732s or 12.2 minutes of

slack computational time. Discounting the time for each

poll, we can therefore estimate the polling overhead in each

configuration as 12.2 minutes divided by the average num-

ber of commands in flight. We initially implemented the

polling mechanism as an alternative to keeping open con-

nections between master and worker, or allowing workers

to initiate communication to the master (as a sort of back-

channel). Polling may need to be reconsidered in light of

this observed overhead. In our benchmark script, all slots

are full during the entire run time, except near workflow

completion, when there are fewer unfinished jobs than the

total number of slots. The case of 3 workers with 6 slots

each, given in Figures 7 and 8, thus has an approximate

overhead of 41 seconds.

Figures 7 and 8 and Table 2 provide details of the compu-

tational performance of the system. Times include schedul-

ing and execution overhead as well as peer worker file trans-
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Table 2. Computational Time (times in min-

utes)

Slots per worker

1 2 4 6

1 worker 86.4 45.3 22.2 19.6

2 workers 58.6 33.7 16.9 18.2

3 workers 43.1 25.8 15.1 18.4

fer overhead, but not parsing overhead or end-user trans-

fer time. Speedup is normalized against the baseline case

where a standard shell (GNU bash) is used instead of our

system.

5.3 Single-worker Performance

To illustrate the scalability of the system when multiple

processing cores are available on a single node, consider

the single worker case, whose performance is tracked as the

solid red line in Figures 7 and 8. In the case with only one

slot, performance is slow at ≈ 0.6 speedup, owing to polling

slack and task management overhead, but the system read-

ily scales to use additional processing cores. Because our

test hardware has 4 cores per node, performance saturates

with 4 configured slots, gaining slightly with 6 slots in the

single node case due to reduced polling slack and other dis-

patch and finishing latencies. It is worth noting that with-

out the I/O optimization for intermediate files discussed in

Section 4.2, disk contention outweighs benefits from paral-

lelism [22].

5.4 Multi-worker performance

Our system’s behavior with multiple worker nodes il-

lustrates the importance of I/O management. Looking at

Figure 7 and Figure 8 again, a number of notable features

emerge. First, we see that adding more worker nodes has

limited benefit. Though three nodes, each with a single slot,

have similar capabilities to a single node with three slots,

we see that the former displays performance only slightly

better than a single node with two slots. This 3x1 case il-

lustrates distribution of data among nodes, increasing the

likelihood that intermediate files need to be transferred. For

this benchmark, much of the workflow operates on inter-

mediate files (which, again, are optimized as described in

Section 4.2, so the cost of intermediate file transfers and ad-

ditional scheduling overhead was greater than the additional

disk bandwidth available.

Another notable feature is the degradation of perfor-

mance in both the two- and three-node cases when more

than 4 slots are used. Increased I/O from peer data fetch-

ing was observed in system logs, and we believe that over-

provisioning the nodes increases the potential for poorer

distribution of input data, allowing lopsided data distribu-

tion to cause one or more nodes to spend too much time

waiting for data. Another likelihood is that increased con-

tention for both disk and processor at each node impacts

input data fetch transfers between workers– a fetching node

waits longer for its input data, and a source node suffers

even greater I/O contention.

Because the number of commands in a script is almost al-

ways many times the worker node count, we are implement-

ing coarser grained scheduling, i.e. scheduling blocks of de-

pendent commands to nodes instead of single commands.

This will reduce the communications between master and

worker and should reduce file exchange between workers.

This additional workflow partitioning is similar to flow par-

titioning in the VLSI layout design community and may be

able to adapt similar methods. The coarsely-divided work

could be dispatched to groups of workers, each with their

own delegated master, resulting in tree-structured workflow

management.

6 Conclusion

SWAMP is designed to provide scientists a simple means

to safely execute medium-scale scientific data analysis at a

remote data center rather than transferring terabytes of data

to analyze. Because scientists are adept at composing sim-

ple analysis shell-script workflows that execute on work-

stations, our decision to adopt this syntax provides them

with the ability to reuse their existing analysis scripts for

remote computation/data services that exploit data locality.

Our limitations on syntax and analysis program choice limit

end-user flexibility, but are safer to deploy to a public data

service.

Our performance measurements have shown how our

system generates workflows automatically from commonly-

used shell scripts, how the resulting workflow can be exe-

cuted on a cluster of nodes as might be available at a data

center, and the enhanced performance we have achieved in

a variety of configurations. Our lightweight scheduler illus-

trated the potential overhead pitfalls of status reporting and

monitoring in a web/grid-service environment. Our experi-

ments also showed the importance of optimizing scheduling

algorithms to account for I/O costs for these I/O-intensive

workflows, even in systems with Gigabit Ethernet connec-

tivity. As a result, we have illustrated the viability of com-

piling, parallelizing, optimizing, and executing workflows

defined by ordinary shell scripts as domain-specific lan-

guages.
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