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Abstract—With an increasing interest in Electric Vehicles
(EVs), it is essential to understand how EV charging could
impact demand on the Electricity Grid. Existing approaches
used to achieve this make use of a centralised data collection
mechanism — which often is agnostic of demand variation in a
given geographical area. We present an in-transit data processing
architecture that is more efficient and can aggregate a variety of
different types of data. A model using Reference nets has been
developed and evaluated. Our focus in this paper is primarily to
introduce requirements for such an architecture.

I. INTRODUCTION & MOTIVATION

The introduction of government legislation and the asso-
ciated penalties for exceeding certain C'Oy emission levels
has encouraged major automotive manufacturers to announce
production of Electric Vehicles (EVs). Virtually all major car
manufacturers (such as European (BMW, Volvo, Volkswagen,
Fiat, Peugeot, Renault), Japanese (Suzuki, Toyota, Nissan,
Honda, Mitsubhishi) and American (GM/Chevrolet, Ford))
have announced the inclusion of EVs in their production
facilities and marketing plans. These vehicles are anticipated
to gain an important market share over conventional Inter-
nal Combustion Engine (ICE) powered vehicles. Analysis
on lifecycle C Oy emissions [I]] that was published for the
British government concludes that in the year 2030, EVs
may be able to produce less than 50g/km COs emissions,
approximately one third of petrol based vehicles. In the same
context, the Committee on Climate Change recommends that
the Government should aim for 1.7 million EVs on the road
by 2025 [2]. In order to re-charge their batteries and provide
traction, EVs will have to be connected to power networks [3]].

From a power system’s (electricity grid) perspective, EVs
may be considered as: (i) simple loads drawing a continuous
current from the electricity network; (ii) flexible loads that
may allow an aggregator company to interrupt or coordinate
their charging procedure; (iii) storage devices that may allow
an aggregator company to request power injections from their
batteries back to the electricity grid (the latter is known
as Vehicle to Grid (V2G)). A unique characteristic of EVs
in terms of power systems is that they are mobile devices
expected to connect to various locations of electricity networks
at different times of a day. Recent studies estimate that by

2030, if the re-charging processes of EV batteries are left
uncontrolled, a significant increase in the electricity demand
peaks is to be expected [4]. Moreover, the impact of EVs
is expected to be at the local level where hotspots will be
created that depend on how EVs will cluster within a particular
geographical location, creating a possible overload on the
low voltage distribution networks. Even a small number of
uncontrolled vehicles charging at peak periods could signif-
icantly stress the distribution system, slowing EV adoption
and requiring major electricity (generation and distribution)
infrastructure investments. Our focus here is on EVs that are
used by individuals in a residential or city context, and not on
vehicle fleets where charging models can be different.

A. Approach

A key challenge in supporting EV demand forecasting is
understanding: (i) over what period of the day an EV owner
is likely to request charging; (ii) characteristics of the EV (such
as battery being used, distance travelled, etc); (iii) driving
behaviour of the vehicle user; and (iv) environment factors
that impact (ii) and (iii). Such information is generally not
available at a single location, for instance some of these
factors reside on the EV while others need to be derived from
independently managed data sources (operated by the weather
or traffic agencies). The information needed to support EV
demand forecasting can therefore consist of (i) heterogeneous
data formats & varying transmission rates; (ii) irregular or
bursty data streams; and (iii) variable, difficult to predict
processing requirements per data stream. The processing of
these data streams may involve filtering, data correlation and
trends analysis. Processing is also typically stateful, i.e. after
the processing of a data element, a state must be kept in
memory for processing subsequent data elements. The out-
come of stream analysis must be exploited and compared with
historical load demands (stateless), so that a forecast can be
obtained. Identifying how limited network and computational
resources (subject to congestion, failure and performance
degradation) can be applied to stream analysis is an important
challenge and the focus of the work reported here. Demand
forecasting for EV charging is also a time critical process, as
vehicle owners may need their battery to be charged within



a few hours. Additionally, emergency and unforeseen traffic
or weather events may render previous forecasts inaccurate or
unusable, thereby requiring a new forecast to be developed.
The underlying network and computational architecture must
therefore support Quality of Service (QoS) constraints to be
observed to support the generation of timely forecasts.

We propose a distributed computing architecture and a
model for supporting EV demand forecasting, which consists
of a number of autonomous stages, where each stage consists
of a combination of data access and regulation, computation,
data transfer capability, and a rule-based controller component.
The computation stage makes use of a dynamically adaptable
resource pool, enabling multiple computational resources to be
used (and released) on-demand. To support QoS constraints,
we consider: (i) the average throughput per stream; (ii) the
maximum allowed burst per stream, and (iii) the need for data
dropping — i.e. dropping some data elements if they do not
directly contribute to demand forecasting. We extend previous
work [Sl], [6]], [7] by integrating an admission control policy
in the incoming traffic regulation component, support for both
stateful and stateless stream processing. We have developed a
proof of concept prototype of the system with Reference nets
(a type of executable Petri nets that support Java actions) [8].

The rest of the paper is organised as follows. In Section
EV charging requirements are provided. Requirements for
data handling and distributed processing are identified in this
section. In Section we present the system architecture for
making the EV demand forecasting application deployable
on a shared computing infrastructure. Two experiments are
conducted to show the key aspects of the model, with results
described in Section [V} Previous related work is compared to
this proposal in Section |V] Conclusions and future work are
discussed in Section

II. ELECTRIC VEHICLE DEMAND FORECASTING

As in figure [T]there are a number of possible sources of data
that contribute to the forecasting process. This includes: (i)
data obtained from vehicles (ii) data obtained from a charging
station — such as duration of charging, energy consumed/used
up during charging, type of charger used, desired time of dis-
connection etc; (iii) data obtained from external data agencies
that have a bearing on the charging requirement of vehicles.
This data is streamed to a number of nodes, indicated as
node Ni in the figure. The architecture for each node in the
system is discussed further in Section A key requirement
in this approach is to forecast the total energy demand at
a charging point — and subsequently aggregate this demand
within a particular region. In our approach, we do not collect
the data relating to vehicles, charging points, weather/traffic
(identified above) at a central point. Instead, we develop a
model for each charging point and then combine the outcome
of these models using our distributed data management and
computation infrastructure. This enables different types of
models to be used concurrently, where the complexity of a
model depends on the likely rate of change at a particular
charging point. A residential charging point is likely to have
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Fig. 1. Data management architecture within a particular region. The “ag-
gregator” is responsible for combining electricity demand within a particular
geographical area.

less demand variation than a charging point within a city.
The computational requirement for each model can therefore
change based on its location within a particular geographical
area.

A. EV Demand Forecasting Model Requirements

We identify various scenarios that illustrate the requirements
on the data management and computational infrastructure
required for EV demand forecasting in Table[l] These scenarios
are used to derive the requirements for our system architecture
and model. Sensors in this instance may be associated with
an EV (such as monitoring current battery charge) or those
associated with a charging point (which may be located at
homes, commercial buildings or service stations within the city
or along motorways). The simultaneous charging of a number
of EVs will generate a significant load on the electricity
grid and thus some coordination is necessary to distribute
this charging requirement over time. Various approaches are
possible to achieve this — such as synchronising charging with
tariffs (including the availability of real time pricing signals)
identified by the utility company or with the load currently on
the electricity grid. Demand forecasting is therefore essential
to enable the utility company to enable such coordination to
take place.

III. SYSTEM ARCHITECTURE

In this section, we will present our architecture for enabling
an elastic, QoS-aware, and scalable distributed streaming sys-
tem for EV demand forecasting. The proposed architecture
supports the processing of multiple sources of information
over a shared infrastructure, and consists of a sequence of
nodes that accomplish the computations. Our objective is to
maintaining an end-to-end QoS for each source of information,
by enforcing QoS at each node when data is streamed through
them. Each node is independent of another, and we assume
that (i) data transmissions required for meeting QoS, on
average, do not exceed the network bandwidth available, (ii)
the required processing capability on average does not exceed
the computational power of the available resources.



EV scenario

\ Data management & computation requirements

Forecasting demand at a charging point requires handling a
number of concurrent data streams. Each stream can have
different characteristics: rate, frequency and sample size. The
influence of data within a particular stream on the forecast
may also vary — i.e. some data streams may be of greater
importance in determining the outcome. Some streams may
come directly from the vehicle or the charging point, whereas
others may need to be derived from data maintained by third
parties (such as weather and traffic agencies) and filtered to
determine regional characteristics.

Requirement #1. It is necessary to allocate priority to
different data streams, based on their impact on the prediction
outcome. A resource management strategy needs to be used
that allocates a greater number of computational resources to
process high priority streams and alter this dynamically based
on change in stream behaviour. The underlying infrastructure
must be able to support admission control and enable a
variable processing rate per stream.

Current demand aggregation is focused on a regional context.
Hence, demand identified at charging points within a residen-
tial or city area needs to be combined. It may be necessary
to change the granularity of the region being considered to
more accurately reflect a variation in demand and identify the
likely sub-region where such variation occurs.

Requirement #2. The data streams needed to support demand
prediction can change — requiring the addition or removal of
particular streams to enable analysis to take place for different
geographical areas. A key requirement in this context is the
ability to dynamically choose the data streams of interest.

Different charging points may exhibit behaviour of varying
complexity. For instance, charging points which exist within
residential areas may have a more regular demand pattern,
compared to those that occur within a city where demand
can be influenced by events such as road congestion (due to
sporting events, accidents), weather patterns, etc.

Requirement #3. The computational resources needed to
forecast demand will depend on the likely rate of change
in demand at a particular charging point. It is therefore
likely that a different forecast model would be appropriate
for residential areas compared to a city-based charging point.
The infrastructure should therefore provide capability to
consider different forecast modelling capabilities (such as
linear regression, neural networks, bayesian models, etc) to
co-exist. In the same context, EV usage patterns in residential
areas are likely to be regular, implying that data rates are
likely to be well defined. Conversely, charging points at
shopping centres or public places at city centres are likely
to see varying demand, leading to data capture with periods
of burstiness.

The data used to generate forecast models may have interde-
pendencies. For instance, weather data may influence traffic
congestion within a particular area. Similarly, the state of
charge of a vehicle battery would depend on the type of
battery being used, the traffic flow within a given area, etc.
Therefore, although different data streams are needed, the
dependencies between the data streams may influence the
forecast outcome.

Requirement #4. The data management system should
enable mechanisms to provide isolation between streams
and where necessary, to also enable dependencies between
streams to be identified. Data streams will also have errors
and involve missing data items. It is therefore necessary when
processing these streams to be aware of how one stream
influences another and how data quality within one stream
influences another.

Developing a model to forecast EV demand is a time critical
process, as the aggregator identified in figure |l| needs to
request electricity from a power generating company only
a limited time prior to its use. To facilitate this, there is
a time window within which data from the EV and the
charging point needs to propagate to the computational node
responsible for developing the forecast.

Requirement #5. With multiple data flows present within the
system and the need to observe particular time thresholds, it
is necessary to develop Quality of Service (QoS) constraints
to limit data loss and latency. Such QoS constraints should
also identify bounds on the computational time necessary to
develop the forecast.

TABLE I: Data management and computation requirements for various
EV demand forecast scenarios — with reference to the regional demand

aggregation illustrated in Figure [I]
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Fig. 2. Hierarchical division into sub-areas with local and regional aggrega-
tion of demand

Our architecture relies on the current hierarchical decom-
position of an electricity grid into logical zones to support
monitoring and control, as identified by Serizawa et al. [9].
Such a decomposition enables a more scalable means to
control and manage a particular part of the power network.
We take two perspectives to support load forecasting: (i) an
EV and charging point perspective; (ii) a zonal perspective —
which enables aggregation across all EV charging in that zone.
The first of these corresponds to determining likely charging
regimes for an EV at different times of day, the accuracy of
which can vary with the behaviour of the driver, the pricing
tariffs for charging currently enforced by the utility company
and other external factors which impact the battery charge
(such as weather and traffic congestion events, etc). Figure [2]
illustrates the sub-division into areas and local aggregation of
demand within each area. These areas can include residential
feeders that also aggregate demand from homes and EV
charging points associated with a home (Area 1), to office
blocks (Area 4), city areas (Areas 2 and 3 in the figure)
which can include multiple charging points and which can
have variable density of EVs at any given time. A Regional
Aggregator then combines demand from each of these local
aggregators (as also illustrated in the figure). From an electrical
power grid perspective, charging points within each of these
areas are at the Low Voltage substation level, local aggregators
at Low to Medium Voltage substation level, and the regional
aggregator at the High Voltage Level. EV charging regimes can
range from: Uncontrolled Regime: EV charging begins as soon
as a commuter connects to the charging point. The daily traffic
pattern of commuters determines when EV charging will take
place. Dual Tariff Regime: The utility company introduces
two tariffs — a higher price tariff in the morning when there
is a greater demand for power and a low price tariff at
night. Variable Price Regime: This assumes that the utility
company provides real time pricing signals, based on the
existence of smart meters at consumer premises. Hence, a wide
variety of possible pricing signals can be produced, leading
to different charging regimes based on demand from the
commuter and pricing information from the utility company.
Mixed Charging Regime: In which the above three regimes
were combined in different ways — with different proportions
of commuters charging their vehicles using one of the three
regimes outlined above. In the same way, when considering

EV charging outside residential areas, traffic patterns can be
used to infer possible charging regimes. Whereas dual tariff
regimes would be appropriate for commuters charging at home
— i.e. preference for over night charging when price is low,
such a regime would be inappropriate for city charging, where
a spot price would need to be determined when a charging
request is made (in the absence of energy storage capability).
Our architecture consists of a number of nodes that can receive
data from charging points and local aggregators. We estimate
the total data sizes we need to consider as follows:

o Each EV profile is approximately 1KB — and we as-
sume approximately 400 EVs in each area (as illustrated
in figure [2). This value is based on the number of
customers connected to a secondary transformer in a
residential area, which for the UK generic distribution
network is 384 [10]. The EV profile generally consists
of the following parameters: (a) EV battery State of
Charge (SoC); (b) EV battery characteristics — which
are dependent on the manufacturer and the current age
of the battery; (c) Inverter/Charging point efficiency —
i.e. how efficient is the overall charging process; (d) The
EV battery utilisation cost; (e) Preferred charging mode;
(f) Time of disconnection and SoC; (g) Electricity price
schedule.

o We assume data may be communicated bi-directionally —
from a charging point to a local aggregator and from
a utility company to a charging point (such as price
signals).

o Depending on the charging regime being used, it is
necessary to estimate the number of EVs at any particular
charging interval (i.e. the time over which a demand
for energy is made by an EV owner). We assume that
residential areas have more predictable demand than city
areas (which can change based on time of day or other
events (weather or congestion related, for instance)).

e Data from an EV can become available when: (i) the
EV connects to a charging point within a residential or
city area; (ii) when an EV is within some geographical
proximity to a charging point — which advertises the
current tariffs to the EV owner.

A. Architecture

Our architecture consists of a number of nodes located
within each area illustrated in figure [2] These nodes are
connected by networks that can support a variety of different
Quality of Service characteristics (ranging from wired to
wireless connectivity). A node can be physically hosted at a
charging point or may be a data collection resource operated
by a mobile phone network operator. A number of such nodes
form our demand forecasting architecture, a key feature of
which is that forecasting should not be carried out at a central
point in the network (i.e. at local or regional aggregators
only). Instead, demand forecasting may be distributed across
multiple nodes within a data capture and processing network,
with some of the nodes being hosted at different substation
levels of the electricity grid (low, medium and high voltage).
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Fig. 3. System Architecture, and the elements of a node. ADSS is the
Autonomic Data Streaming Service — details of which can be found in [5]

All nodes have a similar architecture, consisting of three key
components: (i) a token bucket per data stream — for each type
of data that contributes towards forecasting demand. A data
stream can include: EV profile, pricing signals, weather or
congestion events, etc; (ii) a processing unit (PU) component
that assigns data to computational resources. The number
of processing units allocated to each stream can vary, and
are dependent on the urgency needed to process a given
data stream at any given time. We assume that the number
of processing units allocated to a stream are dependent on
the build up of tokens within a particular stream within the
token bucket associated with the data stream; and (iii) a
data transmission service that subsequently forwards partially
processed outcomes to the following node in the network.
Figure [3] illustrates this architecture where each stage contains
its own controller component. Each node corresponds to N3
identified in figure [T}

B. Handling multiple, heterogeneous data streams

Within a data stream, it is often useful to identify a “data
acceptance rate”, which is often different from the physical
link capacity connecting nodes and which identifies the rate
at which a stage can receive and process data. Each node
tries to maintain this acceptance rate as the output rate.
We characterise it for each flow by means of three QoS
parameters: (i) average throughput (average number of data
elements processed per second), (ii) maximum allowed burst,
and (iii) an optional load shedding (data dropping) rate. We
make the first two parameters match R and b of the token
bucket respectively. For each data stream, its associated token
bucket will allow data elements to enter into the PU stage
according to the R parameter. The token bucket can also accept
a burst of b data elements. Subsequently, a data element is
forwarded to a First Come First Serve (FCFS) queue buffer at
a PU. In addition to regulating access to the PU and enforcing
QoS per data stream, the token bucket also achieves stream
isolation, i.e. a data burst in one stream does not interfere with
another. The load shedding mechanism acts at the input buffer
of the node by discarding the older data elements of a flow at
a specified rate. It is only active, however, when triggered by
the PU stage controller component.

IV. EVALUATION

We evaluate the effectiveness of our architecture for the
scenarios described in table m In particular, we demonstrate

how adaption of token bucket parameters and the number of
processing elements allocated to each stream can help address
some of the data management and computation requirements
identified in table [l

A. Experiment 1: Self-adaptation with different performance
constraints

This experiment focuses on requirements 1 and 2, i.e. how
priority can be allocated to different data streams (originating
at a charging point or a local aggregator) based on the impact
the data will have on the prediction outcome. In particular, the
objective is to demonstrate how resources can be dynamically
allocated to process a stream from a more congested area
(simulated by a burst in data traffic received from the area),
compared to data traffic received from an area with a more
EV charging requirement. It is therefore possible to modify
the rate at which a stream enters a node — by altering token
bucket parameters, or the subsequent allocation of processing
units to higher priority streams.
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Fig. 4. Throughput with self-adaptive control and token bucket at each stage.

We consider two streams — ds; and dso, which have been
generated by two local aggregators — and are received by a
node at the regional aggregator, as illustrated in figure[2] ds; is
of a higher priority and therefore must be allocated additional
resources to achieve a processing time target, compared to dsa,
which only makes use of resources that are free.

The top graph in figure [4] shows the input rate for ds; and
dss. A burst is produced during interval 60s-120s for ds;
and during interval 600s-660s for dso. This burst simulates
an increase in demand for charging over this interval within
the region associated with ds;. The graph in the middle of
Figure@ shows the throughput for ds; and ds- at the first node.
It shows dsi’s throughput at the first stage, regulated by the
token bucket throttling mechanism: the first small peak at time
60s is caused by the allowed burst. As the violation persists,



the second peak shows how more flexible constraints allow the
addition of 6 resources and the throttling rate is increased until
90 tokens/s during the considered interval. The 37¢ peak of 200
tokens/s is produced to simulate a data inflation — i.e. there is a
significant increase in the amount of data produced (compared
to the size of the input data). The bottom graph shows how
the adaptation to the burst at ds;’s input is propagated at
the second stage, which reacts by introducing 6 additional
resources for ds; to the second node. Data inflation in ds;
at the first stage triggers the use of 10 additional resources at
the second stage of ds; until the input buffer of the second
stage is emptied. These graphs also show buffer occupancy
at each node on the right y-axis. In this example, the buffer
occupancy threshold to trigger the addition of new resources
has been set in ds;’s configuration to be a value of 50 tokens
with the resources being returned when the buffer is emptied.
The peaks of ds;’s buffer occupancy due to the input burst
is controlled in the two stages as additional resources can be
introduced to correct the difference between input and output
rates. However, there are not sufficient resources to absorb
ds1’s data inflation introduced in the first node. These graphs
show that during the interval where burst and data inflation
are produced in ds; there is no noticeable effects on dss.

The top graph in figure ] also depicts an input rate burst in
dss. dss’s requirements only supports the use of free resources
that may be used when the w f2 buffer occupancy reaches 50
tokens. The middle graph shows how the first node increases
the token bucket rate to 20 tokens/s (5 tokens/s over the initial
R of 15 tokens/s). Looking at ds2’s buffer occupancy at each
node, when the buffer is emptied R returns to the initial value
and the throughput returns to 10 tokens/s provided by the input
rate. dse buffer occupancy at node 1 is over the threshold
identified in dss’s configuration, because there insufficient free
resources to absorb the burst and therefore data are buffered.
The bottom graph in figure {]illustrates the same adaptation for
dso at the second node. Until dsy’s buffer occupancy reaches
50 tokens, ds2’s token bucket rate is 15 tokens/s. Once this
threshold is reached,dss’s token bucket rate is increased until
20 tokens/s to use free resources. When the buffer is emptied,
R returns to the initial value and the throughput returns to 10
tokens/s provided by the input rate. In this case, dss buffer
occupancy is under the predefined threshold because the free
resources are sufficient to absorb dss’s rate adaptation at the
first node. Again, these graphs show that during the interval
where the burst is produced in dsy there is not noticeable
effects on dsy.

An additional control action is load-shedding, which is
primarily used when it is not necessary to process all data
received from a charging point — as the demand pattern may
be regular and not all data samples are needed to support
forecasting. Alternatively, a sample strategy (considering every
nt" sample from the data stream) may be used to approximate
charging demand patterns. In this case, data in the buffer can
be dropped based on the chosen sampling strategy. Figure [3]
reproduces the previous scenario, but in this case ds; and
dss’s configuration parameters state a threshold of 50 tokens

for their buffer occupancy before the control logic drops data.
Depending on the buffer strategy (e.g FIFO, LIFO, etc) oldest
or newest data may be dropped. The graphs in figure [5] show
how buffer occupancy time is shortened and how the number
of resources in use can be reduced.

These previous scenarios show the behaviour of the token
bucket and control actions to enforce the QoS of each data
stream simulating punctual but strong burst to show the way
the system adapt resources and data injection rates. However
data streams may have very irregular data injection rates, as
illustrated in Figure [6]
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Fig. 5. Throughput with self-configuring control and token bucket at each
stage using load-shedding during congestion.

We use the Poisson distribution to control both the prob-
ability of having bursts (by defining burst inter-arrival time)
and a burst’s duration. We set both the burst inter-arrival time
and the burst’s duration between Is and 6s. The top graph
shows a sample of irregular input rates distribution in time.
The graph in the middle shows how dss’s token bucket is
adapting to 20 tokens/s during the intervals shown by the
red boxes. As a consequence of this adaptation at the first
stage, there are few impacts on the second stage as shown in
the bottom figure where the load-shedding mechanism in that
stage was not triggered.

B. Experiment 2: Processing Demand Surge

In this scenario, we evaluate the influence of varying the
data processing rate on each stream arriving at an aggregator
node. We consider the previous scenario in which two data
streams ds; and dso are executed simultaneously over two
shared nodes. The left part of Figure [/| shows the output rates
of ds; and dso with no addition of resources when data can
require more processing time (this is typically the case when
fault tolerance mechanism are introduced which can generate
extra processing overheads). In this simulation, we can observe
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Fig. 6. Throughput with self-configuring control and token bucket at each
stage with irregular input rate scenario.

that the processing rates for ds; at the first stage is reduced
to 5 tokens/s between time 120s and 240s. Resources are
provided to injected tokens assuming all tokens require the
same processing time. However, in this new scenario, tokens
coming from ds; require more processing time. The graph
shows how the throughput of ds; falls to 20 token/s at time
120s, and how this variation affects the other applications
sharing the resources.
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Fig. 7. Throughput with self-configuring control and a token bucket at each
stage.

The right part of Figure[7jnow shows the output rates of ds;
and ds, with the a resource provisioning mechanism that takes
into account the variation of data processing rates. The control
loop triggers the addition of new resources when the difference
of input and output rates of ds; in the first stage exceeds
a threshold. Without loss of generality, we assume that the
penalty is larger than the additional resource cost. In this case,
the control loop adds two additional resources to the first stage.
At time 240s ds; recovers its initial data processing rate of 10
tokens/s. The control loop returns resources when the number
of resources show more capacity than the input rate. We can
also see that although the fault tolerance mechanism does
affects the throughput of the other workflows, the impact here
is much smaller and the mean throughput is maintained. The
figures also show that the processing rate after this variation
is a little over the input rate because of the tokens that were
built up in the buffer of the PU.

V. RELATED WORK

Research in Data Stream Management Systems (DSMS)
and Complex Event Processing (CEP) has evolved separately,

despite the fact that both communities share a number of
important similarities and challenges such as scalability, fault
tolerance and performance. Data Stream Management Systems
(DSMS) shifted the paradigm of Database Management Sys-
tems as the need for efficiently processing streamed datasets
in real-time or nearly in real-time arose. In general, DSMSs
focus on performance by restricting the language in which
they can be programmed to graphs of operators with well-
defined semantics [11]. This allows these systems to auto-
matically rewrite or compile the specified stream pipelines
to a more efficient version. Scalability and query distribution
were considered in Aurora [12], Borealis [13] and Stream
Cloud [14]]. Additionally, QoS support in DSMS has been a
critical requirement [11] and various scheduling strategies and
heuristics have been developed. When data streams arrives at
an expected rate with low variability, near optimal schedul-
ing strategies have shown to enforce QoS for multiple data
streams successfully. However, if the data streams arrive with
unpredictable and variable bursts, the scheduling heuristics
comprise a combination of strategies that may not always show
satisfactory QoS enforcement [11]. These systems therefore
employ load shedding strategies — i.e. discarding of data
elements from a stream when the loss of some data elements
is acceptable. In our approach, we rely on estimations of
average input rates for data streams, a token bucket model for
regulating data access to the computational resources, on the
elastic Processing Unit Component (increase / decrease of the
number of computational resources) and on the autonomous
behavior of each node.

DSMSs have little or no support to express events as the
outcome of continuous queries nor further support to form
complex events. CEP has seen a resurgence in the last few
years, though the need for events, rules, and triggers was
accomplished more than two decades ago. Examples of CEP
are SPADE/IBM InfoSphere Streams, Esper and DROOLS
Fusion [15]. The main difference between existing CEP and
stream processing systems is that in the former each event
is processed at arrival time, while stream processing systems
involve accumulating a data set over a time (or count — i.e.
when a certain number of events have arrived) window and
processing it at once. Event processing systems assume that
the incoming events are not bursty and do not generally con-
sider the presence of queues/buffers between event operators.
Additionally, most CEP have little support for QoS require-
ments, except for the MavEStream system [11] that integrates
CEP into a QoS-driven DSMS system. Again, MavEStream
system enforces QoS by complex scheduling heuristics that
may not always perform suitably under bursty conditions.
Additionally, this lack of QoS support in CEP has also been
recently considered in the literature: in [16] several micro-
benchmarks were proposed to compare different CEP engines
and assess their scalability with respect to a number of queries.
Various ways of evaluating their ability to changes in load
conditions were also discussed. Regarding scalability, which
has not received much attention in CEP, some event processing
languages extend production rules to support event processing



and provide run-time optimizations by extending the Rete [17]]
or Treat [[18] algorithms to scale with the number of queries.
In [19] the importance of scalability for CEP is recognised
and event processing is partitioned into a number of stages.
At each stage resources can process all of the incoming events
in parallel under peak input event traffic conditions. However
this approach does not provide a run-time adaptation, does not
involve queues and buffers and assumes the best-effort strategy
(as is usual in CEP).

VI. CONCLUSIONS

EV charging imposes a load on electricity distribution
networks which are already operated close to their loading
limit. Hence, a more efficient management of the energy
will be required and electricity distribution and generation
infrastructures will be turning into Smart Grids. This involves
demand forecast methods, state estimation techniques and real-
time monitoring, leading to communication and control of
residential and city areas taking place at a fine granularity.
Identifying charging schedules for EVs that take into account
user demand, electricity grid capacity and cost considerations
can often require dealing with large-scale data in real-time,
from multiple distributed third-party sources. When consider
finer grained analysis of the sources of energy consumption in
the EV context, it is necessary to obtain data from the vehicles
along with data from charging points.

We analyse the computational requirements for EV elec-
tricity demand forecasting and propose a system model and
an architecture. Our model can support different sources of
information, such as data streams coming from sensors or his-
torical data (i.e. past load demand). Our focus is on EVs used
by individuals in a residential/city context, and not on vehicle
fleets. We envision that information needed to support EV de-
mand forecasting will consist of (i) heterogeneous data formats
& transmission rates; (ii) irregular/bursty data streams; and
(iii) variable, difficult to predict processing requirements per
data stream. The processing of these data streams may involve
filtering, data correlation and trends analysis. The underlying
network and computational architecture must therefore support
Quality of Service (QoS) constraints to be observed to support
the generation of timely forecasts. We propose a distributed
computing architecture and a model for supporting EV demand
forecasting, consisting of autonomous stages, comprising a
combination of data access and regulation, computation, data
transfer capability and a rule-based controller component.
We envisage that these kinds of applications will certainly
grow given the trend on smart cities and other near-real time
surveillance applications, especially involving stream analysis
and correlation from a variety of different data sources. The
proposed distributed computing architecture, along with the
model that consists of a number of autonomous stages, are
fully compatible with a multi-tenancy, shared Cloud environ-

ment — enabling multiple data streams to be processed using
the same elastic infrastructure.
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