“© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

Optimal Cloud Resource Auto-Scaling for Web Applications

Jing Jiang, Jie Lu, Guangquan Zhang, Guodong Long
DeSI Lab, Centre for Quantum Computation & Intelligent Systems
School of Software, Faculty of Engineering and Information Technology
University of Technology Sydney, Australia
Email: {jing.jiang-1, guodong.long} @ student.uts.edu.au,
{jie.lu, guangquan.zhang}@uts.edu.au

Abstract—In the on-demand cloud environment, web appli-
cation providers have the potential to scale virtual resources
up or down to achieve cost-effective outcomes. True elasticity
and cost-effectiveness in the pay-per-use cloud business model,
however, have not yet been achieved. To address this challenge,
we propose a novel cloud resource auto-scaling scheme at the
virtual machine (VM) level for web application providers. The
scheme automatically predicts the number of web requests and
discovers an optimal cloud resource demand with cost-latency
trade-off. Based on this demand, the scheme makes a resource
scaling decision that is up or down or NOP (no operation)
in each time-unit re-allocation. We have implemented the
scheme on the Amazon cloud platform and evaluated it using
three real-world web log datasets. Our experiment results
demonstrate that the proposed scheme achieves resource auto-
scaling with an optimal cost-latency trade-off, as well as low
SLA violations.

Keywords-Cloud computing; Elastic Computing; Resource
prediction; Resource scaling; Web services;

I. INTRODUCTION

The popularity of on-demand cloud service has spurred
the migration of increasing numbers of web applications
to the cloud. One of the most attractive features for cloud
web application providers is the ability to access computing
resource elastically (by scaling up or down) according to
dynamic resource demands. In this scenario, providers only
pay for resources that are consumed at a specific point in
time, which if operated correctly, will result in less cost
and higher quality service than is achievable by hosting
on standard hardware[1]. In a classical case in April 2008,
Animoto, an image-processing web application, experienced
a demand jump from 50 instances to 4000 instances (Ama-
zon EC2 instances) in just three days; following the peak,
traffic fell sharply to a normal level that was well below
the peak [2]. Hence, Animoto only payed for 4000 virtual
instances at peak time and when the peak disappeared, the
unused resources were released. Clearly, elasticity and cost-
effectiveness are two of the key features that ensure cloud
computing will appeal to more customers.

Nevertheless, true elasticity and cost-effectiveness in the
pay-per-use cloud business model have not yet been achieved
completely [3]. The management of allocating cloud re-
source adaptively to on-demand requirements of an applica-

tion, called auto-scaling, can be very challenging. Resource
under-provisioning will unavoidably harm performance and
cause SLAs violations, while resource over-provisioning will
result in resource idle and cost waste. Therefore, the final
objective of an auto-scaling mechanism is to automatically
adjust acquired resources to minimize cost while satisfied
the SLAs.

To address these challenges, we propose a novel scheme
to achieve virtual machine (VM) level auto-scaling of cloud
resources with optimal cost-latency trade-off for the web
application providers. Our proposed scheme strives to al-
locate just enough resources to applications to minimize
resource waste, while avoiding service level agreements
(SLAs) violations without requiring manual intervention.
Three main problems need to be solved to achieve our goal:
(1) to predict correctly how many resources are demanded
in each time-unit of re-allocation; (2) to adaptively adjust
the resource cap based on the predicted resource demands;
(3) to design optimization algorithms to make a trade-off
decision between cost and latency, while meeting the cost
constraints and SLAs on latency metrics.

By leveraging machine learning techniques to analyse
the time series history data of web requests, we discover
the main features that are primarily used to predict the
average number of web requests in a future time-unit (in this
paper, we use a unit of one hour). Considering the predicted
average value as an expectation of the distribution of web
requests that will be allocated to a cloud resource to process
in the coming hour, we model the relationship between
the number of VM instances and the latency (or response
time) by applying a M/M/m model in queueing theory.
The true allocated number of VM instances adds padding to
predicted resource demands. Taking the cloud price model
into account, a multiple optimization model between cost
and latency with constraint conditions is developed.

The main innovations of this paper are summarized as
follows:

(1) From the web application provider’s point of view, to
uncover the features of seasonal time patterns by analysing
the history data of web application requests, for the purpose
of predicting future resource demands;

(2) In each time-unit re-allocation, treat the predicted web

requests as a distribution to allocate resources, instead of
using an average value, to reduce prediction error and SLAs
violations;

(3) For VM-level scaling, considering the waiting time of
web requests to be executed on VMs as a distribution rather
than a fixed value, to model the relationship between latency
and cost by using queueing theory, so that our proposed
scheme can obtain optimized cost-latency trade-off resource
allocation;

(4) Propose a novel resource auto-scaling scheme without
manual intervention by using hybrid methods.

We have implemented the scheme on Amazon AWS and
evaluated it by using three real-world web log datasets. The
experiment results show that the scheme achieves resource
auto-scaling with low prediction errors, as well as optimal
resource allocation with scalar cost-latency trade-off and low
SLA violations.

The remainder of this paper is organized as follows.
In the next section, related works are discussed. Section
IIT describes the modeling of the system including the
scheme overview and models for addressing the above four
objectives. In Section IV, the experimental evaluation results
are analysed. Finally, our conclusions and future work are
presented.

II. RELATED WORK

This section surveyed related state-of-the-art work in the
field of cloud resource auto-scaling.

There are currently three main approaches for addressing
the auto-scaling problem for application providers (cloud
clients). The first approach is a reactive mechanism, which
does not anticipate the future needs and often refers to
the elasticity rules or threshold-based rules, pre-defined by
application providers. Decisions of scaling-up or scaling-
down are made according to the last values of monitored
variables. Amazon AWS AutoScaling [4] and some cloud
service brokers (RightScale [5], enStratus [6], etc.) offer
rule-based auto-scaling mechanisms to allow users to add
and remove resource at a given time, for example, “run 5
instances from 10:00-20:00 everyday and 1 instances for
other time”. These mechanisms are simple and convenient
when users understand their resource requirements. But it is
hard to complete auto-scale without explicit user’s interven-
tion. In addition, the reactive approach lack of anticipation
may affect the auto-scaling performance to a great extent
when sudden traffic bursts, since it takes several minutes to
instantiate a new VM and a scaling-up action might arrive
too late.

The second approach is a predictive-based method, by
analysing the history data of resource usage and constructing
a mathematical model to anticipate the future resource de-
mand. Consequently the scaling action is done in advance. A
number of work was studied from this view of point. [7][8]
used histogram techniques to predict workload. The history

window values can be in the input of a neural network or a
multiple linear regression equation [9]. In[10], Huang et al.
present a resource prediction model (for CPU and memory
utilization) based on double exponential smoothing, and
compare it with simple mean and weighted moving average.
[11] applied auto-regression to predict the request rate and
found that the history window determines the sensitivity of
the algorithm performance. [12] used a second order ARMA
(auto-regressive moving average) method to predict work-
load. In addition, [13][14] focused on identifying repeated
patterns of the resource demand. [11] proposed using FFT to
identify repeating patterns in resource usage (CPU, memory,
I@and network) and compare it with auto-correlation, auto-
regression and histogram.

The final approach is a hybrid method. [15] proposed
a hybrid scaling technique that utilizes reactive rules for
scaling up and a regression-based approach for scaling
down. In [13], Shen et al. presented an online resource
demand prediction and prediction error handling to achieve
adaptive resource allocation without assuming any prior
knowledge about the applications running inside the cloud.
In addition, control theory has also applied to automate
cloud resource provisioning. It is a mainly reactive method
but also can be used with combining a predictive model.
[16][17][18] applied control theory to achieve adaptive fine-
grained resource allocations based on feedback of service
level objective (SLO) conformity. However, parameters in
such approaches often need to be specified or tuned off-line.

III. SYSTEM MODELING

In this section, we introduce the overview of the proposed
scheme and describe the system model used in this paper.

A. Overview of the Scheme

Our scheme scales the cloud resource up or down (or
NOP) by time-unit re-allocation based on predicted optimal
resource demands. Web application providers can specify
their budgetary constraints and SLA in respect of latency
for their applications. In each time-unit, web application
providers can be notified of the total cost, SLA violations
and re-allocation state (e.g. scaling up or down or NOP) by
using the optimal resource auto-scaling scheme. Notice that
in practical applications, an unpredictable burst of number
of requests will happen as a similar situation as which the
Animoto experienced. To tackle this unpredictable scenario,
this scheme monitors the waiting queue of requests to be
processed in real-time. Once the length of the queue is bigger
than a threshold, the scheme could dynamically append
VMs to process the exceeding number of requests. Figurel
illustrates the overview execution paradigm facilitated by the
scheme.

As shown in Figure 1, the main steps of our scheme are
outlined as follows.

1) to collect request records as the history data;

i
Web Server]
i
]

> i
Requests 1 !
—> Record ! '

)

ks 1
S —» E 1 !
=] S] '
5 < ; ‘
o 5 i
b & i Allocation "~ Prediction |!
3 > ! :
> RegLests VM list \ 1
—p Tackling !
_ 1

Dispatch Regliests &

Collecy/Results

Figure 1. Optimal Cloud Resource Auto-scaling Overview.

2) to analyse the history data hourly and predict the
number of requests for the next time-unit (Sub-
section III-B);

3) to discover the optimal number of VMs by utilizing
the Optimization Model (Sub-section III-C);

4) to scale the resource(VMs) up or down or NOP from
a public cloud platform

B. Prediction Model

Because launching a VM instance takes several tens of
seconds to minutes, we propose a predictive-driven resource
scaling approach. As the parameters of a VM underlying
resource, such as CPU, memory, I/O or network bandwidth,
are not necessarily dependent [19], it is not trivial to model
resource demand prediction directly within these parameters
(i.e. resource-level). Our work predicts the web request
distribution in each time-unit. Subsequently, we model the
resource demand based on the predicted web request distri-
bution at a VM-level (that is, by considering the number of
VMs, rather than the number of configuration parameters as
the resource demand quantity).

1) Definition: To predict the number of web requests,
the web request data is generally denoted as a time series
[20]:{X (t);t € T}, where T is an index of the time
fragment, and X (¢) is the random variable, representing the
total number of requests that arrive in the ¢ time fragment.
The prediction problem can be defined as follows: given
the current and past observed values (X (¢t — k), X (¢t — k +
1),...X(t — 1), X(t)), predict the future value X (¢ + p),
where k is the length of the history data used for prediction
and p is the predictive time fragment.

2) Key Features Identification: Considering most online
web requests have a seasonal or periodical behavior to some
extent, we design a novel Linear Regression approach for
prediction by using an auto-correlation function to identify
the key features.

For instance, a mail server usually experiences the highest
web traffic volume every Monday morning, while at mid-
night, web requests drop to a low level; also, the number
of requests will be much higher on weekdays than on
weekends. Many more users may request a mail service on
festivals and holidays than on other days. Therefore, the web
requests behavior pattern can be established and key features
such as hourly, daily, weekly, monthly, seasonally, etc., can
be identified by analysing the history data.

Considering a web requests time series (X (¢t — k), X (t —
E+1),.X(—1),X(t), where X (t) represents the total
requests to arrive during this time fragment ¢, the web
request in the next time fragment ¢ is related to the web
request volume in previous time fragments, whether there
are two, ten, or hundreds of time fragments. We utilize a
linear model to present their relationship.

N
X(t) = ZwiX(t —) (1)

where w; is the weight of different related X (¢t —4), and N
is the number of related time fragments.

Based on equation (1), we can estimate all w; by utilizing
a linear regression method to obtain the prediction model.
If the related time fragments are too many, an overfitting
problem will occur and prediction accuracy may be reduced.
The top key features that mainly determine the predicted
value should be identified. In this work, we apply the auto-
correlation function to identify the key features [21]. For the
request state in each time fragment X (), its auto-correlation
with another request X (¢ — 4) is calculated by

it = E{[X(t) — p)[X(t —1i) — u]}
o o(t)o(t — i)

2

For different ¢, we obtain a vector V' = {metan(pt,t_i) li e

[1, N]}. We select K elements with top values from the
sorted vector V' as the K key correlated features. These
selected elements are composed of a new vector N. For

t' € [1, N], the linear regression model can be estimated as
follows:

K
X(t)=> wyX(t) 3)
=1

3) Modelling the Relationship between Cost and Latency:
To estimate the relationship between web request volume,
cost and latency, we take the following into consideration in
our scheme design: (1) cost (C') prediction depends on the
number (M) of VMs changing, e.g C=f(m); (2) latency
(L) consists of execution time (7,) and waiting time for
executing (1,); (3) the arrivals of requests to be processed
on VMs obey a Poisson distribution with rate A , and the
executed requests on VMs are also considered as a Poisson
distribution with rate u. For convenience, each web server is

installed on one VM and all VMs belong to the same type
of instance with the same process capacity. These allocated
VMs come from an infinite cloud-based resource pool.

We employ the queueing theory technique to model
this relationship and we consider the arrival-execution of
requests on VMs as a birth-death process, which is a special
Markov chain [22], as shown in Figure 2.

A A A A A A
[2u (m-1)u mp mu mp

Figure 2. Transition Rate for the Web Requests Process on VMs

Due to the allocation of multiple servers (or VMs) in
the scheme, this process of the arrival-execution of requests
on VMs is modeled as M/M/m queueing: the arrivals are
poisson with rate A (A = E(X(¢)), and each VM has an
independent and identical distribution exponential execution-
time distribution with mean p . Since the execution-time
of the web request on a given type of VM can be ob-
tained by experiments, the execution-time 7 is known and
Hw= 1/ E (Ts)

There are m VMs in the system and we allocate one web
request to be processed on each one VM in parallel at every
instant time-point with a constant rate, so that the “birth”
rate is A, = A for all n. The rate of request completions
(or ”deaths”) depends on the number of VMs in the system.
If there are m or more requests in the system, then all m
servers must be busy at the instant time-point. Since each
VM processes requests with rate u, the combined process-
completion rate for the system is (m). When there are fewer
than m customers in the system, e.g. ¢ < m, only ¢ of the
m VMs are busy and the combined service-completion rate
for the system is (iu). Hence p; may be written as

R
Hi = { mu

Based on the Markov chain in Figure 2, we obtain the
steady-state probabilities p;

1<t <m,
Tt=>m

“

A .
B 77 Po 1<t <m,
i = X))
=T mit PO tzm

To obtain the value of pg, we use the condition that the
probabilities must add to 1 (3,7 p; = 1).

m—1 i 0o

A M\
w= (X et 2) ©

Ak
i—0 UH o

With the steady-state probabilities p;, we can calculate the
expected queue size L,. L, equals zero when the request
number ¢ is no more than VM number m, and is equal to

(¢ — m) when the request number 4 is more than the VM
number n , and thus,
Ly= Y (i—m)p (7)
i=m-+1
Based on Little’s Formula [22] L, = AT, where T, =
E(t,) is the expected length of the waiting time in queue
tq.

= o oy Q"

m!(mu)(1 — (i)

mp

5) ()

With the expected waiting time T}, we can calculate the
expected response time (average latency) L by the equation
below:

L()‘v s m) = Tq + T 9

C. Optimization Model

1) Objective Function: Recall that the web application
provider’s greatest concern is to maximize profit (e.g. by
minimizing cost) while providing high quality service (e.g.
by minimizing latency) with lower SLA violation. However,
these two factors are in conflict. As in our cloud-based web
system, with the cost demand on the number of allocated
VMs, we can reduce the number of VMs to keep the cost as
low as possible when there are insufficient VMs to process
requests, but the waiting time in the queue will be too long.
To solve this problem, we exploit the cost-latency trade-off
optimization objective function, as follows:

arg m/i\n T(A, pym) = ax f(m)+(1—a)*L(A, u,m) (10)
mA,u

where a € [0,1] reflects the importance ratio of cost and
latency.

Due to the different scale of the number of VMs and
latency, we can normalize the latency by equation

G=L/T (11)

where T is the latency threshold, which is defined in
SLAs. To normalize the number of VMs, we consider the
equation

_ f(m) B fmaac (m)
fmax (m) - fmzn (m)
where f(m), fmaz(m) and fp,i,(m) refer to the VMs cost
per time-unit, the least possible cost per time-unit and the
maximum possible cost per time-unit, respectively. Then, we
derive the following objective function for the optimization.

C' = F(m) (12)

arg min I'(\, g, m) = axF(m)+(1—a)*xG(X\, p,m) (13)

M,

Based on predicted requests in unit time ¢ ,A and pu are
given, and the latency function in unit time ¢ can be written
as

Li(\, p,m) = L¢(m) (14)

Considering the need to satisfy web application providers’
cost constraints and SLAs violation in respect of latency, the
final objective function of the cost-latency trade-off in unit
time ¢ is obtained by the following:

argminl’;(m) = ax Fy(m) + (1 —a) * G¢(m) (15)
subject to:
Ve 0 Cy(m) < Cymaz; Pr{L(m) >T} < K% (16)

where the SLAs violations constraint K is usually defined
as K € [2,5] for web applications.

Assuming each server could tackle k requests within time
T, the m VMs could tackle mk requests. This means that
the SLA will be satisfied when the queue length is less than
mk, because all requests could be tackled within time 7. By
referring to Figure 2, we know that only the previous mk
steady-state can satisfy the SLA, and others will violate the
SLA. So the equation of SLAs violations constraint can be
written by

mk
Pr{Ly(m)<T}=> pi>1-K% (7
=0

2) Solving the Optimization Problem: To minimize the
objective function, we wish to find an optimal number of
VMs m to obtain the cost-latency trade-off values, satisfying
all constraints. Clearly, equation 15 is a complex nonlinear
function and hard to simplify by mathematical methods.
Considering that the number of VMs the web application
provider purchased is limited, we exploit an exhaustive
search algorithm to calculate the I' with different m, and
to find the lowest Cost and the related m, as shown in
algorithm 1.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the
proposed scheme. We first describe experiment setup and
datasets used in our experiments, followed by the analysis
and discussion of the evaluation results.

A. Experiment Setup and Datasets

We evaluate the performance of the scheme by using three
kinds of real-world datasets. We consider the well-known
AOL ! and Sogou ? search log dataset, as well as another
real-world dataset collected by the UTS (The University of
Technology, Sydney) library, to evaluate the performance.

Uhttp://www.infochimps.com/datasets/aol-search-data
Zhttp://www.sogou.com/labs/dl/q-e.html

Algorithm 1 Computing optimal number of VMs

input
A - arrival rate, p - process rate per VMs,
« - priority of cost, KC - threshold of SLA violation
output
m - optimal number of VMs
I: minV = o0
2: for (n=1.N) do
3: Iy = L(\, u,n); //Equation (9)

4 1) = normalize(l;); //Equation (11)

5. n/ = normalize(n); //Equation (12)

6: newV =axn'+ (1 —a)xl; //Equation (15)

7. if ((n satisfy constraint(K)) // Equation (17)
&& (newV < minV)) then

8: m =n;

9: minV = newV;

10: end if

11: end for

Because most VMs instances in public clouds are charged

hourly, the time-unit of re-allocation in our work is the hour-

unit. Therefore, we set the length of time fragment as one

hour, and aggregate the number of requests for each hour.
We organize the experiment by steps as follows:

1) investigate how the seasonal characters affect the
selection of features for prediction modeling (Sub-
section IV-B1);

2) evaluate the prediction model through three datasets
(Sub-section 1V-B2);

3) visualize the performance of the prediction model
(Sub-section IV-B3);

4) evaluate the allocation performance for the given num-
ber of requests (Sub-section IV-B4);

5) compare our scheme with other approaches (Sub-
section IV-BS).

B. Evaluation and Results

1) Features Selection Evaluation: To measure the sea-
sonal characters, we compare the difference between two
time periods. We represent the number of requests in each
hour as a vector <v1, ..., v;, ...vg0>, Where v; is the requests
volume within one minute. We consider each vector as a
distribution, and apply the Kullback-Leibler (KL) divergence
to measure the difference between two distribution probabil-
ities.

P(i

Dii(PlIQ) = Zln<Q(lﬁ§>P<i> (1)

Because the KL divergence is a non-symmetric measure,
we utilize a variant Symmetrizing KL (SKL) divergence
[23] to evaluate as

Dk (P||Q) 4+ Dk r(Ql|P)
2

By taking the hourly number of requests as an element,
the requests volume in a day can be considered as a 24-
length vector. Each vector is treated as a distribution, and
can be calculated by the SKL divergence with another hourly
vector. Similarly, the hourly vector can be extended to a
weekly or monthly vector. Table I shows the average SKL
divergences on hourly, daily and weekly vectors with three
datasets.

19)

SDkL(PlIQ) =

Table I
AVERAGE SKL DIVERGENCE ON DIFFERENT PERIOD VECTOR

[Dataset | Hour | Day [Week |
AOL 0.0324 | 0.0283 | 0.0229
UTSIib | 0.0667 | 0.0302 | 0.0577
Sogou 0.0054 | 0.0086 | 0.0110

For the SKL divergence, 1 represents the greatest dis-
tance and O describes the smallest distance. All the SKL
divergences in Table I are small, which demonstrates that
the three datasets have highly seasonal characters and the
number of requests can be predicted by using the history
data.

Before learning the prediction model, we need to select
the key features for the linear regression model. Table II
represents the top 10 correlated features. The results in
Table II show that the request volume in time-unit ¢ is most
correlated to that of the first previous unit-time ¢ — 1.

Table 11
ToP 10 CORRELATED LAGS

[Period [Correlated lag (ordered by correlation descent) |
AOL 1,2,3,4,5,145,144,146,6,143
UTSlib 1,2,169,25,168,24,170,145,26,3
Sogou 1,25,2,49,24,26,73,48,50,97

2) Evaluation Methods: We choose several common
measurements for the regression model, such as Root Mean
Squared Error (RMSE), Relative Squared Error (RSE), Mean
Absolute Error (MAE), Relative Absolute Error (RAE), and
coefficient of determination (R?).

n . a.)2
RMSE = MTZGZ) (20)
_ E?:l(pi - ai)2
RSE = St B @1)
MAE = =il (22)

n

RAE — 2=t P — @il (23)
>io1 @i — ail
R? — > (i = pi)? 24)
> (a; — a;)?
where a is the actual value, p is the predicted value.
We choose 10-fold cross validation as the evaluation
method. Table III shows the performance of the regression
model on three datasets.

Table III
PERFORMANCE OF REGRESSION MODEL

[Data | AvgReq | RMSE | RSE | MAE [RAE | R? |
AOL [1.6%10% [191 [0.05 [140 [0.19] 0.98
UTSlib | 2.9%107 | 4582 [0.10 | 3082 | 0.25 [0.96
Sogou | 7.6%10% | 5617 | 0.02 | 3555 | 0.10 | 0.99

3) Prediction Model Evaluation: In a practical applica-
tion, a padding is added to the predicted value as the cap
(U) of prediction.

U = (1 + padding) * prediction (25)

We evaluate the prediction accuracy by utilizing the confi-
dence interval Pr(xz < U), which represents the probability
that real demands (x) are less than the cap (U) of the
prediction. To select a good padding value, we measure the
relationship between the padding value and the confidence
interval, as shown in Table IV.

Table IV
THE CONFIDENCE INTERVAL WITH DIFFERENT PADDINGS

. Confidence Interval Pr{x<U
Padding (%) 26T @) [UTSTb (%) [{SOgoi @

5 69.27 5.3 86.54
10 §2.96 81,16 9544
15 9146 89.67 98.60
20 9549 9443 99.30
% 97,57 97.10 99.30
30 98.50 98.17 99,65
35 99.13 99.05 100
40 99.42 99.46 100
15 99.56 99.64 100
50 99.76 99.79 100

Figure 3 shows that our scheme achieves good prediction
on both number of requests and resource demands, and that
the padding value can be dynamically adjusted well in each
time interval.

4) Allocation Evaluation: Our allocation approach is
related to the arrival rate A (per minute), process rate y (per
minute), maximal process time 7' (s), SLA violation ratio
threshold K, and cost priority . We define r = \/u as the
minimal required number of VMs, and consider m as the
optimal number of VMs allocated by our scheme.

2500 —&— predict with cap
3322 A = % = predict value N
()c'xx“ demandvalue ¢ W&
s 3000 - LYY al .»92(‘ X,
7]] 5 W 2K E Y
§ 2500 ey ¥ 25 X
& 2000 A 55y T Y
& | &7 \ AEETRT o
& 1500 4 3 = x3 °
© 1000 -~ & s—{
* 4]) [’ o
500 ¥ _o% ;‘,KN
[o o o o ML N o o o o o L I e o e e e o B e
1 5 9 13 17 21 25 29 33 37 41 45 49
Time (hour)
(a)
14
« —— predict with cap
12 i
A o aad
10 4 ("’7)‘7 demand value M - X‘x
S0 %K ey {
§ 8 I Cusrcnudsx 5, » . 4 Y
2 " y / o
S 6P $ e 3
=, \ L
b ! | {]
2 W 4 awnd
0 +—+—rrrrrr T
1 5 9 13 17 21 25 29 33 37 41 45 49
Time (hour)
(b)

Figure 3. Prediction and Allocation with a Dynamic Cap

With the given p = 10, T = 60, K = 2% and o« = 0.8,
we change the A from 10 to 300. Figure 4 (a) shows that a
bigger padding (m —r) should be allocated when the number
of requests increases. Meanwhile, Figure 4 (b) shows that
the relative ratio between m and r (i.e.m/r) decreases to
be close to 1, which means the scheme achieves good cost-
effectiveness when the number of requests rises.

—*¥—m/r

of VMs
Ratio for Cost

1 5 9 13 17 21 25 29
Request (x1000) / min
(a) (b)

5 9 13 17 21 25 29
Request (x1000) / min

Figure 4. Allocation with Queuing Theory.

5) Performance Evaluation for a Web Application: We
implement our scheme on Amazon AWS with a Web
application. This scheme can rent or lease VM instances
automatically from Amazon EC2. To simplify the problem,
our experiment only considers the cost of VMs with same
type of instances. We simulate the frequency of requests
based on the real datasets, and the process time of requests
obeys Poisson distribution (ﬁ = 6 seconds).

We compare our approach (QT) with another three ap-
proaches: PEAK, PEAK(x3/4) and Cap(x2). For Peak
approach, the number of VMs is always allocated based on

the peak value, while PEAK(x3/4) is an approach to reduce
cost by allocating the number of VMs as 3/4 of peak value.
For the CAP(x2) approach, the resource cap is set as two
times of the minimal number of VMs that can satisfy the
predicted the number of requests by considering all requests
that arrived with an average rate.

As Figure 5 and Table V shows, our approach allocates
less resources, while achieving better performance compared
to the PEAK(x3/4) and Cap(x2). Compared to the PEAK,
our approach reduces much less numbers of VMs, although
with slightly higher SLA violation rate.

14 -

—————————————————— — — Peak
224 F i eeeee Peak(x3/4)
ap(x2)
10 1 ‘Zoj 9K —x—sz ’
7 i (oo |
ws jooact] X
3 / { ;«*J‘ \
K !
o1 I F ’Xf ¥

L B e AR
1 5 9 13 17 21 25 29,33 37 41 45 49
Time (hour)

Figure 5. Allocation Comparison for Different Methods

Table V
PERFORMANCE COMPARISON FOR DIFFERENT METHODS

#Req | # VMs | Violate | Avg Tq
Dataset Approach /h /h (ave) (%) /h (s)
PEAK 1916 13.25 0.03 6.15
AOL PEAK (x3/4) | 1916 9.94 0.63 16.15
CAP(x2) 1916 7.33 0.57 15.61
QT 1916 7.21 0.18 9.96
PEAK 2165 21.00 0.02 7.46
. PEAK (x3/4) 2165 15.75 0.45 19.15
UTSIb —apx2) [2165 | 825 | 024 | 1373
QT 2165 7.75 0.20 11.87
PEAK 2954 25.67 0.06 8.32
Sogou | PEAK (x3/4) | 2954 19.23 1.02 26.15
CAP(x2) 2954 10.67 0.76 18.35
QT 2954 9.70 0.54 13.54

V. CONCLUSION & FUTURE WORKS

In this paper, we proposed an optimal VM-level auto-
scaling scheme with cost-latency trade-off. In each re-
allocation time-unit, we predicted the number of requests
based on history data by exploiting machine learning tech-
niques and time series analysis. Considering the predicted
results, we discovered an optimal number of VMs by utiliz-
ing queueing theory and multi-objective optimization. Based
on the optimal VMs demanded to be allocated, the system
makes a decision of scaling up or scaling down or NOP. The
experimental results demonstrate that the proposed scheme

can balance the cost and desired latency. Compared to other
methods, our scheme presents superior price-performance
ratio across three real-world datasets. This research will
potentially accelerate the migration of web applications
to the cloud systems. The consideration of more general
queueing models and other types of VMs (e.g multi-tenant
shared) to extend this work will be conducted in the future.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the
Australian Research Council (ARC) under discovery grant
DP110103733. Part of experimental datasets are provided by
UTS library.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al.,
“Above the clouds: A view of cloud computing,” Technical
report, Tech. Rep., 2010.

[2] “Animoto case in rightscale blog,” http://blog.rightscale.com/
2008/04/23/animoto-facebook-scale-up/.

[3] B. Dougherty, J. White, and D. Schmidt, “Model-driven
auto-scaling of green cloud computing infrastructure,” Future
Generation Computer Systems, vol. 28, no. 2, pp. 371-378,
2012.

[4] “Amazon auto scaling,” http://aws.amazon.com/autoscaling/.
[5] “Rightscale,” http://www.rightscale.com/.

[6] “enstrautus cloud automation,” https://www.enstratus.com/
page/1/automation.jsp.

[7]1 R. Han, L. Guo, M. Ghanem, and Y. Guo, “Lightweight
resource scaling for cloud applications,” in Cluster, Cloud and
Grid Computing (CCGrid), 12th IEEE/ACM International
Symposium on, 2012, pp. 644-651.

[8] H. Goudarzi, M. Ghasemazar, and M. Pedram, “Sla-based op-
timization of power and migration cost in cloud computing,”
in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th
IEEE/ACM International Symposium on, 2012, pp. 172-179.

[9] S.Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,”
Future Generation Computer Systems, vol. 28, no. 1, pp. 155-
162, 2012.

[10] J. Huang, C. Li, and J. Yu, “Resource prediction based on
double exponential smoothing in cloud computing,” in Con-
sumer Electronics, Communications and Networks (CECNet),
2nd International Conference on, 2012, pp. 2056-2060.

[11] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic

resource scaling for cloud systems,” in Network and Service

Management (CNSM), 2010 International Conference on,

2010, pp. 9-16.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,”
in Cloud Computing (CLOUD), 2011 IEEE International
Conference on. 1EEE, 2011, pp. 500-507.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:
elastic resource scaling for multi-tenant cloud systems,” in
Proceedings of the 2nd ACM Symposium on Cloud Comput-
ing. ACM, 2011, p. 5.

E. Caron, F. Desprez, and A. Muresan, “Pattern matching
based forecast of non-periodic repetitive behavior for cloud
clients,” Journal of Grid Computing, vol. 9, no. 1, pp. 49-64,
2011.

W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applications
in the cloud,” Future Generation Computer Systems, vol. 27,
no. 6, p. 871, 2011.

P. Padala, K. Hou, and K. e. a. Shin, “Automated control
of multiple virtualized resources,” in Proceedings of the 4th
ACM European conference on Computer systems, 2009, pp.
13-26.

H. Lim, S. Babu, and J. Chase, “Automated control for elastic
storage,” in Proceedings of the 7th international conference
on Autonomic computing. ACM, 2010, pp. 1-10.

H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan,
“Online self-reconfiguration with performance guarantee for
energy-efficient large-scale cloud computing data centers,” in
Services Computing (SCC), 2010 IEEE International Confer-
ence on, 2010, pp. 514-521.

C. Xu, J. Rao, and X. Bu, “Url: A unified reinforcement
learning approach for autonomic cloud management,” Journal
of Parallel and Distributed Computing, 2011.

W. Zhao and H. Schulzrinne, “Predicting the upper bound
of web traffic volume using a multiple time scale approach,”
in Proceedings of International World Wide Web Conference
(WWW), p. 251.

W. Woodward, H. Gray, and A. Elliot, Applied Time Series
Analysis, ser. Statistics: a Series of Textbooks and Mono-
graphs, 2011.

D. Gross, J. Shortle, J. Thompson, and C. Harris, Fundamen-
tals of queueing theory. Wiley-Interscience, 2011, vol. 627.

D. Johnson, S. Sinanovic et al., “Symmetrizing the kullback-
leibler distance,” IEEE Transactions on Information Theory,
vol. 1, no. 1, pp. 1-10, 2001.

