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Abstract—Energy consumption in data centers is nowadays 
a critical objective because of its dramatic environmental and 
economic impact. Over the last years, several approaches have 
been proposed to tackle the energy/cost optimization problem, but 
most of them have failed on providing an analytical model to tar­
get both the static and dynamic optimization domains for complex 
heterogeneous data centers. This paper proposes and solves an 
optimization problem for the energy-driven configuration of a 
heterogeneous data center. It also advances in the proposition 
of a new mechanism for task allocation and distribution of 
workload. The combination of both approaches outperforms 
previous published results in the field of energy minimization 
in heterogeneous data centers and scopes a promising area of 
research. 

Index Terms—heterogeneous data centers, energy-aware opti­
mization, green computing 

I. INTRODUCTION 

Current data centers provide the required infrastructure for 
the execution of a wide range of applications and services in­
cluding social and business networking, Webmail, Web search, 
electronic banking, Internet marketing, distributed storage, 
High Performance Computing (HPC), etc. Large data centers 
are composed of tens of thousands of servers with tens of peta 
bytes of storage, and multiple hundreds of giga bit bandwidth 
to the Internet. They typically serve millions of users globally 
and 24-7. 

A drawback to this capacity growth has been a rapid 
and dramatic increase of the energy consumption and power 
density of data centers. The electric bill of the data centers 
(including the electricity needed for cooling and air condi­
tioning in the data center) was projected to pass 7 billion 
US dollars in the US alone, while the power density reached 
60 KW/m2 for data centers by 2010. The Environmental 
Protection Agency (EPA), in its August 2007 report to the 
US Congress, affirmed that data centers consumed about 61 
billion kilowatt-hours (kWh) in 2006, roughly 1.5 percent of 
total U.S. electricity consumption, for a total electricity cost 
of about $4.5 billion [1]. 

The work proposed in this paper advances in the technology 
of energy-efficient data centers and the mechanisms to place 
them on a more scalable and sustainable energy-efficiency 
curve. 

There are a number of different techniques to reduce the 
energy cost and power density in data centers at different levels 
of granularity: chip-level, server level, rack level, data center 
level, etc. Over the last years, several authors have addressed 
this problem by the well-known technique of Dynamic Voltage 
and Frequency Scaling (DVFS) [2] or by the introduction of 
heuristics to minimize power [3]. The former can effectively 
reduce the dynamic power of the system, while the latter 
minimizes the total power of the data center. Both, however, 
fail on exploiting the heterogeneity of the data center and they 
cannot minimize the system leakage power with an appropriate 
assignment of workloads. 

On the other hand, recent works like [4] do consider het­
erogeneous data centers and formulate a detailed mathematical 
model to perform an efficient energy-aware task scheduling. 
However, the authors do not propose a methodology to solve 
this optimization problem in an efficient way to drive the 
selection of processors in a heterogeneous data center under 
different workloads. 

The work proposed in this paper addresses the existing 
issues in the field of energy-aware task assignment for green 
data centers by targeting the following goals: 

• The usage of heterogeneity to minimize the energy con­
sumption in specific-purpose data centers, by using a 
mixed static/dynamic approach to the problem and by 
characterizing real periodic workloads in terms of energy. 

• The static optimization aims to find the best configuration 
of the data center given a set of heterogeneous machines. 
We will prove that the best combination is a heteroge­
neous data center. 

• The dynamic optimization shows that the energy can be 
reduced significantly by optimizing the task allocation 
and distribution algorithm of the resource manager. We 
will prove that the best results are obtained in het­
erogeneous data centers like the ones proposed in our 
configurations. 

This paper is organized as follows: Section II gives further 
information on the motivation and the related work on this 
topic. Section III gives an overview of the proposed solution. 
The energy characterization is presented in Section IV, while 



Section V details the algorithm used for the static/dynamic 
optimization. Results and evaluation are shown in Section V I . 
Finally, the conclusions of the paper are drawn in Section V I I . 

I I . RELATED WORK 

During the last years, several approaches have targeted 
the problem of energy efficiency in data centers, proposing 
different techniques to optimize the energy-aware metrics. 
In [5], the authors have tried to identify workload time series 
to dynamically regulate C P U power and frequency to optimize 
power consumption. Other works that apply voltage scaling, 
like [6] and [7], also manage the concepts of monitoring and 
estimation of the workload and the idea of having a pool 
of generic and interchangeable resources. These works have 
proposed interesting approaches for the run-time management 
of the workload in homogeneous data centers; however, our 
research presents how the heterogeneity in the selection of the 
processors that compose the data center leads to higher energy 
savings. 

Load balancing [8], and particularly dynamic resource pro­
visioning [9], can be used to distribute the total workload of 
the data center among different servers in order to balance the 
per-server workload. As opposed to our work, the previous 
run-time techniques do not consider an off-line analysis for 
the energy-efficient design of the data center. 

Virtualization technology has provided a promising way to 
manage application performance by dynamically reallocating 
resources to VMs. Several management algorithms have been 
proposed to control the application performance for virtualized 
servers [10] and to solve the VM-server mapping problem for 
power savings [11]. 

The closest works to ours are [4] and [12]. While the first 
one is focused on cloud servers and the second one applies 
control theory, both of them lack a detailed and accurate 
energy model that supports the proposed optimizations. More­
over, as opposed to us, they tend to consider data centers with 
a low workload or the absence of any initial workload before 
the management takes place. 

In this paper, we present a mixed static/dynamic approach 
for the energy-efficient management and configuration of a 
high-performance data center. While previous techniques have 
not considered the impact of the proper selection of processors 
in the design of the data center, our research work will 
firstly propose an heterogeneous design of the system based 
on an accurate energy model. After that, our optimization 
problem solved in run-time, will also exploit this heterogeneity 
to further reduce the energy consumption of the system, 
outperforming previous approaches. 

I I I . PROPOSED SOLUTION 

Our proposed approach will mainly target specific-purpose 
data centers, with periodic workloads that can be easily 
characterized. In these systems, the values of occupancy are 
also constantly high (i.e: data centers for financial applications, 
graphic rendering, etc.). Therefore, we can assume with high 
level of accuracy that the workload exhibited during a period 
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of time (i.e: one day) is representative of the workload that 
the data center will have in any other period of time (i.e: the 
next day). 

The traditional functional system found in today’s data 
centers comprises: a workload, which is a set of different tasks 
entering the system; a task scheduler, which queues the tasks 
in time, deciding their priority of execution; and a resource 
manager, which has the knowledge of the available system 
resources and decides where each task is going to be executed. 
The data center model that we propose is a variation of the 
traditional one and can be understood as the system described 
by Figure 1. In our case, we assume that the workload entering 
the system has already been scheduled by a commercial 
scheduler (such as Moab), and we implement our solution 
in the resource manager (Slurm [13] in our case), which is 
fed with that workload. This workload can be understood as a 
collection of job sets randomly distributed in time. Each job 
set has a random number of tasks; however, the number of 
different tasks is fixed for all workloads. Each task will be 
characterized for every machine (resources) of the system in 
order to obtain its profiling information (see Section IV for 
details). This information will be used to make an efficient 
optimization of the data center in two different ways: static 
and dynamic. 

The first optimization approach will perform an off-line 
configuration of the data center to obtain the most suitable 
energy-efficient set-up. This approach will find the most ap­
propriate combination of resources (server architectures) from 
a set of available ones, that will be needed to provide the 
required energy efficiency and still satisfy the performance 
constraints. We will prove that the result of the optimization 
is a heterogeneous data center, which performs better than any 
of the possible homogeneous configurations. 

The second optimization will work after the first one has 
been applied and will perform a run-time optimization to 
allocate and distribute the tasks of the workload between the 
computing resources. This approach will prove that different 
allocations of tasks lead to different energy consumption 
values. This means that we can create run-time optimiza­
tions in terms of energy that feed information back to the 
resource manager and exploit the availability of heterogeneous 
resources. 

In the next two sections we will present the application 



characterization and the optimized task allocation phases. 

I V . ENERGY PROFILING 

State-of-the-art literature on this topic [3] proposes the 
following formula to calculate the power consumption for 
every server in a data center: 

Pi 
= p • fi • Cp • (Tl

0 

T i (1) 

where is the air density and depends on ambient temperature, 
f i is the airflow, CP is the specific heat capacity of dry air at 
ambient pressure, and Tout and T i n are the server outlet and 
inlet temperature respectively. 

Equation 1 is useful in the case of an experimental set­
up where the utilization of the data center capacity is high. 
In this particular case, heat recirculation is a very important 
factor and the inlet temperature of the machines under study 
is increased due to the air room temperature and the outlet 
air of the other machines in the room. In our case, for 
the task characterization of specific-purpose data centers, we 
can perform the task characterization off-line in an isolated 
environment where recirculation is negligible. 

Our target with this characterization phase is to obtain a 
value of the energy variation that occurs when we allocate a 
certain task t in a specific processor p: e tp. Therefore, for a 
constant ambient temperature, constant values of the fan speed 
in the servers, and for data taken in constant time intervals, 
the outlet temperature follows the CPU temperature [14], and 
the energy calculation can be reconsidered as follows. 

Let , f m and CP be the parameters mentioned in Equa­
tion 1, being f m different for each server machine m and 
obtained from the manufacturer specification. t

t
p

otal is the total 
duration of task t in processor p, Tt

c
p
puAV G is the average CPU 

temperature and Tp
cpu( = 0) is the idle temperature of each 

CPU. Taking into account the aforementioned considerations, 
the energy consumed per task in each processor is: 

cpuAVG 
etp = PJm^PyJ-tp ~ 1P \T = [))) 

total 
tp (2) 

This approximation has proved to be realistic, as shown 
in the results section, since for our tests (performed with 
commercial machines in which real measures were acquired) 
the ambient temperature did not raise during the executions 
of the workload. Also, the fan speed remained approximately 
constant during characterization, which made the air flow 
constant1. 

In order to obtain the total energy for the allocation of 
a task in a certain server, we only have to add the energy 
variation due to this process to the idle energy consumed by 
the machine. 

1A constant fan speed is coherent for the particular case of specific-purpose 
data centers executing cpu-intensive applications, as it is in this case. If the 
workload is far from 100% most of the time, then the fan speed will no be 
constant nor the formula in 2 will represent a realistic scenario. 

V . ENERGY O P T I M I Z A T I O N A L G O R I T H M S 

Once the characterization is performed, we wil l use the 
obtained information to generate a set of optimizations that 
improve the energy efficiency of a data center. In this sense, 
we can think of three different scenarios: 

• The definition of a data center which has the optimum 
number of machines, given a limited budget and a limited 
room space, to run the workload. 

• The upgrade of an existing data center with new machines 
that are selected based on a criteria for energy-optimality. 

• The execution of the workloads in an already-existing 
data center. This refers to applying different and new 
resource managing techniques that exploit the machine 
heterogeneity. 

These three case studies can really be combined in two: 
(i) a static and off-line approach, which includes the creation 
and extension of a data center; and (ii) a dynamic run-time 
approach, that tackles the resource management of the tasks 
to be executed. 

The following subsections wil l explain further these ap­
proaches. 

A. Static off-line data center optimization 

The static off-line approach tries to find the optimum 
number and combination of server machines from a set of 
architectures, given a certain workload. The maximum number 
of different architectures to be used is given by the user. 
Each task of the workload has a different energy profile per 
processor, obtained during the characterization phase. 

The optimization phase is defined as follows. Let us denote 
by M a set of machines, by P a set of processors and by T 
a set of tasks that must be executed. Each machine m has a 
price of m, consumes power in idle state nm and occupies 
a certain space am (understood as the number of U’s in a 
rack). Each processor p belongs to one machine m, denoted 
as pm. Every task t has a duration and consumes a certain 
amount of energy depending on the target processor, atp and 
etp respectively. The problem consists on finding a subset of 
M that is able to execute the required tasks T minimizing the 
energy consumption: 

X 
Minimize ktp ·e t p + m · m a x 

t2T,p2P m£M 

(3) 

where ktp is a binary variable that is set to 1 if the task t is 
executed in processor p. m a x is the time instant at which all 
the tasks have been executed. The constraints that the proposed 
model must fulfill are the following: 
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These constraints ensure that all the tasks are executed 
within a maximum time 4–5, that all the tasks will be executed 
once and just once in a processor 6, and that both the price 
of the data center and its room space will not exceed certain 
values 7. km is a binary variable that is set to 1 if the machine 
m is used. 

As a result, we will obtain the optimum number of machines 
of each type needed to build our data center with energy-
performance constraints. 

B. Dynamic run-time allocation 

In this case, we suppose that we already have a heteroge­
neous data center with a fixed number M of machines (i.e.: the 
heterogeneous data center found with the static optimization). 
The dynamic run-time allocation of the tasks, performed by the 
resource manager, aims at minimizing the energy consumption 
of the assignment by placing each task where it wastes the 
minimum energy. 

The minimization function is the same than the previous 
one 3. However, instead of constraints 4, 5 and 7, we use 
the following one to express the needs of the dynamic task 
allocation 8: 

Server 
Model 
RX-220 

PrimePower 
450 

RX-300 
S6 

Processor 

AMD 64 
@2GHz 

Sparc 64V 
@1.1GHz 
Intel Xeon 
@2.4GHz 

#Cores 

2 

4 

8 

Idle 
Power 
122W 

200W 

137W 

Airflow 
(m3/h) 

118 

200 

130 

Price 

$2000 

$1000 

$3500 

Size 

2U 

4U 

2U 

0.4 
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This time, the problem consists on finding the most appro­
priate allocation of tasks t in processors p, that is, finding the 
optimum ktp that minimizes the energy consumption. ktPm, 
<JtPm and r™ax have the same meaning than before. The new 
factor 7p m is a time offset that represents the amount of time 
that a processor p = 1 , . . . , P is occupied (executing previous 
tasks) when the new job set arrives. In this way the system 
can take into account the initial usage of processors. 

The aforementioned constraints ensure that each task wi l l 
only be allocated in one processor, try to find a compromise 
between energy minimization and execution time, and allow 
to distribute tasks in an already-occupied system by setting 
7p m to an appropriate value. 

As a result, the algorithm wil l give the allocation of each of 
the tasks in the workload to the specific machine. Because the 
workload is divided in job sets, the algorithm wil l be executed 
each time that a new set of tasks arrives. 

V I . RESULTS 

In this section we present the results obtained after exer­
cising the task characterization and optimization techniques 
described in this paper. 

The data used in order to characterize the workload have 
been acquired experimentally from the commercial servers 
showed in table I after the execution of the different tasks. 
The parameters needed to obtain the energy values have 
been obtained via snmp, ipmitool and the proprietary tools 

of Fujitsu. These parameters are the ambient, CPU and moth­
erboard temperature, the fan speed and processor frequency. 
The only data that has not been directly characterized nor 
modeled with equations is the idle power consumption of 
the servers and the air flow, which have been obtained from 
the manufacturers specifications. As can be seen in the table, 
the selected machines present a high level of heterogeneity: 
they have different processor architectures, different number 
of cores and while the Sparc and AMD machines are quite 
old (year 2004-2005), the Intel machine is pretty new (year 
2010) and, thus, is expected to outperform the other two. 

A. Workload characterization 

The generated workload is composed of 12 different tasks 
from the SpecCpuInt 2006 benchmarks. We have chosen 
this benchmark because: (i) it is one of the most common 
benchmarks used for performance tests in specific-purpose 
data centers, (ii) it is a cpu-intensive benchmark 2; and (iii) 
we can ignore the effects of network delays and disk transfers, 
and still be working with accurate models. 

Finally, a random workload of 2000 tasks randomly split 
in different job sets of 150, 200, 250 or 300 tasks, and 
with random arrival times of 10, 20 or 30 minutes has been 
generated. 

The complete benchmark has been executed for all the three 
servers. For these executions, both the ambient temperature 
and the fan speed have been approximately constant. With 

2This has major advantages, as it allows to characterize the tasks taking 
the power dissipation of the CPU as the maximum contribution to the energy 
consumption (which is a real hypothesis for our case) 

m 
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these data, we have used equation 2 to calculate the energy 
variation of each task per processor. These results are shown 
in figure 2. We have added this variation to the idle power 
(per processor) of each machine to get the total energy 
consumption. 

At a first glance, we can see that there is margin for 
improvement. For example, even though the Intel server should 
be better than the others, we find that there are some tasks in 
which the Sparc server outperforms the Intel. On the other 
hand, the Sparc server behaves very bad with some specific 
tasks. 

Intuitively, this experiment lets us see that with the proper 
usage of heterogeneity and an efficient optimization algorithm 
we could obtain really good results in terms of energy. 

B. Scenario 1 : Optimum heterogeneous data center configu­
ration 

This experiment consists on the definition of the optimum 
data center. All the algorithms presented for both this scenario 
and the next one have been coded using ILOG CPLEX 
optimization suite. The reason for choosing CPLEX is that 
this tool does not only provide the optimization libraries to 
solve MILP problems, but also a very complete API for Java, 
C++, Python and .NET. This will be very useful in the run­
time optimization step of next subsection VI-C. 

As our experimental work has been performed with three 
machines that have completely different architectures, we split 
the data center configuration problem in two cases. First we 
try to find the optimum data center configuration with the 
selection of cores from the group of the two oldest machines 
(the Sparc and the AMD architecture); next, we look for the 
optimum data center configuration with the selection of cores 
from the group of the three machine architectures. To do so, 
we feed the optimizer with a pool 100 machines of each type, 
and a job set of 200 tasks to be allocated. In this way, we can 
optimize the data center configuration for an occupancy similar 
to the worksets of the workload. This allows to minimize the 
total computation time (and thus, the total idle power). 

The implementation of the algorithms will run for a limited 
amount of time (20 minutes) to find an optimal or near-optimal 
solution with a low-enough error. The amount of time spent to 
find a good solution is not an important parameter because this 
is an off-line optimization that will be carried out just once, 
whenever the data center is going to be planned or extended. 

We compare the results of the heterogeneous data center 
with the corresponding homogeneous data center, assuring 
that: (i) the total budget and space constraints are the same, 
or (ii) that the number of total cores (that is, the data center 
computing capacity) is the same. We use Slurm resource man­
ager default configuration to simulate the workload allocation 
and distribution. Slurm can be run on multiple-slurmd mode 
to emulate a cluster of machines, setting the task affinity to 
core. This means that Slurm will bind each task to one and 
only one core, and a machine will execute as many tasks in 
parallel as available cores. 

Configuration 
Heterogeneous 

(AMD & Sparc) 
AMD only 

(budget limit) 
Sparc only 

(budget limit) 
AMD only 

(comp. limit) 
Sparc only 

(comp. limit) 

Budget($) 
94000 

94000 

94000 

214000 

54000 

Cores 
214 

188 

188 

214 

214 

Time (h) 
118 

276 

269 

249 

243 

Energy (kWh) 
2761 

3472 

2913 

3540 

2942 

T A B L E I I 
SCENARIO 1 : DATA CENTER COMPARISON 

Table I I shows the results for the AMD Opteron vs Sparc 
64V case. As can be seen, the heterogeneous data center 
outperforms the homogeneous ones both when homogeneous 
distributions with the same budget limitation are chosen or 
when the same computational capacity is selected. The savings 
in terms of energy range from 5% to 22% In terms of 
performance, the heterogeneous solution is also faster than the 
homogeneous one, with speed-ups in the range of 27-35%. 

In the IntelXeon vs AMD Opteron vs Sparc 64C case, the 
optimizer chooses as the best data center a heterogeneous 
comfiguration comprised of 5 Sparc and 24 Intel machines. In 
this sense, the optimization system admits that there are some 
tasks that perform better in Sparc processors, and uses them 
to minimize energy. The improvement margin is, however, 
smaller. For the same computational capacity, the heteroge­
neous solution decreases energy in a 6% and execution time 
in a 7% 

C. Scenario 2: Optimum workload distribution and allocation 

In this experiment, we generate an optimum distribution and 
allocation of tasks. The input to our system (which acts as a 
resource manager) is the same than in the previous scenario. 
However, the whole workload will now be used instead of a 
particular job set. 

This case is different from the previous one in the sense 
that the algorithms must be ready to work in run-time, in 
parallel with the execution of the workload. This can be done 
with the implementation of a new Slurm plug-in that uses the 
CPLEX library tools for the task distribution and allocation. 
The optimization will be run each time that a new job set 
(defined as a pack of random tasks) arrives to the resource 
manager, for a limited period of time, in order to assign tasks 
to processors. This optimization procedure mainly improves 
the total energy variation (the aforementioned etp). The goal 
of this optimization is not really to reduce drastically the total 
execution time (as this time is inherently reduced by the static 
optimization), but just to ensure that it does not exceed a 
maximum. Also, as we suppose a stationary state of the data 
center with all the machines turned on and highly occupied, 
the idle power consumption of machines is not as important 
as in the static optimization. 

Table III shows the results of the dynamic optimization, 
performed both for the homogeneous data centers and the 



Configuration 
Heterogeneous AMD & Sparc 

AMD only (budget limit) 
Sparc only (budget limit) 

Heterogeneous Intel & Sparc 
Intel only (comp. limit) 
Sparc only (comp. limit) 

Time (h) 
112 
248 
261 
90 
100 
103 

Energy variation (kWh) 
151 
218 
290 
101 
134 
301 

T A B L E I I I 
SCENARIO 2: ENERGY VARIATION MINIMIZATION 

heterogeneous ones and after the execution of the optimization 
algorithms with the whole workload. As can be seen, energy 
savings are obtained for all the data centers, but specially 
for the heterogeneous ones, that outperform the homogeneous 
configurations in all cases. Even though the improvements are 
again higher for the A M D and Sparc combination, there are 
also savings in the Intel and Sparc case. This savings range 
from 24% to 47% without execution time overhead. 

Finally, it must be noted that the execution of this run-time 
optimization is completely feasible. As the algorithm does only 
have to work with the current job set, the optimization is fast: 
it only needs from 30s to 1min of time to find results with 
good error margins. As the execution time of a task ranges 
from 10 minutes to hours, the time overhead introduced by 
the optimization is negligible. 

V I I . CONCLUSIONS 

This paper proposes a mixed static/dynamic energy mini­
mization strategy for data centers. The solution is especially 
aimed for specific-purpose data centers, which exhibit high 
occupancies and where the workload can be adequately char­
acterized. The proposed static approach shows how the proper 
selection of the heterogeneity of the data center design can 
achieve a notorious energy optimization during the design 
phase of the system. This energy optimization can be extended 
to more than a 20% with low execution time overhead when 
combined with the proposed dynamic load assignment mecha­
nism. Moreover, the run-time optimization can be easily imple­
mented in the resource manager as an Slurm plug-in, which 
allows integration with actual commercial data centers. The 
conducted experimental work has tackled with realistic work­
loads and machine architectures, and the obtained plug-ins 
will be very soon incorporated in a real environment (Madrid 
Supercomputing and Visualization Center – CeSViMa). Future 
work will focus on the development of more accurate energy 
models that will take real measures of the servers idle power 
and study the dependency on the power consumption of servers 
with the room temperature is envisioned, as well as the effect 
of the cooling equipment of the data room. The objective 
will be to develop an integrated energy minimization solution 
that takes into account both the resource manager and the air 
conditioning control. 
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