
Diagnosing Anomalous Network Performance with

Confidence

Bradley W. Settlemyer, Stephen W. Hodson, Jeffery A. Kuehn, and Stephen W. Poole

Oak Ridge National Laboratory

One Bethel Valley Rd

PO Box 2008

Oak Ridge, TN 37831-6164

{settlemyerbw,hodsonsw,kuehn,spoole}@ornl.gov

Abstract—Variability in network performance is a major
obstacle in effectively analyzing the throughput of modern high
performance computer systems. High performance interconnec-
tion networks offer excellent best-case network latencies; how-
ever, highly parallel applications running on parallel machines
typically require consistently high levels of performance to
adequately leverage the massive amounts of available computing
power. Performance analysts have usually quantified network
performance using traditional summary statistics that assume
the observational data is sampled from a normal distribution.
In our examinations of network performance, we have found
this method of analysis often provides too little data to under-
stand anomalous network performance. Our tool, Confidence,
instead uses an empirically derived probability distribution to
characterize network performance. In this paper we describe
several instances where the Confidence toolkit allowed us to
understand and diagnose network performance anomalies that
we could not adequately explore with the simple summary statis-
tics provided by traditional measurement tools. In particular,
we examine a multi-modal performance scenario encountered
with an Infiniband interconnection network and we explore
the performance repeatability on the custom Cray SeaStar2
interconnection network after a set of software and driver
updates.

I. INTRODUCTION

High speed interconnection networks, such as Infiniband

and Cray’s SeaStar2, offer a multitude of network transmission

modes and features. Options such as zero-copy remote direct

memory access (RDMA) and congestion avoidance routing

make understanding an application’s network behavior quite

difficult. In addition to the network itself being a shared

resource, other sources of performance variability also impact

our ability to measure network performance in a repeatable

manner. For example, computational noise [10] impacts not

only the network measurements, but also the calls required to

determine an accurate system timing mechanism. Additional

factors, such as network throughput collapse [11] and transient

effects such as temporary network and file system loads

induced by other jobs running concurrently on time-shared

systems combine to make high fidelity network performance

measurement a difficult science.

In our field, high performance computing (HPC), scientific

application developers typically rely heavily on networking

and storage infrastructure to complete long-running parallel

simulations and data analysis codes. The Message Passing

Interface (MPI) has become the de facto standard for com-

municating data within the interconnection network. Although

MPI offers a relatively lightweight application programming

interface to users, the underlying software stack has become

quite complicated in support of RDMA operations, rendezvous

communication modes, and hardware offloading features.

Complicated networking hardware combined with complicated

software stacks can often lead to network performance that is

difficult for the user to understand.

In this paper, we use Confidence [12], a novel toolkit we

developed for analyzing network performance, to diagnose

the causes of anomalous network behavior – and in one

case reconfigure the networking stack to dramatically improve

performance. In our experience, traditional summary statistics

are not a good match for describing the performance of

high speed interconnection networks that often have multiple

performance modes for the same operation. Summary statistics

assume the underlying data is sampled from a normal distri-

bution; however, as we will demonstrate, the distribution of

network performance observations tends to be one-sided with

multiple modes present. Our tool, Confidence, differs from

existing tools by sampling the network repeatedly to build

an empirical probability distribution to describe the message

passing latency.

Although Confidence was originally designed as a network

performance characterization tool, we have also applied the

Confidence toolkit to file system benchmarks, system call

overheads, and multi-threaded data transfers. By describing

benchmark performance as an empirical probability distribu-

tion rather than as a point-value, Confidence better describes

the performance likely to be encountered over an entire

application run.

A. Related Work

Network performance in HPC systems has been an active

area of research for many years. Petrini, et al., described the

performance of the Quadrics interconnection network using

a suite of network tests [9], including: ping bandwidth, ping

latency, offered load throughput in various traffic patterns, and

an analysis of message size effects on network bandwidth.

In general, the analysis focused on looking at average and

best-case performance measurements on a quiesced system.

The HPC Challenge (HPCC) Benchmark Suite extended this

approach to include tests on all processing an HPC system [6],

both in a pair-wise fashion, and in process rings. In HPCC,

the following results are reported for both short (8 Byte) and

long (2,000,000 Byte) messages:

• minimum, maximum, and average ping pong network

latency and bandwidth,

• average network latency and bandwidth on a random ring,

• average network latency and bandwidth on a naturally

ordered ring.

The techniques described by Petrini and provided by the

HPCC benchmarking suite have been used to describe the

network (and overall system) performance of many emerging

supercomputer installations, including the Cray XT4 and Blue

Gene/P at Oak Ridge National Laboratory [1], [2], the Blue

Gene/L systems at Argonne and Lawrence Livermore National

Laboratory [5], and the Roadrunner system at Los Alamos

National Laboratory [3]. The HPCC benchmark is a proto-

typical example of a benchmarking suite that reports results

as summary statistics. In Confidence, we attempt to provide

data beyond the typical summary statistics, and determine if

that information can be used to examine machine performance

meaningfully.

Bhatelé and Kalé examined the effects of contention in high

performance interconnection networks [4]. A benchmark was

constructed to have all pairs of processes send messages at

the same time with the number of hops between each sender

fixed. The results were averaged and reported for each factor

of 4 message size between 4 Bytes and 1 MiB. The results

indicated that for large message sizes and a large number

of network hops, contention on the network could severely

degrade communication performance. While the Confidence

toolkit could be used to perform a similar study, our result

reporting mechanisms include much more data than just the

average latencies determined by the benchmark.

II. CONFIDENCE CONFIGURATION

Confidence seeks to present information about the perfor-

mance of a benchmark or micro-benchmark over the entire

range of observed results by presenting an empirically derived

probability distribution that describes the performance of the

system under study. It is important to note that the resultant

probability distribution only describes the system performance

at the time of the benchmark execution. Different systems will

have different probability distributions, and the probability dis-

tributions may change over time depending on the degree and

nature of resource sharing. On the other hand, if the benchmark

execution adequately samples the entire network topology, we

can expect that a high degree of measurement stability (e.g.

stationarity and ergodicity) will exist. Here we present an

abbreviated overview of the Confidence configuration used for

our testing. A more detailed explanation of the Confidence

toolkit is available in [12].

1) Collecting Data: Fundamentally, Confidence relies on

data binning to gain insight into the behavior of benchmarks.

Data binning is a data pre-processing technique that attempts

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

B
in

 W
id

th
 (

u
s
)

Bin Number

Bin Widths (us)

Fig. 1. Confidence logarithmic bin widths charted on a log scale.

to quantize observed values into a discrete number of buckets

that adequately represent and emphasize the magnitude of

the real observed values. By binning millions or billions of

benchmark measurements, we can use the resulting frequency

distribution to approximate the continuous stochastic process

that describes the benchmark performance.

Confidence recognizes that elapsed time measurements may

differ by nanoseconds in terms of the returned values, but

the timers used to observe those durations are not capable of

providing measurements with such high degrees of precision.

In recognizing that the precision of the timer used is an

important component of how benchmark data is measured,

Confidence includes a measurement abstraction layer called

the Oak Ridge Benchmarking Timer, or ORBTimer, that both

selects an appropriate timer for the underlying hardware (e.g.

the Pentium/x86 cycle counter) and calibrates the timer in a

manner consistent with the behavior of the actual timed kernel.

The calibration is performed to determine a lower bound on

the timing overhead (i.e. the absolute minimum timing value).

During benchmark data collection we subtract the minimum

observed timer value from the benchmark measurements to

correct for timer related perturbation. By using the minimum

timer value we recognize that we are only removing a fraction

of the timing overhead in many cases, but more optimistic

schemes would possibly contaminate the results. Addition-

ally, during data collection, calls to the ORBtimer are timed

themselves to ensure that the timer overhead does not change

dramatically during a benchmarking trial and skew the results.

Once the fidelity of the timer has been determined, it is

straightforward to determine an appropriate number of data

bins and a bin width for the benchmark under study. Confi-

dence provides both fixed width data bins and logarithmically

scaled bin sizes. The fixed bin width, f w, is determined by

dividing the maximum histogram time, T , by the number of

requested bins, C:

f wi = T/C (0≤ i <C). (1)

Logarithmically scaled data bins are useful when the timing

Fig. 2. Pair-wise communication pattern

data varies by several orders of magnitude or the amount of

system memory for storing measurements is constrained. To

use logarithmically scaled bins, the user must specify a bin

size, S that is greater than 0. The logarithmic data bin width,

lw, is described by the following function:

lw0 = S (2)

lwi = eS∗i−1 (0 < i <C).

Figure 1 displays the increasing bin widths for the first 1000

logarithmically sized bin widths with a size parameter of 50

nanoseconds (note the use of a logarithmic scale on the y-axis).

2) Latency Benchmark: For these tests we used

CommTest3, a network benchmark included with

Confidence. For each trial, CommTest3 performed a pairwise

MPI_Sendrecv between every MPI process running as

part of the benchmark. MPI_Sendrecv was selected as the

benchmarking kernel operation because it was well supported

on all platforms and does not subdivide the communication

over several user space calls (such as MPI_Wait), which would

make it difficult to measure the constituent communication

portions. For this test we did not use MPI collective

operations to analyze network latencies. Fundamentally,

extracting meaningful data from collective communication

timings is difficult because collectives are an aggregation of

sub-operations, and by timing the collective call we describe

the average of all of the sub-operations, effectively smearing

the observable detail during the measurement process.

Figure 2 illustrates the simple micro-benchmarking ker-

nel used in these experiments. All of the processes cycle

through each of their possible peers and performed a pair-

wise MPI_Sendrecv operation of 1 byte of data. The results

of these operations were reported in three different ways: the

latency of the one-sided communication on node1, the latency

of the one-sided communication on node2, and the pair-wise

communication latency, which is the average of the two one-

sided latencies. What we may prefer to catalog is the time

between the first pair-wise send and the final pair-wise receipt

acknowledgment; however, without a Global clock or time-

stamp it is not possible to construct that quantity. Instead we

use the pair-wise latency as an approximation of the desired

quantity when the operations are not perfectly overlapped.

3) Data Analysis: Upon completing the benchmark and

analysis routines locally at each node, all of the data is reduced

to a single node by calling measurement_aggregate, and a final

call to measurement_analyze performs a statistical analysis

on the globally aggregated measurements. During the local

and global analysis phases, Confidence produces the typical

summary statistics (e.g. mean, mode, and standard deviation)

as well as several higher-order statistics used to interpret the

shape of the resultant data (skew and kurtosis). But the primary

benefit of the Confidence analysis output is the capability to

examine the empirically derived probability density functions

(PDFs) and cumulative distribution functions (CDFs).

By binning many millions of timing samples, Confidence is

able to construct an empirical approximation of the probability

distribution of the timing data. The originating random process

that generates the values is continuous but the individual

measurements are discrete, so we must use a large number of

discrete measurements to approximate the continuous proba-

bility distribution of the timing data. The resulting frequency

distribution is used to mathematically construct the empirical

PDFs, and empirical CDFs. Recall that a PDF, f , defines the

probability for a random variable, X , to take a value in some

range [a : b], as:

P[a≤ X ≤ b] =
Z b

a
f (x)dx. (3)

Additionally, Confidence extracts the minimum observation

for each benchmarking cycle (by default 100,000 trials), and

bins that data and constructs distribution information and

summary statistics for the observed minimums. Although the

sample size of the observed minimums is small (1 observation

per cycle per host by default), we will see in our network

anomaly diagnoses that the observed minimum values can of-

fer detailed insight into a benchmark’s observed performance.

III. DIAGNOSING AN INFINIBAND PERFORMANCE

ANOMALY

While using the Confidence toolkit to examine the latency

of various high performance machines at the National Center

for Computational Science at Oak Ridge, we encountered the

surprising network behavior evident in figures 3 and 4 on

the Smoky Commodity Cluster, an Infiniband-based cluster.

Smoky is an 80 node Linux test and development cluster

available at Oak Ridge National Laboratory’s National Center

for Computational Science (NCCS). Each node contains four

2.0 GHz AMD Opteron processors, 32 GiB of main memory,

an Intel Gigabit Ethernet NIC, and a Mellanox Infinihost III

Lx DDR HCA. Five nodes act as dedicated routers onto the

center-wide parallel file system, leaving 1200 cores available

for user processes, and an aggregate system memory size

of 24TiB. The Infiniband network is switched with a single

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 32 nodes 1ppn PW PDF

Fig. 3. PDF of pairwise communication latencies on Smoky, the NCCS
Infiniband-based test and development cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty

Time (s)

Smoky 32 nodes 1ppn PW CDF

Fig. 4. CDF of pairwise communication latencies on Smoky, the NCCS
Infiniband-based test and development cluster.

Voltaire DDR Infiniband Grid Director 2012 using four sLB-

2024 24-port Infiniband Line cards. The switch provides 11.52

Tbps of bisection bandwidth with a reported port-to-port

latency of 420 nanoseconds. The nodes run Scientific Linux

SL release 5.0, a full Linux operating system based on the

popular Red Hat Linux distribution. The benchmark was built

using the Portland Group International compiler version 10.3.0

and OpenMPI version 1.2.6.

The pairwise message send latency PDF in Figure 3 clearly

indicates the presence of three performance modes when 32

Smoky nodes are communicating simultaneously with only 1

communicating process per node. The first performance mode

is centered at 4.6 µs, the second mode is centered at 5.7 µs,
and the third mode is centered at 7.5 µs. With the aid of

Confidence, our goal was to identify if any hardware issues

contributed to the performance modes, and then would it be

possible to “fix” the network performance such that send-

receive latency was improved.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

C
o

u
n

t

Delay (s)

Smoky Timer Timings

Fig. 5. Histogram of binned x86 timer values on Smoky.

A. Ensuring Measurement Validity

Before going any further with our analysis of the system

performance, it is first critical to ensure that the system timer

used for our measurements was returning appropriate values,

and that the performance modes were not some artifact of

our benchmarking techniques. Figure 5 shows a histogram

of the observed timer overheads during our benchmarking

run. Although the full version of Linux in use on Smoky

results in somewhat noisy timing data, 99.8% of the timing

overheads fall into the first histogram bucket, which spans 0 -

50 nanoseconds, indicating that the timer overhead was most

often a negligible component of our measurements.

B. Examining Hardware Performance

Confidence decomposes benchmark execution iterations into

cycles. For each benchmarking cycle, 200,000 messages are

passed between each node-pair. In addition to recording the

latencies for the 200,000 messages sent between each host

pair, confidence also separately bins the absolute minimum

observation for each host pair during a cycle. This best case

minimum can be thought of as the actual hardware induced

networking latency. We use the pairwise minimums rather

than the one-sided minimums, because the one-sided minimum

observation is typically only the time it takes to retrieve data

from local memory after a successful RDMA put operation.

Although the pairwise minimum is likely larger than the actual

network hardware overheads, we believe that the pairwise

timing acts as an accurate proxy for the actual hardware costs,

and is closely correlated with the hardware costs. In order

to increase the accuracy of our minimums distribution we

increased the number of benchmarking cycles from the default,

10, to 100.

Figures 6 and 7 indicate that two of the performance

modes are present in hardware only measurements. The third,

much smaller, performance mode may be due to overhead

in the network software stack, or it may simply be due to

OS-based interrupts. Given the stark difference in latencies

between the two hardware modes, we initially suspected that

the performance issues may be due to some optimization

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 32 nodes 1ppn PW PDF
Smoky 32 nodes 1ppn PW Min PDF

Fig. 6. All pairwise communications and minimum pairwise communications
PDF for 32 nodes of Smoky with 1 process communicating per node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty

Time (s)

Smoky 32 nodes 1ppn PW CDF
Smoky 32 nodes 1ppn PW Min CDF

Fig. 7. All pairwise communications and minimum pairwise communications
CDF for 32 nodes of Smoky with 1 process communicating per node.

within the Infiniband switch that allowed lower send latencies

(i.e. less hops) through some portions of the switch.

C. Analyzing Switching behavior

We contacted a representative for the switch vendor, who

informed us that they too were puzzled by our hugely different

performance modes, but that within a single line card, each ap-

plication specific integrated circuit (ASIC) could communicate

with every port within the ASIC without an additional network

hop. However, there was no communication between the two

ASICs that populated each line card. Realizing that this could

indeed result in two performance modes, we immediately

submitted a pair of benchmarking jobs that used only 8 smoky

nodes (the maximum number of ports hosted by a single

ASIC). The first job collected the pairwise communication

minimums for 8 nodes spanning a single ASIC, the second

job engaged only a single line card, but allocated 4 nodes to

each ASIC.

Figure 8 clearly demonstrates that the vendor’s information

was accurate. Within the same ASIC, minimum pairwise laten-

cies tended about 3.9 µs, whereas ASIC spanning communi-

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.6e-06 3.8e-06 4e-06 4.2e-06 4.4e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 1C1A PW Min PDF
Smoky 8n 1C2A PW Min PDF

Fig. 8. Pairwise communication minimums for 8 nodes. The first plot engages
only a single ASIC; the second plot spans both line card ASICS.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.6e-06 3.8e-06 4e-06 4.2e-06 4.4e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 1C2A PW Min PDF
Smoky 8n 2C1A PW Min PDF
Smoky 8n 2C2A PW Min PDF
Smoky 8n 4C1A PW Min PDF
Smoky 8n 4C2A PW Min PDF

Fig. 9. Communication minimums for 8 nodes distributed in each balanced
configuration across line cards and ASICs. The key indicates the number of
line cards and ASICs per line card in use for each plotted PDF.

cations required on the order of 4.1 µs. Although the observed

ASIC spanning performance was bi-modal, we were concerned

that both observed performance modes existed within the first

original performance mode we demonstrated in figure 3.

We hypothesized that simply hopping across the switch

backplane from one ASIC to the next within the switch may

not require as many switch hops as crossing between both

switch line cards and ASICs. Figure 9 shows the resulting

latency PDF for our Confidence jobs that allocated 8 total

nodes in each of the following configurations: on a single line

card to a single ASIC, one line card using both ASICS, two

line cards using a single ASIC per card, two line cards with

both ASICs in use, four line cards with a single ASIC in use on

each, and four line cards with two ASICs in use per line card.

Clearly, the two resulting performance modes indicated that

the switch backplane does not introduce any additional latency,

and that the reduced performance detected in our original tests

was not likely due to any anomalous switching behavior.

We needed to collect more data. Figure 10 demonstrates

the resulting performance as we added nodes to our tests

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.5e-06 4e-06 4.5e-06 5e-06 5.5e-06 6e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 4C2A PW Min PDF
Smoky 16n 4C2A PW Min PDF
Smoky 24n 4C2A PW Min PDF
Smoky 32n 4C2A PW Min PDF
Smoky 40n 4C2A PW Min PDF
Smoky 48n 4C2A PW Min PDF

Fig. 10. Communication minimums for nodes distributed evenly across all
of the switch resources (line cards and ASICs). Each plotted PDF shows the
addition of exactly one node to each ASIC in the switch.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3.5e-06 4e-06 4.5e-06 5e-06 5.5e-06 6e-06

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 8n 4C2A PW Min PDF
Smoky 16n 4C2A PW Min PDF
Smoky 24n 4C2A PW Min PDF
Smoky 32n 4C2A PW Min PDF
Smoky 40n 4C2A PW Min PDF
Smoky 48n 4C2A PW Min PDF

Fig. 11. Communication minimums for nodes distributed evenly across all of
the switch resources (line cards and ASICs) with RDMA eager mode enabled
for 80 hosts. Each plotted PDF shows the addition of exactly one node to
each ASIC in the switch.

while balancing the results across each switch line card and

ASIC. That is each curve in the plot is the result of adding a

single node for each ASIC, and then running the confidence

benchmark with that configuration. At this point, the issue

became clear, the performance modes were not due to switch

hop counts, but instead due to an anomaly that appears at any

time more than 16 switch ports were in use. Additional testing

determined that the specific switch ports did not matter (though

intra-ASIC communication makes that data hard to interpret),

and at this point we realized that the switching hardware was

not the root cause of the degraded performance.

Rather, we noted that the Infiniband driver compiled into

OpenMPI used different message send protocols depending

on the number of hosts configured in the system. The first

16 hosts an MPI process communicates with use an RDMA

eager protocol; however, due to the relative lack of memory

on the NIC, all subsequent MPI Sends resort to an eager

send protocol that uses an operating system buffer (requiring

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

Smoky 32 nodes 1ppn PW PDF
Smoky 32 nodes 1ppn PW Eager PDF

Fig. 12. Pairwise Communication costs at one process per node

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05 1.1e-05 1.2e-05

P
ro

b
a
b
ili

ty

Time (s)

Smoky 32 nodes 1ppn PW CDF
Smoky 32 nodes 1ppn PW Eager CDF

Fig. 13. Pairwise Communication costs at one process per node

context switches). Within OpenMPI we were able to adjust

the eager RDMA limit to 80 hosts, with figure 11 showing

the resultant performance PDFs.

Figures 12 and 13 show the resulting improvement in

network latencies when scheduling 32 processes on Smoky

with forced eager RDMA communications versus the default

configuration. In addition, the removal of the operating system

assisted send seemed to impact the smaller performance mode.

This is likely due to the reduced likelihood of spurious context

switches (computational noise) due to the smaller amount of

time spent performing communications per benchmarking run.

IV. ASSESSING THE IMPACTS OF NETWORK UPGRADES

In our earlier study of the Jaguar network [12], we noted that

network latencies were severely impacted by the number of

node processes simultaneously sending. While re-performing a

series of experiments to ensure the validity of our earlier work

prior to a presentation, we learned that our benchmark results

now varied greatly from our earlier observations. We noted

that the default compilers and MPI platform had experienced

revisions since our earlier tests, but we were skeptical that

the software stack had caused the large degree of change

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

C
o

u
n

t

Delay (s)

Jaguar Timer Timings

Fig. 14. Histogram of binned x86 timer values on Jaguar

we observed in our Confidence-based benchmarking. Here we

describe the process we used to understand how the behavior

of the Jaguar interconnection network, SeaStar2, changed in

4 months time.

The Jaguar system at Oak Ridge National Laboratory’s

Leadership Computing Facility (LCF) includes both the fastest

and 16th fastest machines in the Nov 2009 Top500 List [7]. For

these tests we used the faster Jaguar system, the upgraded Cray

XT5. Jaguar XT5 is composed of 18,688 dual socket compute

nodes running Compute Node Linux, a lightweight Linux-

based operating system. Each socket contains a hex-core AMD

Opteron 2435 processor at 2.6 GHz for a total core count of

224,256, and each node includes 16GiB of DDR2-800 main

memory for a total system memory of 299 TiB. Jaguar XT5

also include 256 service and I/O nodes running a full version

of SuSE Linux that provide file system and external network

access. Each node in Jaguar is connected using a SeaStar2

router capable of transmitting 76.8 Gbps in each direction on

the 3-dimensional torus interconnection network (230.4 Gbps

per node total). The aggregate network bandwidth is rated at

2.992 Tbps.

Our original benchmark code was built using the Cray XT5

compiler wrapper and MPI libraries, based on the Portland

Group International compiler version 9.0.4 and XT Message

Passing Toolkit 3.5.1. The more recent configuration relied on

Portland Group International compiler version 10.3 and the

XT Message Passing Toolkit 4.0.0. All benchmark runs were

performed on 64 node allocations randomly selected by the

scheduler. The allocations included no more than one shelf

from each of 5 separate cabinets. By ensuring the allocation

spanned multiple cabinets, we can ensure that all 3 dimensions

of the torus network are actively utilized.

A. Ensuring Results Validity

As in the last study, we first begin with ensuring that

our observed timer values are meaningful. In figure 14 we

can see a histogram of the system timer measurements for

Jaguar. Not surprisingly, the observed timer skews appear

very similar to the OS noise described for the platform [8],

 0

 500000

 1e+06

 1.5e+06

 2e+06

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 1PPN ORIG Pair-wise PDF
JagPF 64N 1PPN OLD Pair-wise PDF
JagPF 64N 1PPN NEW Pair-wise PDF

Fig. 15. Pairwise communication latency PDF for 64 Jaguar nodes with 1
communicating process per node. The first line is the data originally collected,
the second line uses the old software stack running after the system updates,
and the third line uses the new software stack running after the system update.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty

Time (s)

JagPF 64N 1PPN ORIG Pair-wise CDF
JagPF 64N 1PPN OLD Pair-wise CDF
JagPF 64N 1PPN NEW Pair-wise CDF

Fig. 16. Pairwise communication latency CDF for 64 Jaguar nodes with 1
communicating process per node. The first line is the data originally collected,
the second line uses the old software stack running after the system updates,
and the third line uses the new software stack running after the system update.

and does not appear normally distributed. The largest number

of timer entries fell into the first data bin, which spans 0 -

50 nanoseconds (the total number of timer observations was

8.064×109). Recall that these initial timer values (and all of

the other gathered values) are reduced by exactly the amount of

the minimum timer delay observed during the timer calibration

phase. This is done to remove some of the cost of the timer

overhead from our collected data in a safe manner that does

not invalidate the measured results. In the case of Jaguar, the

Cray XT5, this appears to be an adequate technique with well

over 99.99% of the timer observations taking less than 50

nanoseconds.

B. System Upgrade Measurements

Figures 15 and 16 show the empirical probability density

functions and cumulative distribution functions for a single

communicating process per node using all three of our test

configurations. The lines labeled “ORIG” are the original ob-

 0

 500000

 1e+06

 1.5e+06

 2e+06

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 2PPN ORIG Pair-wise PDF
JagPF 64N 2PPN OLD Pair-wise PDF
JagPF 64N 2PPN NEW Pair-wise PDF

Fig. 17. Pairwise communication latency PDF for 64 Jaguar nodes with
2 communicating processes per node. The first line is the data originally
collected, the second line uses the old software stack running after the system
updates, and the third line uses the new software stack running after the system
update.

servations from four months ago. The lines labeled “OLD” use

the same compiler and parallel tool platforms as the original

observations but were observed more recently, and the lines

labeled “NEW” were recently observed and use the updated

compiler and parallel tool platforms. Both the PDF and CDF

clearly show that all of the performance changes are not due

to incrementing the compiler and network middleware. In fact,

although it appears that some performance changes are due to

the change in software configuration, the most fundamental

changes in the network latency appear to have originated

outside of the software stack. In collaboration with the Jaguar

system administration team we learned that a network driver

upgrade had occurred in the intervening period, and that was

likely the source of our observed performance differences. The

driver upgrade nominally prevented a deadlock condition in the

network; however, in this paper we are only concerned with

evaluating the network performance modifications resulting

from the system upgrade.

Our original study of the Jaguar network focused on deter-

mining the optimal number of independent message originat-

ing processes (e.g. MPI tasks) to use in pairing with the Cray

XT hardware. In figures 17 and 18 we present the updated

empirical probability distributions for two communicating

processes per node and in figures 19 and 20 we present the

empirical probabilities for four communicating processes per

node. We again note that network latency sensitive applications

may be well served to use a single MPI task for remote

communications and employ a threading approach, such as

OpenMP, to leverage the large number of processing cores

with a Jaguar compute node. However, it does appear that

the network driver update results in a more reproducible (i.e.

“peakier”) message latency, even if the performance is slightly

degraded from the results of our original measurements

Figures 21 and 22 show the empirical probability dis-

tributions for network latency with twelve communicating

processes per node. With all node processes sending and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty

Time (s)

JagPF 64N 2PPN ORIG Pair-wise CDF
JagPF 64N 2PPN OLD Pair-wise CDF
JagPF 64N 2PPN NEW Pair-wise CDF

Fig. 18. Pairwise communication latency CDF for 64 Jaguar nodes with
2 communicating processes per node. The first line is the data originally
collected, the second line uses the old software stack running after the system
updates, and the third line uses the new software stack running after the system
update.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 4PPN ORIG Pair-wise PDF
JagPF 64N 4PPN OLD Pair-wise PDF
JagPF 64N 4PPN NEW Pair-wise PDF

Fig. 19. Pairwise communication latency PDF for 64 Jaguar nodes with
4 communicating processes per node. The first line is the data originally
collected, the second line uses the old software stack running after the system
updates, and the third line uses the new software stack running after the system
update.

receiving network messages it is apparent that the driver

update has dramatically altered the measured network latency

performance without significantly modifying the mean or me-

dian network latency. The CDF clearly demonstrates that in all

configurations, observations will be evenly distributed about

38 microseconds. However, after the driver update observed

network latencies are much more uniformly distributed over

the sample space. The original network configuration appears

to provide much more predictable network performance (i.e.

greater peakiness) with basically identical average case perfor-

mance. In particular, we expect that collective communication

patterns that are performance limited by the slowest partic-

ipating process will be negatively impacted by the updated

performance distribution.

Although the SeaStar driver update clearly impacts the

network message latency, it is less clear how exactly the update

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05

P
ro

b
a
b
ili

ty

Time (s)

JagPF 64N 4PPN ORIG Pair-wise CDF
JagPF 64N 4PPN OLD Pair-wise CDF
JagPF 64N 4PPN NEW Pair-wise CDF

Fig. 20. Pairwise communication latency CDF for 64 Jaguar nodes with
4 communicating processes per node. The first line is the data originally
collected, the second line uses the old software stack running after the system
updates, and the third line uses the new software stack running after the system
update.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Time (s)

JagPF 64N 12PPN ORIG Pair-wise PDF
JagPF 64N 12PPN OLD Pair-wise PDF
JagPF 64N 12PPN NEW Pair-wise PDF

Fig. 21. Pairwise communication latency PDF for 64 Jaguar nodes with
12 communicating processes per node. The first line is the data originally
collected, the second line uses the old software stack running after the system
updates, and the third line uses the new software stack running after the system
update.

will affect existing applications. A single communicating

process per node will now likely achieve higher latencies

and incur greater variability in its measured send-receive

latency (though perhaps with less chance of encountering a

system halting deadlock). It appears the Cray engineers have

endeavored to improve the consistency of network operations

when 2 or 4 processes are communicating per node at the

cost of increasing the observed network latency. That is,

network delays will be more repeatable, which may result

in a simpler programming model, but that overall application

performance and scalability are likely to be reduced with this

driver update. In the case of 12 simultaneously communicating

processes, it appears that updating the network driver has

degraded the send-receive latencies, and has likely decreased

the repeatability of network injections. Due to the degraded

performance of this configuration we maintain our original

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05

P
ro

b
a
b
ili

ty

Time (s)

JagPF 64N 12PPN ORIG Pair-wise CDF
JagPF 64N 12PPN OLD Pair-wise CDF
JagPF 64N 12PPN NEW Pair-wise CDF

Fig. 22. Pairwise communication latency CDF for 64 Jaguar nodes with
12 communicating processes per node. The first line is the data originally
collected, the second line uses the old software stack running after the system
updates, and the third line uses the new software stack running after the system
update.

suggestion: a hybrid programming model that uses four or less

communicating processes per node with OpenMP or PThreads

to utilize the remaining processing cores is likely to achieve

better performance for latency-sensitive parallel applications

running on the Jaguar system.

V. CONCLUSION

In this paper we utilized the Confidence toolkit to diagnose

and analyze anomalous network behavior in HPC interconnec-

tion networks. On a commodity component Linux cluster we

were able to determine the cause of a network performance

degradation and on a Cray XT5 we were able to examine the

impacts of network and software stack upgrades. Confidence is

well suited for these type of detailed analysis tasks because it

provides more than simple summary statistics. The empirical

probability distributions generated by Confidence can aid in

measuring performance, locating areas of degraded perfor-

mance, and evaluating how system component performance

changes over time.

The results presented in Section III demonstrate how to use

the Confidence toolkit to thoroughly understand the symptoms

of a network performance issue. Further, we demonstrated

how we were able to refine our benchmarking configurations

to demonstrate the performance modes for the switch in

question, eventually ruling out the switch as a possible cause

for the anomalous performance. From there, we were able to

locate the problem as a poorly tuned interaction between the

Infiniband host channel adapters and the MPI software stack.

We then tuned the software stack to allow eager RDMA com-

munications for all our small messages, resulting in significant

performance improvements.

Secondly, in Section IV, we used Confidence to understand

the network performance impacts of system software and net-

work driver upgrades. Our tests demonstrated that upgrades to

the compiler and MPI implementation result in relatively small

changes in network latencies; however, the network driver

upgrades appeared to greatly change the network performance

characteristics. In general, the SeaStar update improved the

peakiness and repeatability of small message transmissions at

the cost of slightly longer absolute network delays. Finally, the

upgrade appeared to leave the average case performance of 12

communicating processes per node intact; but, the performance

variability is greatly increased with the driver update. It is still

our recommendation that application programmers typically

employ very few MPI processes per node, and instead rely

on techniques such as PThreads or OpenMP to leverage the

processing capabilities of the majority of the node processing

cores.

VI. FUTURE WORK

For our future work we are interested in continuing to

explore the use of empirical probability distributions to study

shared resource performance. We intend to study how the

number of nodes allocated in our networking studies affects

the empirical probability distributions. We are also beginning

to experiment with fitting one-sided probability distributions

(such as the F distribution and log-normal distribution) to

benchmark results to provide for some further data char-

acterization. In particular, we are interested in comparing

the formulations for higher-order moments (i.e. skew and

kurtosis) in one-sided distributions to our measured moments.

Further, we are interested in looking at non-central moments

of probability distributions. In HPC systems mean and median

performance are not the desired performance levels, so calcu-

lating the distribution moments about the observed minimums

may provide a higher quality performance summary than the

typical central moments (mean, variance, skew, kurtosis).

One of the application areas we are most interested in an-

alyzing with Confidence is the computational noise generated

by the operating system. By instrumenting various micro-

benchmarking kernels with the Confidence toolkit, we feel

that it will be possible to perform a detailed examination

of application induced noise, and determine the impacts of

the various types of noise experienced on high performance

computer systems. We are also exploring Confidence as a

tool for analyzing the performance of intensive file system

operations. We have instrumented both IOR and XDD with

the confidence toolkit and we are in the process of analyzing

“thread drift” during large data transfers, and the performance

of various non-contiguous I/O access patterns.

ACKNOWLEDGMENTS

This work was supported by the Department of Defense

(DoD) and used resources at the Extreme Scale Systems

Center, located at Oak Ridge National Laboratory (ORNL)

and supported by DoD. This research also used resources at

the National Center for Computational Sciences at ORNL,

which is supported by the U.S. Department of Energy Office

of Science under Contract No. DE-AC05-00OR22725. Special

thanks to Pawel Shamis for explaining various details related

to the OpenMPI BTL OpenIB driver.

REFERENCES

[1] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy,
J. Rogers, P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu,
Early evaluation of IBM BlueGene/P, SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing (Piscataway, NJ, USA),
IEEE Press, 2008, pp. 1–12.

[2] Sadaf R. Alam, Jeffery A. Kuehn, Richard F. Barrett, Jeff M. Larkin,
Mark R. Fahey, Ramanan Sankaran, and Patrick H. Worley, Cray XT4:

an early evaluation for petascale scientific simulation, nov. 2007, pp. 1
–12.

[3] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike
Lang, Scott Pakin, and Jose C. Sancho, Entering the petaflop era: the

architecture and performance of Roadrunner, SC ’08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing (Piscataway, NJ,
USA), IEEE Press, 2008, pp. 1–11.

[4] Abhinav Bhatele and V. Laxmikant, An evaluative study on the effect

of contention on message latencies in large supercomputers, IPDPS
’09: Proceedings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing (Washington, DC, USA), IEEE Computer
Society, 2009, pp. 1–8.

[5] Kei Davis, Adolfy Hoisie, Greg Johnson, Darren J. Kerbyson, Mike
Lang, Scott Pakin, and Fabrizio Petrini, A performance and scalability

analysis of the BlueGene/L architecture, SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing (Washington, DC, USA),
IEEE Computer Society, 2004, p. 41.

[6] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner,
Bob Lucas, Jeremy Kepner, John Mccalpin, David Bailey, and Daisuke
Takahashi, Introduction to the hpc challenge benchmark suite, Tech.
report, 2005.

[7] H.W. Meuer, E. Strohmaier, H. Simon, and J.J. Dongarra, TOP500

Supercomputer Sites, 34th edition, The International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC
’09), 2009.

[8] Sarp Oral, Feiyi Wang, David A. Dillow, Ross Miller, Galen M.
Shipman, and Don Maxwell, Reducing application runtime variability

on Jaguar XT5, CUG-2010 (Edinburgh, UK), Cray User’s Group, 2010.
[9] Fabrizio Petrini, Eitan Frachtenberg, Adolfy Hoisie, and Salvador Coll,

Performance evaluation of the quadrics interconnection network, Cluster
Computing 6 (2003), no. 2, 125–142.

[10] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin, The case of the

missing supercomputer performance: Achieving optimal performance on

the 8,192 processors of ASCI Q, SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing (Washington, DC, USA),
IEEE Computer Society, 2003, p. 55.

[11] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen,
Gregory R. Ganger, Garth A. Gibson, and Srinivasan Seshan, Measure-

ment and analysis of TCP throughput collapse in cluster-based storage

systems, FAST’08: Proceedings of the 6th USENIX Conference on File
and Storage Technologies (Berkeley, CA, USA), USENIX Association,
2008, pp. 1–14.

[12] Bradley W. Settlemyer, Stephen W. Hodson, Jeffery A. Kuehn, and
Stephen W. Poole, Confidence: Analyzing performance with empirical

probabilities, Proceedings of 2010 Workshop on Application/Archi-
tecture Co-design for Extreme-scale Computing (AACEC), September
2010.

