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Abstract—Computational biology sequence alignment tools
using the Burrows-Wheeler Transform (BWT) are widely used
in next-generation sequencing (NGS) analysis. However, despite
extensive optimization efforts, the performance of these tools
still cannot keep up with the explosive growth of sequencing
data. Through an in-depth performance analysis of BWA, a
popular BWT-based aligner on multicore architectures, we
demonstrate that such tools are limited by memory bandwidth
due to their irregular memory access patterns. We then
propose a locality-aware implementation of BWA that aims at
optimizing its performance by better exploiting the caching
mechanisms of modern multicore processors. Experimental
results show that our improved BWA implementation can
reduce last-level cache (LLC) misses by 30% and translation
lookaside buffer (TLB) misses by 20%, resulting in up to 2.6-
fold speedup over the original BWA implementation.

Keywords-short-read mapping, Burrows-Wheeler transform,
FM-index, bioinformatics, data locality, multicore

I. INTRODUCTION

Recently, next-generation sequencing (NGS) technologies
have dramatically reduced the cost and time of DNA se-
quencing, making possible a new era of medical break-
throughs based on personal genome information. A funda-
mental task in human genome sequencing is mapping short
DNA sequences, also called reads, that are generated by
NGS sequencers, to the reference human genome. Typi-
cal human genome data consists of millions of reads and
can take up to hundreds of gigabytes. Designing efficient
alignment algorithms that can rapidly map large amounts of
genome data is an important topic in NGS bioinformatics.

Many short-read alignment tools based on different in-
dexing techniques have been developed during the past
couple of years [9]. Among them, alignment tools based on
the Burrows-Wheeler Transform (BWT), such as BWA [8],
SOAPv2 [10], and Bowtie [7] have become increasingly
popular because of their superior memory efficiency and
support of flexible seed lengths. The Burrows-Wheeler
Transform is a string compression technique that is used in
compression tools such as bzip2. Using the FM-index [4],
a data structure built atop the BWT, BWT-based alignment
tools allow fast mapping of short DNA sequences against
reference genomes with a small memory footprint.

State-of-the-art BWT-based alignment tools are well en-
gineered and highly efficient. However, the performance of
these tools still cannot keep up with the explosive growth
of NGS data. In this paper, we first perform in-depth

performance analysis of BWA, one of the most widely BWT-
based aligners, on modern multicore processors. As a proof
of concept, our study focuses on the exact matching kernel of
BWA, because inexact matching is typically transformed into
exact matching in BWT-based alignment. Our investigation
shows that memory bandwidth is the major performance
bottleneck of BWA. Specifically, the search kernel of BWA
shows poor locality in its memory access pattern, and thus
suffers very high cache and TLB misses. To address these
issues, we propose a locality-aware design of the BWA
search kernel, which reorders memory accesses to better
take advantage of the caching and prefetching mechanism in
modern multicore processors. Experimental results show that
our improved BWA implementation can effectively reduce
cache and TLB misses, and in turn, significantly improve
the overall search performance.

Our specific contributions are as follows:
1) We carry out an in-depth performance characterization

of BWA on modern multicore processors. Our analysis
reveals crucial architecture features that will impact the
performance of BWT-based alignment.

2) We propose a novel locality-aware design for exact
string matching using BWT-based alignment. Our de-
sign refactors the original search kernel by grouping
together search computation that access adjacent mem-
ory regions. The refactored search kernel can signifi-
cantly improve memory access efficiency on multicore
processors.

3) We evaluate the optimized BWA algorithm on two
different Intel Sandy Bridge platforms. Experimental
results show that our approach can improve LLC misses
by 30% and TLB misses by 20%, resulting in up to 2.6-
fold speedup over the original BWA implementation.

The rest of this paper is organized as follows. Section II
provides a brief introduction of BWA. Section III presents
our performance characterization of BWA on multicore
processors. Section IV describes the design of our locality-
aware BWA implementation. Performance evaluation is pre-
sented in Section V. Section VI surveys related work.
Finally, Section VII concludes the paper.

II. BACKGROUND ON BWA
The Burrows-Wheeler Aligner (BWA) is one of the most

widely used short-read mapping tools. It is based on the
Burrows-Wheeler Transform (BWT), a data compression
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technique introduced by Burrows and Wheeler [15] in 1994.
The main concept behind BWT is that it sorts all rotations of
a given text in lexicographic order and then returns the last
column as the result. The last column, i.e., the BWT string,
can be easily compressed, because it has many repeated
characters. Similar to other BWT-based mapping tools, BWA
uses the FM-index [12], a data structure built atop the BWT
string that allows for fast string matching on compressed
text in order to index the reference genome. In BWA, exact
matching of a read (string) is done by a backward search [4],
which essentially performs a top-down traversal on the prefix
tree of the reference genome. The backward search stage
accounts for the vast majority of the execution time.

A brief description of backward search in BWA is as
follows.1 Let a ∈ Σ be the letter being considered and
c[a] be the number of symbols in X[0, n − 2] that are
lexicographically smaller than a and Occ(i, a) is the number
of occurrences of a in the BWT string of the reference
genome based on current position i. c[a], Occ(i, a) and the
BWT string form the FM-index. String matching with the
FM-Index tests if W is a substring of X , which is done by
following a proven rule that R(aW ) ≤ R(aW ) if and only
if aW is a substring of X:

R(aW ) = c[a] + Occ(R(W )− 1, a) + 1

R(aW ) = c[a] + Occ(R(W ), a)

Iteratively applying the above rule, we get a narrowing
search range declared by R(aW ) and R(aW ) (k and l in
algorithm 1) until R(aW ) is less or equal to R(aW ).

The occurrence calculation, i.e., the Occ function, of a is
the core function in backward search. A trivial solution of
implementing the Occ function is counting the occurrences
of a in all previous rows of the BWT string. This solution is
inefficient when the BWT string is large. A widely accepted
optimization, also used by BWA, is to break the whole
BWT string into millions of small buckets and record pre-
calculated accumulative counts of A/C/G/T for each bucket.
BWA packages these pre-calculated counts along with the
BWT string by inserting them before each BWT bucket.
We will refer this augmented BWT string as BWT table in
the rest of the paper (the memory layout of the BWT table
is shown in Fig. 1). With the BWT table, the occurrence
calculation can be reduced to counting only the occurrences
in one bucket, which can be done in constant time. For
example, in Fig. 1, the number of occurrences of the second
C in bucket 8 equals to the sum 259, fetched from the head
of the bucket, and 2, which is the number of occurrences of
C in the bucket.

The Occ function in BWA has three steps as shown in
Algorithm 2: (1) getting the bucket location based on the
input i, (2) fetching the accumulative count at the header

1We use the same notations as the original BWA paper [8].

ACCG……GCTA&
A:0&&
C:0&&
G:0&
T:0&

Bucket&0&

A:34&&
C:31&
G:32&
T:31&

Bucket&1&

ACTC……GCTC&
A:249&&
C:259&&
G:258&
T:258&

Bucket&8&

ACGC……GATC&

Figure 1. The memory layout of BWT table

of the bucket for letter a, and (3) counting the occurrences
of a in the bucket and returning the sum of the local count
and the pre-calculate count. Note that the memory-access
location in the BWT table is determined by the input i.

Algorithm 1 Original Backward Search
Input: W : sequence reads
Output: k and l pairs

1: for all Wj do
2: k = 0, l = |X|
3: for i = len− 1 to 0 do
4: a←Wj [i]
5: k ← c[a] + Occ(k − 1, a) + 1
6: l← c[a] + Occ(l, a)
7: if k > l then
8: output k and l
9: break

10: end if
11: end for
12: end for

Algorithm 2 Occ function
Input: i: k or l values; a: letter in reads
Output: n: occurrences of a

1: p← getBucket(i) {Step 1}
2: n← getAcc(p, a) {Step 2}
3: n← n + calOcc(p, a) {Step 3}
4: return n

III. PERFORMANCE ANALYSIS

In order to understand the performance characteristics
of BWA, we collect critical performance counter numbers,
such as branch misprediction, I-Cache misses, LLC misses,
TLB misses, and microcode assists, using Intel VTune [2].
Fig. 2 shows the breakdown of cycles impacted by different
performance events. As we can see, the percentage of stalled
cycles is overwhelmingly high (more than 85%). Clearly,
cache misses and TLB misses are the two major performance
bottlenecks of backward search. Together, the two account
for over 60% of all cycles. A closer look at the profiling
data shows that the main source of these misses is the Occ
function, which is the core function in backward search and
accounts for over 80% of total execution time. Based on
profiling numbers, within the Occ function, the stalled cycles
caused by cache misses account for 55% of overall cycles,
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and TLB misses caused stalled cycles occupy 41%. Thus,
our optimization strategy focuses on how to optimize the
memory access of the Occ function.
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Figure 2. Breakdown of cycles of BWA with Intel Sandy Bridge processors

As we mentioned in Section II, in the Occ function
(Algorithm 2), the input i (k or l in backward search)
determines the access location in the BWT table. In order
to further understand the memory access pattern of the Occ
function, we trace the buckets that need to be accessed in
calculating ks when searching an input read. As shown
in Fig. 3, the access location in the BWT table jumps
irregularly with large strides. Also, there seems to be little
locality between consecutive access locations. The irregular
memory access is the main reason for the high cache-miss
rate. Furthermore, as the capacity of TLB is limited, large
strides (e.g., larger than the 4K page size) over the BWT
table can cause high TLB misses.
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Figure 3. The trace of k in backward search for a read

Clearly, the backward searches of individual reads suffer
from poor locality. However, we observe potential local-
ity between processing of different reads. To reduce I/O
overhead, BWA load millions of reads into memory as a
batch. It is highly probable that multiple bucket accesses
from different reads will fall into the same memory region.

This observation is the main motivation of our optimizations,
which will be presented in Section IV.

IV. LOCALITY-AWARE BWT-BASED ALIGNMENT
DESIGN

In order to improve memory-access efficiency in BWT-
based alignment, we propose a locality-aware backward
search design, which exploits the locality of memory ac-
cesses to the BWT table from a batch of reads. Specifically,
as discussed in Section III, the computation of occurrences,
i.e., the Occ function, is the main source of cache and TLB
misses. As shown in Algorithm 3, our design batches the
occurrence computation from different reads by swapping
the inner and outer loops of the original BWA implemen-
tation. To take advantage of CPU caching and prefetching,
our design reorders memory accesses by grouping together
the occurrence computation that accesses adjacent buckets
of the BWT table.

A. Reordering Memory Access with Binning

To reorder memory accesses, our design maintains a list
of bins, where each bin corresponds to several consecutive
buckets in the BWT table. Designing a highly efficient bin-
ning algorithm here is challenging as it involves many com-
peting factors. For instance, while binning can help improve
memory access in occurrence computation, it also introduces
extra memory accesses that can lead to undesirable cache
and TLB misses. The design is also complicated by the
complex memory hierarchy and prefetching mechanisms of
modern processors.

1) Memory-Efficient Data Structure: The preliminary
data structure of a bin entry is depicted in the left picture
in Fig. 4. k, l and r id are the input of the refactored Occ
function, where k and l are corresponding top and bottom in
the original BWA implementation, and r id is the id of the
read being processed. Beside the three prerequisite variables,
we add a small character array for data preloading to help
reduce memory access overhead (discussed in Section IV-B).
Such a bin entry requires 28 bytes to store. However, because
of the data structure alignment, each element should occupy
a multiple of the largest alignment of any structure member
with padding, i.e., actually requires 32 bytes in memory.
For a large batch of reads, there can be millions of entries,
which can consume gigabytes of memory. To preserve the
memory-efficiency of BTW-based alignment, we optimize
the preliminary data structure as follows.

First, we observe an interesting property of k and l
that can help shrink the data structure of a bin entry. In
the original BWA implementation, the k and l are 64-
bit integers, occupying 16 bytes in total. However, for the
human genome, the maximum values of k and l are less than
234. Therefore, storing k or l only requires 33 bits, wasting
the remaining 31 bits (in a 64-bit integer). To improve
memory utilization, we pack k and l into a single 64-bit

13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid); Delft, Netherlands;
May, 2013.



integer such that k takes the first 33 bits, and l is represented
as an offset to k in the remaining 31 bits. By doing so,
the size of the bin structure can be significantly reduced.
However, such a design requires the offset between k and l
to be less than 232. Extensive profiling using data from the
1000 Genome Project [1] shows that the distance between
k and l is always less than 231 except the first iteration
(example statistics are shown in Fig. 5(a)). This can also
be explained in theory because the FM-index mimics a top-
down prefix tree traversal, and as such, the distance between
k and l decreases quickly as more letters are matched. Based
on this observation, we package k and l by just skipping
the first iteration. In addition, the trend shown in Fig. 5(a)
implies that our method can be easily extended and used for
larger genomes by skipping more initial iterations.

Second, cc is a small character array used to temporally
store sub-sequences of reads. As the letters in the sequence
reads are A/T/C/G and a few other reserved letters, we can
use 4 bits to present a instead of 1 byte. By doing so, the
8-byte small char array can be packed into 4 bytes, i.e., a
32-bit integer.

The optimized data structure of a bin entry is shown in
Fig. 4. With the aforementioned optimization, the size of
an entry reduces by half, thus greatly improving memory
efficiency. This can also improve cache performance as more
entries can fit into a cache line.

k

l

63 0

0
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16

24

31
Bit

k

r_id cc

63 0

0

8

16By
te

31
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  Δl

By
te
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cc[4] cc[5] cc[6] cc[7]
32

padding
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Figure 4. The layout of data structure of one element: preliminary (left),
and optimized (right)

2) Bin Buffer Allocation: The memory allocation of the
bin buffer is complicated by the fact that the number of
entries in each bin varies significantly. Dynamic memory
allocation can help workaround this variance but will intro-
duce non-trivial overhead with frequent allocation requests.
On the other hand, static allocation can reduce memory
allocation overhead, but can lead to memory wastage. To
achieve a balance between memory utilization efficiency
and runtime overhead, we adopt a hybrid approach—which
statically allocates a fixed buffer for each bin and uses a
large pool to be stored overflow items.

By carefully analyzing the distribution of bucket accesses
to the BWT table, we find that the number of accesses of
individual buckets is more evenly distributed after the first
few iterations. Since searching a read always begins with the
same and k and l values, the access locations of the BWT
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Figure 5. Properties of distribution of k and l (read length 100); (a) the
maximum distance between k and l in a given iteration; (b) number of
iterations in which k and l in same BWT bucket

table when searching different reads are almost the same
for the first iteration. Based on the above observation, our
implementation skips the first few iterations before starting
the binning process and uses the average number of accesses
across all buckets as the size of the preallocated buffer.

3) Cost-Efficient Binning: Compared to the original BWA
implementation, our design involves extra computation in
the binning process. It is critical to minimize the compute
overhead of binning, to avoid offsetting the benefit from
memory access reordering. To this end, our implementation
simply right-shifts k and l to get the corresponding bin
bucket numbers. However, the binning process can still intro-
duce non-trivial overhead because it needs to be performed
for every calculation of k and l. To further improve the
binning efficiency, we leverage an interesting property from
the BWT alignment; that is, the distance between k and
l narrows fast as the search progresses. Fig. 5(b) shows
statistics of the distance between k and l for representative
input reads. As we can see, in matching reads of length 100,
for most iterations (more than 80), k and l fall in the same
bucket in the BWT table. This is because backward search
mimics a top-down traversal over the prefix tree. In fact, this
property was also used in the original BWA implementation
to improve data reuse; the Occ function is optimized for
the case where k and l fall in the same bucket to eliminate
duplicated data loading from the BWT table. Based on this
observation, our design applies binning only to k, which
reduces the binning computation by half.

B. Reducing Binning Overhead with Data Preload

Although the basic binning algorithm can effectively
improve locality of memory accesses, it does not come for
free. The first two columns in Table I show the comparison
between the original BWA and the preliminary binning
implementations in cache misses and TLB misses for a rep-
resentative input file. Surprisingly, while reordering memory
access through binning can effective reduce the number of
cache misses, it introduces more TLB misses.

With careful profiling, we find that the extra TLB misses
are caused by indirect references on the sequence reads;

13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid); Delft, Netherlands;
May, 2013.



Algorithm 3 Optimized Burrows Wheeler Aligner
Input: W : sequence reads
Output: k and l pairs

1: for i = len′ − 1 to 0 do
2: for all binx do
3: for all ej in binx do
4: if i mod cc size = 0 then
5: preload cc size letters from reads to ej .cc
6: end if
7: a← get a(ej .cc, i mod cc size)
8: ok ← Occ(ej .k − 1, a)
9: ol← Occ(ej .l, a)

10: ej .k ← C[a] + ok + 1
11: ej .l← C[a] + ol
12: if ej .k > ej .l then
13: output as result
14: else
15: y ← get bin number(ej .k)
16: fill ej into biny

17: end if
18: end for
19: end for
20: end for
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Figure 6. Bucket access pattern of original backward search and binning
version: (a) memory access pattern without binning; (b) memory access
pattern with binning. Since the amount of bucket access of whole backward
search procedure is huge, here we just list first thousands accesses.

when backward search needs to fetch the next character from
a read, it uses the read id r id to locate the corresponding
buffer storing the read sequence. As shown in Fig. 7(a), in
the original algorithm, the access on a sequencing read is
sequential, and thus, fetching read sequence data can benefit
from the prefetching mechanism available in modern pro-
cessors. However, in the preliminary binning design, letters
at a location from different reads are processed together
as shown in Fig. 7(b). As a consequence, prefetching of
sequence data from a read cannot be reused, causing more
frequent accesses to read data. As a batch of reads typically
occupies several hundreds of megabytes, accessing such a
memory space with large strides cause an overflow of the
TLB cache.

To mitigate this issue, we add a small character array

Table I
PERFORMANCE NUMBERS OF ORIGINAL BACKWARD SEARCH,

PRELIMINARY BINNING ALGORITHM AND OPTIMIZED BINNING
ALGORITHM WITH A SINGLE THREAD ON INTEL I5 AND BATCH SIZE

224 . LLC AND TLB MISSES ARE MEASURED IN THE UNIT OF
MILLIONS.

LLC Misses TLB misses Execution Time

Original 70 27 3.60
Preliminary binning 56 59 3.28
Binning with preload 53 23 2.60

in each bin entry to periodically store letters loaded from
sequence reads. As the character array is embedded in every
entry, it will be loaded in the cache when the corresponding
k and l are processed, thus greatly reducing TLB misses
in fetching the read data. As shown in the third column of
Table I, the enhanced binning design can significantly reduce
cache misses without incurring extra TLB misses.

(a) (b)

Figure 7. Access pattern for interchanged loop nest in backward search:
original BWA (left), and binning BWA (right) - each box presents a block
of data; shaded boxes are data loaded into cache lines; arrows show the
memory access direction.

Fig. 8 shows the execution profile of the enhanced binning
algorithm, collected using Intel VTune. Compared to Fig. 2,
the number of non-stall cycles improves from 15% to 30%.
Also, the stall cycles caused by TLB misses are greatly
reduced. The differences in the execution profiles suggest
that our memory-access reordering design is effective in
improving memory access efficiency.

C. Multithreading

Multicore architectures add more complexity to our de-
sign. False sharing of data between threads can cause thrash-
ing and severely impact performance. A straightforward
approach to parallelize our binning design is to have each
thread maintain a separate bin and work independently.
The disadvantage of such a design is that the memory
bandwidth of a multicore processor cannot be efficiently
utilized because there is no data sharing between threads.
Therefore, in our design, all threads share the same bin
structure. A design challenge then lies in how to efficiently
synchronize between different threads.
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Figure 8. The breakdown of cycles of optimized BWA algorithm

To minimize synchronization overhead, our design main-
tains two copies of the bin structure. In the beginning, one
copy of the bin structure stores all initial values and is
marked as read-only. Another copy of the bin structure is
marked as write-only. Extensive profiling shows that the
processing time of each bin is about the same. Therefore,
our design uses a static task-allocation approach, where
all bins in the read-only structure are evenly distributed
among all of the threads. When processing a bin, each thread
computes the k and l of each entry and places them in the
corresponding bin of the write-only structure. The read-only
and write-only structures are swapped in the next iteration.
Such a design reduces the synchronization overhead as there
is no need to coordinate accesses to the read-only structure.
For the write-only structure, one index is maintained for each
bin to mark the last entry in the bin. Thus, a new entry can
be safely placed at the end of the bin by executing an atomic
add on the index associated with the bin. Our profiling shows
that such an design incurs very low overhead, partly because
the contention on a particular bin is typically low.

V. PERFORMANCE EVALUATION

We evaluate the performance of our implementation in
three aspects: impact of software configuration, impact of
micro-architecture, and scalability.

A. Experiment Setup

In order to evaluate the impact of variance of the micro-
architecture, particularly cache size, two different Intel
Sandy Bridge CPUs are used in our experiments: (1) Intel
Core i5 2400 is a high performance quad-core microproces-
sor with high clock frequency; (2) Intel Xeon E5-2620, a
hex-core processor designed for servers, has a lower clock
frequency, but is integrated with a large on-chip L3 cache.
To eliminate effects of Hyper-threading (HT) on cache
performance, we disable HT on the Intel Xeon E5-2620 via
BIOS setting.

While our experiments focus on human genome sequenc-
ing, none of our analysis is specific to such a genome and
easily carry over to other genomic datasets as well. We use
sequence datasets from the GenBank database. The read
queries used in our paper are from the 1000 Genome Project.
To evaluate the impact of read lengths, we choose 4 read
queries with different lengths. In the remaining experiments,
we use a read query with 100bp as default input.

B. Impact of Software Configuration

In the optimized BWA algorithm, there are three important
parameters: (1) preloaded data size - the number of letters
in sequence reads preloaded; (2) bin range - the range of
bucket access grouped into a bin; (3) batch size - the number
of sequence reads loaded into memory to be processed.
To achieve optimal configuration of these parameters, we
quantify the impacts of the three parameters in this section.

1) Preloading Data Size: The size of preloading data
determines the frequency of preloading data. A larger
preloaded data size implies less indirect references, but fatter
elements and larger memory footprint. In Fig. 9 (a), we can
see that when the preloaded data size increases from 4 to
32, the performance improves slightly and peaks at 16.

2) Bin Range: The bin range determine the granularity
of memory reordering. A smaller bin range indicates that
bucket accesses are more in-order. However, the overhead
of binning increases as the bin range reduces. As the cache
in modern CPU can be up to several megabytes, which can
contain millions of elements, the elements in one bin are
unlikely to be evicted before the next bucket is accessed. As
we can see in Fig. 9 (b), the overhead of binning increases
with decreasing bin range causing the performance to suffer
noticeable degradation when the bin range is reduced to 16.

3) Batch size: Batch size is a critical parameter, signifi-
cantly influencing the overall performance. In Fig. 9 (c), we
observe that increasing the batch size dramatically improves
cache performance, and consequently the overall application
performance. But, increasing batch size barely impacts the
performance of original BWA. A large batch size allows
more bucket accesses, and more accesses fall into a bin,
increasing the possibility that multiple bucket accesses hit
the same cache line. Due to memory space limitation, we can
maximally get 2.6-fold speedup with 16 GigaBytes memory.
If further increasing batch size with larger memory, we can
achieve more performance gain.

C. Impacts of Read Length

To clarify the impact of read length, we compare the
performance of the original and optimized versions of BWA
with different read lengths. We notice that the difference
of read lengths has little influence on the speedup of the
optimized BWA algorithm as shown in Table.II; that is, the
speedup is stable with different read lengths on both single-
thread and multi-threaded tests.
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Figure 9. Effects of software configuration: (a) preloaded data size, (b) bin range, (c) batch size, default line in each graphs indicates other two parameters
are using default setting - batch size: 0x160000, bin range: 24 and preloading data size: 16. To unify the execution time of different batch sizes, the
performance is normalized to throughput - reads per second

Table II
EFFECTS OF READ LENGTH

SRR003084(36bp) SRR003092(51bp) SRR003196 (76bp) SRR062640(100bp)
unopt opt speedup unopt opt speedup unopt opt speedup unopt opt speedup

single thread 6.21 4.04 1.43 6.87 4.65 1.44 12.79 8.93 1.54 20.54 14.26 1.48

multithreads 2.4 1.87 1.28 3.79 3.14 1.21 1.21 0.89 1.36 1.29 0.99 1.30

D. Impacts of Micro-Architectures

Micro-architectures can differ in several aspects. In this
paper, we mainly focus on cache size. To understand the
effect of the variation of cache size, we profile both the
original and optimized backward search on the two Intel
CPU architecture models described in Section V-A.

As shown in Fig. 10, the speedup on the Intel Xeon CPU
is not better than that on Intel i5 CPU, despite the larger
cache on the Intel Xeon. This is because our optimization
mainly improves spatial locality of the algorithm, which is
sensitive to cache line size rather than cache size itself.
Furthermore, the higher single-core performance on Intel i5
benefits our optimized algorithm. If we restrict the frequency
of Intel i5 to 2GHz, which is the same as the Intel Xeon, the
speedup drops to close to that achieved by the Intel Xeon
(Fig.10).

E. Scalability

Fig. 11 shows the strong and weak scalability of the
optimized BWA algorithm. We notice that the weak scaling
of the optimized algorithm is pretty close to ideal, with an
approximately 10% loss of scalability going from 1 thread
to 6 threads. Strong scaling numbers show a 4.5X speedup
with 6 cores (that is, a parallel efficiency of 75%).

We further analyze the loss of scalability for strong scaling
in Table III, through a more detailed architectural analysis.
We notice that the multithreaded version suffers more cache
and DTLB misses due to interference among threads, thus
resulting in some loss of performance.
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VI. RELATED WORK

With the explosive growth of NGS data, many short-
read mapping tools have been developed in the past a
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Table III
CACHE MISSES AND TLB MISSES (IN MILLIONS) OF OPTIMIZED Occ

FUNCTION

Cache miss DTLB miss CPI

multi-threads 127 87 2.077
single thread 109 49 1.589

couple of years. Among them, BWT-based tools [8], [6],
[7] are becoming popular because of their small memory
footprints. Currently, most optimization studies on BWT-
based mapping tools focus on accelerators. For instance,
BarraCUDA [6], proposed by Petr Klus and Simon Lam,
is a GPU-accelerated mapping tools adapted from BWA.
BarraCUDA achieves a 3-fold speedup with 8 NVIDIA
GPUs over a 12-core CPU. Another GPU-based short
read aligner based on BWT released by Liu and Schmidt,
CUSHAW [11], achieves a 4-6x speedup with 2 NVIDIA
GPUs over a 4-core CPU. Recently, Torres and Espert pro-
pose another GPU-based alignment algorithm [14], which is
3-times faster than Bowtie and 4-times faster than SOAP2.
Besides GPU acceleration, there have been multiple stud-
ies [13], [3] in optimizing BWT-based alignment with FPGA
(Field-Programmable Gate Array). Our paper, on the other
hand, focuses on optimizing BWT-based alignment on mul-
ticore CPUs by remapping the algorithm to better exploit
the caching mechanism of modern processors. In addition,
our study performs in-depth performance characterization of
BWA, which has not been reported by previous work.

Irregular memory access has also been observed for hash-
table based short-read mapping tools. Wang and Tang [16]
proposed a memory optimization of hash-index for NGS by
reordering memory access and compressing the hash-table.
Another cache-oblivious algorithm for short-read mapping is
proposed by Hach and Hormozdiari [5]. Our paper is the first
to investigate locality-aware implementation of BWT-based
alignment, which involves more complicated data structures
and more sophisticated memory-access patterns.

VII. CONCLUDING REMARKS

In this paper, we first presented an in-depth performance
characterization with respect to the memory access pattern
and cache behavior of BWT-based alignment. We then
proposed a well-designed optimization approach to improve
data locality of backward search via binning. Our optimized
BWA algorithm achieves up to a 2.6-fold speedup, and
a good weak scaling on multicore architectures. As our
optimization approach is generic, it can be easily extended
and used in other BWT-based applications. In the future, we
will extend our work to support inexact matching in BWA.

ACKNOWLEDGMENT

This work is in part supported by NSF Grant 0916719
“Collaborative Research: Hybrid Opportunistic Computing

for Green Clouds” and NSF Grant 1048253 “Commoditizing
Data-Intensive Biocomputing in the Cloud.”

REFERENCES

[1] A map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061–1073, Oct. 2010.

[2] Intel VTune Amplifier XE 2013, Product Brief, August 2012.
[3] S. Arming, R. Fenkhuber, and T. Handl. Data compression in

hardware - the Burrows-Wheeler approach. In E. Gramatov,
Z. Kotsek, A. Steininger, H. T. Vierhaus, and H. Zimmer-
mann, editors, DDECS, pages 60–65. IEEE, 2010.

[4] P. Ferragina and G. Manzini. Opportunistic data structures
with applications. Proceedings 41st Annual Symposium on
Foundations of Computer Science, pages 390–398.

[5] F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol,
E. E. Eichler, and S. C. Sahinalp. mrsFAST: a cache-oblivious
algorithm for short-read mapping. Nature methods, 7(8):576–
577, Aug. 2010.

[6] P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan,
I. McFarlane, G. S. Yeo, and B. Y. Lam. BarraCUDA - a
fast short read sequence aligner using graphics processing
units. BMC research notes, 5(1):27, Jan. 2012.

[7] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultra-
fast and memory-efficient alignment of short DNA sequences
to the human genome. Genome biology, 10(3):R25, Jan. 2009.

[8] H. Li and R. Durbin. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics (Oxford,
England), 25(14):1754–60, July 2009.

[9] H. Li and N. Homer. A survey of sequence alignment
algorithms for next-generation sequencing. Briefings in bioin-
formatics, 11(5):473–83, Sept. 2010.

[10] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang. SOAP2: an improved ultrafast tool for short read
alignment. Bioinformatics (Oxford, England), 25(15):1966–7,
Aug. 2009.

[11] Y. Liu, B. Schmidt, and D. L. Maskell. CUSHAW: a CUDA
compatible short read aligner to large genomes based on the
Burrows-Wheeler transform. Bioinformatics, 28(14):1830–
1837, July 2012.

[12] U. Manber and G. Myers. Suffix arrays: a new method for on-
line string searches. SIAM Journal on Computing, 22(5):935–
948, 1993.

[13] J. Martinez, R. Cumplido, and C. Feregrino. An FPGA par-
allel sorting architecture for the Burrows-Wheeler transform.
In Reconfigurable Computing and FPGAs, 2005. ReConFig
2005. International Conference on, RECONFIG ’05, pages
17–, Washington, DC, USA, 2005. IEEE Computer Society.

[14] J. Salavert Torres, I. Blanquer Espert, A. Tomas Dominguez,
V. Hernendez, I. Medina, J. Terraga, and J. Dopazo. Using
GPUs for the exact alignment of short-read genetic sequences
by means of the Burrows-Wheeler transform. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 9(4):1245–1256, July
2012.

[15] M. Schindler. A fast block-sorting algorithm for lossless
data compression. In Proceedings of the Conference on Data
Compression, DCC ’97, pages 469–, Washington, DC, USA,
1997. IEEE Computer Society.

[16] W. Wang, W. Tang, L. Li, G. Tan, P. Zhang, and N. Sun.
Investigating memory optimization of hash-index for next
gneration sequencing on multi-core architecture. 2012 IEEE
26th International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum, pages 665–674, May 2012.

13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid); Delft, Netherlands;
May, 2013.


