
File Clustering Based Replication Algorithm in a Grid Environment

Hitoshi Sato†, Satoshi Matsuoka†,‡, and Toshio Endo†

† Tokyo Institute of Technology
‡ National Institute of Informatics

{hitoshi.sato, matsu, endo}@is.titech.ac.jp

Abstract

Replication in grid file systems can significantly im-
proves I/O performance of data-intensive applications.
However, most of existing replication techniques apply to
individual files, which may introduce inefficient replication
overheads for a large number of files. We propose a file
clustering based replication algorithm for grid file systems.
Our algorithm groups files according to a relationship of
simultaneous accesses between files and stores the replicas
of the clustered files into storage nodes, to satisfy expected
most of future read access times to the clustered files and
replication times for individual files being minimized under
the given storage capacity limitation. Our experiments on a
given grid environment, 20 nodes of 5 sites, suggest that the
proposed algorithm achieves accurate file clustering and ef-
ficient replica management; our clustering policy with the
file cluster size limit of 5120 MB and storage capacity limit
for replicas of 10240 MB exhibits 1.58 times efficiency than
the policy that never cluster related files. The results also
indicate that the overheads required for introducing our al-
gorithm significantly affect I/O performance of running ap-
plications.

1. Introduction

Large-scale grid environments are becoming viable plat-
forms for data-intensive applications, since they can provide
much larger amounts of computational power and storage
space than those of typical single-site environments. One of
the difficulties in data sharing on these environments, how-
ever, is the complexity of dealing with multiple distributed
data sources. Often different sites provide different file sys-
tems, so the users are forced to manually stage data in an
ad-hoc, complicated fashion.

Grid file systems can solve this difficulty by providing
a single-system image to application users. However, ap-
plication performance can be substantially degraded due to
such problems as access contentions and costly remote file

accesses. Existing approaches to these problems, including
replication and caching [12, 15, 14, 3], employ rather fixed
and simple heuristics and may not yield optimal access per-
formance in dynamically changing grid environments. Our
earlier work [19] has presented an optimal replication algo-
rithm by modeling the determining replication problem as
integer linear programming (ILP) problems. Nevertheless,
these existing approaches apply to individual files in a grid
file system, which may introduce inefficient replication op-
erations for a large number of files.

Clustering related files can achieve efficient replica man-
agement, since file operations such as replication, migra-
tion, and deletion, can be applied to the clustered file sets
collectively. For example, Doraimani et al. [13] have shown
that scientific data usage translates into requests for groups
of correlated files from real application traces in high-
energy physics [8]. The accuracy of file clustering is de-
pendent on how to model the relationships between files.
Most previous approaches [16, 10] focus recency or fre-
quency based file clustering; however, existing file-location-
aware job scheduling behavior [11, 20] and underlying re-
cent many-core architecture computing nodes disturb ac-
curate file clustering, since data-intensive job schedulers
tend to allocate submitted jobs to individual cores on nodes
where necessary files can be accessed locally, which may
cause file access contention on a single node when popular
but unrelated files are accessed simultaneously.

To facilitate efficient data management in grid file sys-
tems, we propose a data replication technique based on
clustering related files in a grid file system. Our algorithm
groups files according to a relationship of simultaneous ac-
cesses between files; we determine file clusters accessed at
once by a single process to exclude the influences of the file
accesses of other processes. We then store the replicas of
the file clusters into storage nodes to satisfy expected most
of future read access times to the clustered files and repli-
cation times for the individual files being minimized under
the given storage capacity limitation. We model this repli-
cation problem as a combination of a graph partition prob-
lem and ILP problems, where constraints are derived from

the summation of file size in a file cluster and the allowable
storage capacity for replicas, and objectives are to minimize
expected read access times to the clusters and replication
times for the individual files. We determine the replica-
tion strategy by solving these cost minimization problems,
estimating inter-node link throughputs, access popularities
to files, and access relationships between files. We obtain
this information by monitoring run-time behavior of file ac-
cesses from applications.

We evaluate our algorithm on a live grid environment [5]
composed of 5 sites. Comparison with other clustering tech-
niques and replication policies shows that our algorithm
succeeds in accurate file clustering and efficient replica
management; our clustering policy with the file cluster size
limit of 5120 MB and the storage capacity limit for replicas
of 10240 MB exhibits 1.58 times efficiency than the policy
that never cluster related files. The results also indicate that
the overheads required for introducing our algorithm signif-
icantly affect I/O performance of running applications.

2. Related Work

One of the most effective techniques to improve file I/O
performance in grid file systems is to deploy related files
to closest network proximity of the requesting nodes. In
particular, read access performance can significantly affect
application turn-around times, since data-intensive applica-
tions often read large data but only write a small amount
of results. Therefore, improving read access performance
is especially effective for such write-once, read mostly ap-
plications. However, determining optimal replication, i.e.,
which files should be replicated to where, is a difficult prob-
lem, because they depend on underlying network perfor-
mance characteristics and applications of file access pat-
terns, which may only be observed at application run times.

Existing network file systems that support file replica-
tion mechanisms [12, 15, 14, 21, 3] do not always op-
timally distribute replicas, since they statically determine
replica locations without considering both network topolo-
gies and application performance characteristics. We have
proposed a replication mechanism that considers both appli-
cation workloads and wide-area network performance [19].
However, these mechanisms apply to individual files (or file
segments) stored in a network file system, which may intro-
duce inefficient replication overheads for a large number of
files.

File caching in grid file systems is similar to caching
in standard file systems. For example, optimally select-
ing files to cache has to consider how likely they are used
again. However, one of the difficulties that is unique to
grid file systems is that optimal caching also depends on
where cached files are originally located. Moreover, cache
usage exhibits different behavior according to running ap-

plications. Therefore, optimal caching strategies need to
consider both access patterns and network properties.

There have been a number of efforts in such data man-
agement techniques for grids [22]. Ranganathan et al. [17]
presented a simulation analysis of replication techniques
based on data-intensive workloads. Although dynamic
replication helps to reduce hotspots created by popular files,
actual file access performance can be inefficient, especially
on heterogeneous large-scale environments. Rahman [18]
et al. and Wang et al. [23] solve similar replication or mi-
gration problems as model-based combinational optimiza-
tion problems. However, most of the existing approaches
focus replication for individual files. Doraimani et al. have
shown that real data-intensive application workloads exhibit
relationships between files in their usage and proposed a
caching algorithm that considers groups of files always used
together in data processing jobs [13]. These works empha-
sis the effectiveness of file clustering based data manage-
ment; however, the approach does not optimize overall file
system performance.

Clustering related files is a traditional technique in net-
work file systems [16, 10]. Existing proposals mainly em-
ploy recency [16] or frequency [10] as a metric to represent
the strength of access relationships between files; recency
based techniques consider the time series of file accesses,
i.e., files that are accessed recently are regarded as a sin-
gle file cluster, while frequency based techniques consider
the order of file accesses, i.e. files that are accessed suc-
cessively are regarded as a single file cluster. However, file
clustering accuracy in these techniques is significantly in-
fluenced by application workloads, which may vary from
system to system in different times and timescales. For ex-
ample, existing data-intensive job scheduling systems tend
to allocate jobs to individual cores on nodes where neces-
sary files can be accessed locally for avoiding costly remote
file accesses [11, 20]. However, such job scheduling can
cause contention of compute and I/O resources when pop-
ular files are simultaneously accessed; many jobs can be
scheduled on a small number of nodes at the same time.

3. File Clustering Based Replication Algorithm

Our proposed technique automatically determines opti-
mal file replication strategies, which groups files accord-
ing to a relationship of simultaneous accesses between files
and stores the replicas of the clustered files into storage
nodes, to satisfy expected most of future read access times
to the clustered files and replication times for the individ-
ual files being minimized under the given storage capacity
limitation. To do so, it passively monitors file access per-
formance of running applications and estimates inter-node
link throughputs, access popularities to files, and access re-
lationships between files, from the observed performance

data.

3.1. Access Pattern Detection

Our strategy needs to collect the following file access in-
formation: timestamp, path, access type (i.e., read or write),
I/O size, elapsed time of each file access, destination host-
name, and process identifier (PID) that accesses the file. We
have developed a library-based tracer to capture the infor-
mation on every file access [19]. The library function is
called on every file operation and logs the profile into a per-
formance database. We then use these profiles to estimate
inter-node link throughputs, access popularities to files, and
access relationships between files. We will explain imple-
mentation details in Section 4.

3.2. Throughput Estimation

We estimate network link throughputs by using collected
access profiles, including I/O sizes and elapsed times. We
use a model to estimate elapsed times described in [19]:

time =
1

thput
× io size + e, where time corresponds to

elapsed times, thput to a link throughput between nodes,
and io size to I/O sizes. Real access times can be per-
turbed by various noises; we include e to accommodate
such noises. For each link, we estimate its throughput by
fitting this linear model to collected access profiles with the
least square method. Finally, we create a throughput matrix,

D = (di,j), where di,j =
1

thput
represents the reciprocal

of estimated throughput between nodes i and j.

3.3. Access Popularity Estimation

We introduce file access probability to estimate future
file accesses. For simplicity, assuming that time intervals of
file accesses from a client node to a file obey an exponential
distribution with parameter λ, the probability density func-
tion of the distribution is described as follows:

f(x; λ) =

{
λe−λx (x ≥ 0)
0 (x < 0)

Based on collected access profiles, including timestamp and
access type (i.e., read or write), we can estimate time inter-
vals of file accesses. We estimate the parameter λ by fit-
ting this distribution model to the time intervals with the
Bayesian or maximum likelihood inference. Let λ̇ be the
determined parameter, t0 be the last time when a file is ac-
cessed from a client node, and t be the current time. The
estimated future file access probability from node i to file
k, pi,k, is described as follows:

pi,k =
∫ ∞

t−t0

λ̇e−λ̇xdx = e−λ̇(t−t0)

For example, if node i accesses file k recently, pi,k is
asymptotic to 1, while if node i is unlikely to access file
k, pi,k is asymptotic to 0. We employ this parameter pi,k to
estimate file access popularity for file k from node i.

3.4. Access Relationship Estimation

Based on collected access profiles, we group stored files
according to a relationship of simultaneous file accesses.
We assume files that are accessed by a single process simul-
taneously tend to be accessed in the near future. Therefore,
we determine file clusters that a single process is likely to
access simultaneously. Note that the file cluster has a limit
of its total file size, because our objective in this phase is to
divide files stored in a file system into several file clusters
for data management, where storage nodes have capacity
constraints.

To represent the relationship between files, we count the
number of times that a single process running on a client
node accesses to any two files, using collected access pro-
files: path and PID. Then, we create a weighted graph
where a weighted vertex represents a file and its size and
a weighted edge represents the number of times of simul-
taneous file accesses by a single process. We solve this
file clustering problem as a graph partition problem, where
the objective is to divide the graph into several sub-graphs
such that the summation of vertex weights in the sub-graph,
which we denote as cluster weight, is less than specified
threshold and the summation of edge weights between the
sub-graphs, which we denote as cut weight, is minimized.

We determine file clusters with the file access relation-
ship as follows. First, we divide the graph into several sub-
graphs such that the cut weight equals zero. Since such file
clusters are regarded as no relationship in terms of simul-
taneous file accesses, we employ each of these file clusters
for an optimal unit for data management, i.e., replication,
migration and deletion, respectively. Then, we divide each
divided sub-graph (graph) into several sub-graphs such that
the cluster weight is less than the specified threshold, by di-
viding the target graph into two sub-graphs iteratively until
the sub-graphs satisfy the cluster weight.

By solving the above problem, we determine file clusters
in which files are likely to be accessed simultaneously.

3.5. Determining Replica Locations

Using the estimated inter-node link throughputs, file ac-
cess popularities, and access relationships between files, we
determine replica locations of the file clusters, which sat-
isfies expected most of future read access times to the file
clusters to be minimized under the given storage capacity
limitation. We model this replica location determination
problem as an ILP problem. Here, we assume that many

data-intensive applications read through the entire contents
of accessed files for simplicity.

We determine the replica locations of file cluster F as
follows. Let i ∈ {1, . . . , n} be the node names in the target
environment, and the capacity of node i be ci. Let k ∈
{1, . . . ,m} be the file names in file cluster F , and the size
of file k be sk. We denote the availability of file cluster F
on node i as xi, where xi ∈ {0, 1}. xi being 1 denotes
that node i has a replica of file cluster F , while xi being 0
denotes that node i does not.

We model the constraint on the number of replicas for
file cluster F as follows. Let R be the given storage capac-
ity limitation for file cluster F , and s be the summation of

file size in file cluster F , i.e., : s =
m∑

k=1

sk, which denotes

cluster weight of file cluster F . Thus the constraint on the
number of replicas for file cluster F can be denoted as:

1 ≤
m∑

i=1

xi ≤
R

s
+ 1

Note that we guarantee the availability of file cluster F ; at
least one replica of file cluster F exists in the file system.
Then we model file read access times in file cluster F as
follows. We denote accesses to file cluster F from node i to
node j as yi,j , where j ∈ {1, · · · , n}.

Then we model file read access times as follows. We de-
note accesses to file k in file cluster F from node i to node
j as yi,j,k, where j ∈ {1, · · · , n}. yi,j,k being 1 denotes
that node i accesses file k on node j, and yi,j,k being 0 de-
notes that node i does not. Here, we assume each node only
accesses a single node that holds a replica of file k. Then,
estimated access times that can be taken to read file k of
size sk available on node j from node i can be denoted as
sk · di,j · yi,j,k Recall that di,j denotes the reciprocal of the
estimated throughput between nodes i and j. For example,
if node i accesses file k in its local storage or does not ac-
cess file k on node j, the estimated access time is equal to
0, since di,j = 0 or yi,j,k = 0. On the other hand, if node
i actually accesses file k on node j, the time is sk · dk,j ,
where we assume that read access times can be estimated
by dividing the file size by the link throughput. We further
extend this model by considering estimated access popular-
ities. Let pi,k be the estimated future file access probability
from node i to file k. The expected mean read time to file k
from node i to node j, ti,j,k, can be denoted as:

ti,j,k = pi,k · sk · di,j · yi,j,k

For example, if node i is unlikely to access file k, ti,j,k is
relaxed, since pi,k is asymptotic to 0. Thus the expected
mean read time to file cluster F from node i to node j, ti,j ,

can be denoted as:

ti,j =
m∑

k=1

ti,j,k

Our objective in this phase is to minimize expected most
of future read access times to files in file cluster F . Let t be
the maximum read access time to cluster F from node i to
node j, i.e.:

t = max
i,j∈{1,··· ,n}

ti,j

We minimize t under the given storage capacity limitation
R and the constraints as stated above.

Tying the objective function and the constraints together,
we can model them as the following ILP problem:

Minimize

t = max
i,j∈{1,··· ,n}

ti,j (1)

Subject to

xi ∈ {0, 1} (2)
yi,j,k ∈ {0, 1} (3)

1 ≤
n∑

i=1

xi ≤
R

s
+ 1 (4)

s · xi ≤ ci (5)

s =
m∑

k=1

sk (6)

ti,j =
m∑

k=1

ti,j,k =
m∑

k=1

pi,k · sk · di,j · yi,j,k (7)

n∑
j=1

yi,j,k = 1 (8)

xj = 1, if
n∑

i=1

yi,j,k > 0 (9)

The objective function (1) minimizes expected most of fu-
ture read access times to the clustered files. In addtion to
the previously described constraints: (2), (3), (4), (6), and
(7), we include three other constraints in this problem. First,
constraint (5) states that the cluster size must not exceed the
capacity of local storage, if the node holds a replica of the
file cluster. Second, constraint (8) states that each node only
accesses a single node that holds a replica of file k. Finally,
constraint (9) states that if there are accesses from any nodes
to a node, the accessed node must hold a file cluster.

By solvinng the above problem, we make decision on the
nodes that hold replicas of file cluster F by determining the
values of xi for all i ∈ {1, · · · , n}.

3.6. Determining Replica Movement

Now that we have identified which nodes will have repli-
cas of file cluster F that includes file k of size sk for
k ∈ {1, · · · ,m}, we determine how to efficiently create
these new replicas using current replica placements. In
other words, we minimize the time to transfer file replicas in
file cluster F over distributed nodes. Let li be the new loca-
tions for file cluster F , which is an alias of the determined
value, xi, and ¯li,k be the current locations for file k. The
time, qi, that node i will take for transferring file replicas
can be represented as:

qi =
n∑

j=1

m∑
k=1

sk · di,j · zi,j,k

, where zi,j,k ∈ {0, 1} denotes whether node i transfers a
replica of file k to node j, i.e., if zi,j,k = 1, node i does
transfer a replica of file k to node j, and if zi,j,k = 0, oth-
erwise. In addition, let q be the maximum transfer time of
each node, i.e.,:

q = max
i=1,··· ,n

qi

Our objective in this phase is to minimize q, since we
would like to minimize the overall replica transfer time. In
summary, the replica movement problem can again be mod-
eled as the following ILP problem:

Minimize

q = max
i=1,··· ,n

qi (10)

Subject to

zi,j,k ∈ {0, 1} (11)

qi =
n∑

i=1

m∑
k=1

sk · di,j · zi,j,k (12)

n∑
j=1

zi,j,k ≥ 0, if ¯li,k = 1 (13)

n∑
i=1

zi,j,k = lj (14)

The objective function (10) minimizes the maximum trans-
fer time between file system nodes. Here, we also include
two additional constraints with previously described con-
straints (11) and (12). Constraint (13) states that if there
exists a transfer for a replica of file k from node i to any
nodes, node i must already have the replica, and constraint
(14) states that the existence of a new replica on node j de-
pends on whether any node transfers file k to node j.

By solving the above problem, we determine the values
of zi,j,k for all i, j ∈ {1, · · · , n}, k ∈ {1, · · · ,m}. Our
system transfers replicas of files in file cluster F according
to these results.

4. Implementation

We implemented the proposed algorithm in our previous
prototype file system [19]. We also improve the previous
prototype architecture to be able to support various grid file
systems [1, 9, 3]. This section describes the detail of our
implementation for the proposed algorithm.

We implemented a library-based tracer to capture infor-
mation on every file access in a file system. Most grid file
systems provide a library to mount the file system via FUSE
mechanism, which is a framework for implementing and ex-
tending file system interfaces in user space programs. In the
FUSE-based file systems, each system call to standard file
system interfaces, such as open and close, is redirected to
FUSE handlers. We use this mechanism to encapsulate dif-
ferences in implementation of monitoring mechanisms be-
tween existing grid file systems.

When an application on a client first opens a file, we al-
locate an entry for the file access in the profile database and
assign a key for the entry. Here, we record the timestamp,
path, and PID of file opening in the entry. Note that this
operation is only done when files are first opened (or cre-
ated). The PID of the file access is collected from a function
fuse get context provided by FUSE. For each future
read and write access, we look up the entry for the file ac-
cess by using the unique structure as its key and record the
timestamp into the entry. When the application last closes
the file, we record the destination hostname of the file ac-
cess. Our library efficiently implements this mechanism
by delegating all database operations to concurrent threads,
which in turn operates with a SQLite based database.

We group files stored in the file system and determine
which file clusters to replicate to where using the algorithm
described in Section 3. The introspection mechanism is im-
plemented as a daemon process running on a node. The
daemon periodically queries the meta-data server and the
profile databases on client nodes to obtain meta-data of files
and collected access profiles. Based on the information, we
apply our algorithm to estimate the file system state: inter-
node throughputs, access popularities to files, and access
relationships between files. Our prototype currently uses
METIS [6] for solving graph partition problems and GNU
GLPK [2] for solving ILP problems.

The determined results are applied by a introspection
daemon, which implements file operations, including repli-
cation and deletion, by using commands or libraries of the
underlying grid file system. We encapsulate differences in
implementation of file operations between grid file systems

Table 1. Specification of Cluster Nodes.
Site hongo, chiba keio tohoku, tsukuba

CPU type Core 2 Duo Xeon E5410
Cycle 2.13 GHz 2.33 GHz
#Cores 2 8

Memory 4GB 16GB 32GB
OS Linux 2.6.18

Network Gigabit Ethernet

in this layer.
We applied this monitoring and introspection mecha-

nisms to the Gfarm file system (Gfarm), which is a client-
server-based grid file system. Gfarm provides a program to
mount a Gfarm file system using FUSE library. We modify
this mount program by using our trace library. We also in-
clude file operations for introspection to our framework by
using Gfarm commands and libraries, such as gfrep and
gfrm.

5. Experiments

To evaluate the effectiveness of our proposed replication
technique, we apply Gfarm-based prototype to the InTrig-
ger grid environment [5], which is a collection of clusters
distributed across Japanese universities and national labora-
tories. We deploy our prototype file system over 5 clusters
located in distributed sites: hongo (Tokyo), chiba (Chiba
Pref.), keio (Tokyo), tohoku (Miyagi Pref.), and tsukuba
(Ibaraki Pref.). The specifications of each cluster node are
shown in Table 1, and the network performances between
sites are shown in Table2. We designate a single node in
the chiba site as a meta-data server and use the remaining
nodes, 4 nodes in each site, as both clients and file-system
nodes. We conducted data-intensive workloads on the pro-
totype, which perform burstry accesses to files in a data set.
Figure 1, where the x-axis corresponds to data set IDs, while
the y-axis to file size distribution in the data set; we set six
data sets (9761 MB in total). This behavior is collected
from BLAST [7], which is a similarity search application
for nucleotide or protein sequence databases; this kind of
workloads is commonly seen in many data-intensive appli-
cations. Each job reads files in a data set, which are initially
located on a single node in the chiba site. Note that the ex-
periments are conducted under the non-dedicated live grid
environment, which may be affected other workloads.

First, we compare our file clustering techniques, de-
scribed in Section 3.4, with two alternative techniques:

• Files that are recently accessed within n (= 1) sec in a
single node belong to the same file cluster: (recency-n)

d1 d2 d3 d4 d5 d6

0
20

0
40

0
60

0
80

0
10

00

Dataset ID

F
ile

 S
iz

e
[M

B
]

Figure 1. File Size Distributions.

• Files that are accessed successively more than n (= 5)
times in a single node belong to the same file cluster:
(frequency-n)

Our proposal limits the total file size in a file cluster to n
(= 2048) MB: (pid-n). We conduct BLAST workloads on
a single node in the keio site, which access each data set 10
times during 1800 sec.

Figure 2 shows the results of the file clustering. The x-
axis corresponds to the total file size in a file cluster, and the
y-axis corresponds to the degree of accuracy in the clustered
files, which represents how different files of data sets are
included in a single file cluster; we denote this value as the
reciprocal value of the number of data sets included in a sin-
gle file cluster, i.e., if the value being 1 denotes that the file

cluster consists of a single data set, while the value being
1
n

denotes the file cluster consists of n data sets. We observe
that the recency-1 and frequency-5 techniques generate in-
accurate file clusters: 7151 MB with 0.17 in the recency-1
technique and 7058 MB with 0.2 in the frequency-5 tech-
nique. On the other hands, our proposal (pid-2048) exhibits
a good clustering that consists of a single data set under the
given file size limitation.

Next, we conduct different BLAST workloads that con-
sist of two time interval phases (1 phase = 900 sec) as fol-
lowings:

Phase1 Nodes in the hongo and chiba sites access d1, d2,
and d3 data sets, while nodes in the keio, tohoku, and
tsukuba sites access d4, d5, and d6 data sets

Phase2 Nodes in the hongo and chiba sites access d4, d5,
and d6 datasets, while nodes in the keio, tohoku, and
tsukuba sites access d1, d2, and d3 data sets

Table 2. Network Performance. [RTT (ms) / Bandwidth(MB/s)]
src / dst hongo chiba keio tohoku tsukuba
hongo 0.20 / 112 6.28 / 104 6.83 / 7.03 14.4 / 85.1 7.69 / 36.6
chiba 6.39 / 71.1 0.190 / 112 13.0 / 7.60 18.7 / 70.9 11.0 / 73.5
keio 7.43 / 2.14 12.8 / 0.75 0.0510 / 99.8 21.1 / 0.36 13.3 / 0.95

tohoku 14.5 / 2.58 18.8 / 1.37 20.8 / 3.30 0.170 / 104 9.41 / 34.3
tsukuba 7.78 / 4.72 11.2 / 7.91 13.1 / 6.92 9.49 / 8.85 0.22 / 110

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1024 2048 3072 4096 5120 6144 7168 8192

A
cc

ur
ac

y

Total File Size in a File Cluster [MB]

pid-2048
recency-1

frequency-5

Figure 2. File Clustering.

Each node submits jobs that access target data sets 5 times
during each time phase. We compare our proposal, the limit
of a file cluster is n (= 1024, 5120) MB: (pid-n), with fol-
lowing alternative policies:

• No replication is performed (no rep). Each node ac-
cesses a single remote node that holds the target files.

• No clustering is performed (no clustering). The policy
applies our algorithm described in Section 3 without
any clustering techniques.

We set the storage capacity limit for replicas to 10240 MB.
Our algorithm shares the allowable storage capacity accord-
ing to the total size of the file clusters. We also set the time
interval to apply each data management policy to 300 sec.

Table 3 shows the performances of each data manage-
ment policy, including the average throughput of remote
file accesses (io thput), the maximum usage of storage (st
size), the average throughput of replica transfer (rep thput)
in which the total transfer size is divided by the total trans-
fer time, the total time of determining replica locations (dl
time), and the total time of determining replica movement
(dm time). We see that both the clustering and no clustering
policies automatically determine appropriate nodes under
the given storage capacity limitation. We also observe

that there are no significance differences in the remote I/O
throughput between the clustering and no clustering poli-
cies. This is due to the overheads of determining replica-
tion, including both locations and movement. Delayed de-
termination introduces ineffective data management, since
required replicas are not supplied to requesting nodes. Re-
ducing these overheads is crucial for further improvement
of the remote I/O throughput. However, the clustering poli-
cies exhibit good replication throughput performance than
the no clusting policy; we see that the proposal-1024 pol-
icy is 1.46 times and the proposal-5120 policy is 1.58 times
efficient than the no clustering policy. This indicates that
the clustering based replication technique can achieve ef-
ficient data management, which places replicas in optimal
locations, while minimizing the influence of data transfer
over networks.

The overheads of the replication decision are mainly de-
rived from the time to solve ILP problems, which are related
to the performance of the solver program; we use GNU
GLPK [2] in our prototype. We evaluate the performance
of the same determining replica placement problem using
GLPK and CPLEX[4] that is the fastest but commercial
solver program. We determine ten file cluster placements in
the cluster-5120 policy using a single node, which consists
of Xeon X5460 (3.16 GHz) with 48 GB of memory, running
Linux 2.6.18. We observe that GLPK takes 356 sec, while
CPLEX takes 4.55 sec to solve the above problems; further
improvements are required to support many file clusters in a
large-scale grid environment with complex workloads, such
as employing further efficient ILP solvers.

6. Conclusion

We have presented a file clustering based replication al-
gorithm for grid file systems, which groups files stored in
a grid file system according to the relationship of simulta-
neous file accesses and determines locations and movement
of replicas of file clusters from the observed performance
data of file accesses. Our experiments on a given grid envi-
ronment suggests that the proposed algorithm achieves ac-
curate file clustering and efficient replica management.

In the future, we will continue to evaluate our algorithm

Table 3. Performances of Each Data Management Policy
io thput (MB/s) st size (MB) rep thput (MB/s) dl time (sec) dm time (sec)

no rep 1.71 9761 N/A N/A N/A
pid-1024 4.63 16348 7.19 1590 21
pid-5120 4.06 15682 7.80 3134 27
no cluster 4.89 17689 4.94 888 97

in complex workloads on live environments. In particular,
reducing overheads such as determining replication and ac-
tual replica transfer is crucial for efficient data management
in a large-scale grid environment. The next step is to com-
bine our prototype with other efficient ILP solvers and effi-
cient replica transfer techniques.

Acknowledgements

This research is supported in part by the MEXT Grant-
in-Aid for Scientific Research on Priority Areas 18049028
and the JSPS Global COE program entitled “Computation-
ism as Foundation for the Sciences”.

References

[1] Gfarm. http://datafarm.apgrid.org.
[2] GLPK (GNU Linear Programming Kit).

http://www.gnu.org/software/glpk.
[3] Hadoop. http://hadoop.apache.org/.
[4] ILOG CPLEX. http://www.ilog.com/products/cplex/.
[5] InTrigger. http://www.intrigger.jp.
[6] METIS. http://glaros.dtc.umn.edu/gkhome/views/metis.
[7] NCBI BLAST. http://www.ncbi.nlm.nih.gov/BLAST.
[8] The DZero Experiment. http://www-d0.fnal.gov.
[9] XtreemFS. http://www.xtreemfs.com.

[10] A. Amer, D. D. E. Long, and R. C. Burns. Group-based
management of distributed file caches. In Proceedings of
the 22nd International Conference on Distributed Comput-
ing Systems, pages 525–534, 2002.

[11] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Explicit control in a batch aware distributed
file system. In Proceedings of the 1st USENIX/ACM Con-
ference on Networked Systems Design and Implementation,
San Francisco, CA, March 2004.

[12] B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. Network file system (nfs) ver-
sion 4 protocol, April 2003. RFC 3530.

[13] S. Doraimani and A. Iamnitchi. File grouping for scien-
tific data management: lessons from experimenting with
real traces. In Proceedings of the 17th international sym-
posium on High performance distributed computing, pages
153–164, 2008.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles, pages 96–108, Bolton Landing,
NewYork, October 2003.

[15] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, 1988.

[16] G. H. Kuenning and G. J. Popek. Automated hoarding for
mobile computers. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, volume 31, pages
264 – 275, December 1997.

[17] Ranganathan and I. Foster. Decoupling computation and
data scheduling in distributed data-intensive applications. In
Proceedings of th 11th IEEE International Symposium on
High Performance Distributed Computing, pages 352–358,
2002.

[18] K. B. Rashedur M. Rahman and R. Alhajj. Study of different
replica placement and maintenance strategies in data grid. In
Proceedings of the Seventh IEEE International Symposium
on Cluster Computing and the Grid, pages 171–178, 2007.

[19] H. Sato, S. Matsuoka, T. Endo, and N. Maruyama. Access-
pattern and bandwidth aware file replication algorithm in a
grid environment. In Proceedings of the 9th IEEE/ACM In-
ternational Conference on Grid Computing, pages 250–257,
Tsukuba, September 2008.

[20] S. Shankar and D. J. DeWitt. Data driven workflow planning
in cluster management systems. In Proceedings of the 16th
IEEE International Symposium on High Performance Dis-
tributed Computing, pages 127–136, New York, NY, USA,
2007.

[21] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and
S. Sekiguchi. Grid datafarm architecture for petascale data
intensive computing. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 102 – 110, 2002.

[22] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxon-
omy of data grids for distributed data sharing, management,
and processing. ACM Computing Surveys, 38(1):3, 2006.

[23] Y. Wang and D. Kaeli. Load balancing using grid-based
peer-to-peer parallel I/O. In In Proceedings of IEEE Inter-
national Conference on Cluster Computing, pages 1 – 10,
2005.

