
SHStream: Self-healing Framework for HTTP
Video-Streaming

Carlos Augusto Cunha ∗, Luis Moura e Silva †
Centre for Informatics and Systems of University of Coimbra

∗ ccunha@dei.uc.pt, † luis@dei.uc.pt

Abstract—HTTP video-streaming is leading delivery of video
content over the Internet. This phenomenon is explained by the
ubiquity of web browsers, the permeability of HTTP traffic
and the recent video technologies around HTML5. However,
the inclusion of multimedia requests imposes new requirements
on web servers due to responses with lifespans that can reach
dozens of minutes and timing requirements for data fragments
transmitted during the response period. Consequently, web-
servers require real-time performance control to avoid playback
outages caused by overloading and performance anomalies. We
present SHStream, a self-healing framework for web servers
delivering video-streaming content that provides (1) load admit-
tance to avoid server overloading; (2) prediction of performance
anomalies using online data stream learning algorithms; (3)
continuous evaluation and selection of the best algorithm for
prediction; and (4) proactive recovery by migrating the server
to other hosts using container-based virtualization techniques.
Evaluation of our framework using several variants of Hoeffding
trees and ensemble algorithms showed that with a small number of
learning instances, it is possible to achieve approximately 98% of
recall and 99% of precision for failure predictions. Additionally,
proactive failover can be performed in less than 1 second.

I. INTRODUCTION

Video-streaming is experiencing dramatic growth. Its use
has been potentiated by the convergence of TV with the
Internet, the emergence of new services (e.g., VoD and e-
learning) and the ever increasing market of mobile video
streaming boosted by the rollout of the 4G service.

The real-time characteristic of video services demands in-
frastructures provided with efficient performance monitoring
and failure recovery capabilities. These capabilities should
circumvent playback interruptions due to performance prob-
lems that compromise the upfront time invested by end-users
watching the videos, leading to expensive abandonment costs.

Performance problems usually occur server-side or in the
network. Network-related problems have standard solutions
based on graceful degradation of video quality using adap-
tive streaming techniques [1] (e.g., the recent MPEG-DASH
standard [2]). Other approaches use temporal data redundancy
[3] and spatial data redundancy [4]. At server level, it is
known that resource exhaustion is the main cause of perfor-
mance failures in web servers [5]. It occurs as a consequence
of excess of client workloads and performance anomalies.
Workload-related failures can be anticipated by effective load
control mechanisms [6]. By contrast, performance anomalies
are difficult to detect, as they represent unexpected server
states that are complex and non-reproducible. This paper
focuses on this type of failures.

HTTP streaming (also known as pseudo-streaming) dom-
inates the delivery of video content in the Internet. This
approach uses often web servers to provide streaming data to
users [7], often extended with additional modules for advanced
features, as adaptive streaming, traffic shedding and timeline
positioning. Despite using the same server application, the
request is no longer the unit of performance control, as it is
typical for web page services [8] and n-tier web applications
[9]. This is explained by long streaming responses that can
last for dozens of minutes, during which they require: (1)
monitoring of transmission bitrates; and (2) resumption of
request responses at any point if recovery is required.

Recovery of streaming service failures caused by server
performance anomalies presents several challenges. Firstly,
they should be filtered from other types of incidents caused by
network and client-side faults. Secondly, all the connections
established with the faulty server should be migrated to other
server without breaking TCP connections, to ensure client-
side transparency of recoveries. Finally, failure detection and
recovery should be efficient to avoid client-side interruption
of playback.

This paper addresses these challenges by exploring failure
prediction and virtualization technologies to support proactive
recovery of connections. Failure prediction provides an op-
portunity to gracefully handle failures before potential outages
occur. Prediction models identify pre-failure patterns of server
behavior to anticipate failures, avoiding the use of expensive
checkpointing techniques (e.g., lock-stepping) [10] to recover
streaming connections. These techniques confront the real-
time constraints of streaming due to their complexity and
overheads [11]. Virtualization techniques are further used to
migrate the server state and connections established with
clients. Virtualization allows generalization of our approach,
as migration of TCP connections require operating system
instrumentation [12].

Previous work in prediction of performance failures ad-
dress forecasting of resource exhaustion due to memory
leaks[13][14][15], correlation of temporal and spacial events
[16], prediction of resource values using sequential patterns
[17] and context-aware prediction [18]. These techniques were
designed for batch learning (model training is performed at
once and further updates are avoided) and do not cover short-
term prediction of server performance failures in services with
long running connections delivering packets with strictly time
constraints.

This paper presents SHStream, a self-healing framework for
HTTP streaming implemented in Java, driven by prediction
of server performance failures, with the following features:
failure detection, load admittance, online learning and evalu-
ation of models, failure prediction, and failure recovery. This
framework was used on the evaluation of pre-failure patterns
models for failure prediction of performance anomalies using
several variants of hoeffding trees and ensemble algorithms.
Experimental evaluation aims to answer the following funda-
mental research questions:
• How to perform online learning and evaluation of models

for prediction of performance anomalies in streaming
services?

• Do online learning models accurately capture pre-failure
patterns in web servers providing streaming content?

• Which learning algorithms have the best performance?
• How many learning instances are required to stabilize

prediction performance?
The rest of this paper is structured as follows. Section II

presents the related work. Section III formalizes the problem.
Section IV presents the algorithms used for failure prediction
and diagnosis, implemented in Section V. Section VI shows re-
sults of the experimental work done to evaluate our approach.
Section VII presents conclusions.

II. RELATED WORK

Failure prediction techniques presented in previous work
can be classified as: regression of resource utilization, corre-
lation of events, probabilistic sequential patterns and context-
aware models. Regression techniques have been explored to
model utilization of resources, for prediction of system and
service performance. Powers et al [13] addressed the problem
of forecasting system performance in enterprise systems to
automate assignment of resources. Forecasting of service level
objectives (SLOs) one hour ahead showed that: (1) multi-
variate regression and Bayesian Network Classifiers perform
better than auto-regression methods; and (2) models are not
reusable between machines without accuracy losses but helps
bootstrapping models on machines where learning data are
scarce. Sahoo et. al. [19] applied time series methods, rule-
based classification and Bayesian network models to predic-
tion of anomalous events in commercial and scientific applica-
tions. These models showed acceptable errors when evaluated
with a production dataset. Hoffmann et al. [20] studied the use
of several modeling techniques to predict resource consump-
tion of the Apache Web server. Results showed that UBFs
yields the best results for free physical memory prediction
and SVMs performed better predicting server response times.
Cherkasova et al [21] studied detection and classification of
workload changes, performance anomalies and application
changes in three-tier web servers using performance signatures
and a regression model of CPU consumption. Kelly et al
[22] investigated the use of multivariate regression models to
classify performance anomalies in three types: overloading,
application logic faults and configuration faults. The classi-
fication model aggregates response times of the transaction

mix to discriminate between anomaly types. That approach
was evaluated using three large data sets collected in global
distributed systems.

Temporal and spatial correlation of failure events in comput-
ing systems was investigated previously for failure prediction
[23]. Liang et. al. [16] addressed failure prediction in clusters
of scientific applications. They explored temporal and spacial
locality of previous failures to predict future failures and
used information about non-fatal events to predict application
crashes. Experimental results using the RAS event logs of
IBM BlueGene/L showed that a high number of failures can
be avoided using their approach. Sequential patterns repre-
sent transitions between server states occurring according to
specific probabilities. Gu [17] explored the combination of
Bayesian classifiers and Markov models to predict both actual
and future bottleneck failures in distributed data stream nodes.
Their approach showed high levels of accuracy and precision
in three scenarios: insufficient CPU, insufficient memory and
memory leaks. Context-aware models groups anomalous oc-
currences into contexts. Tan et al. [18] proposed a context-
aware anomaly prediction scheme combined with decision
trees to classify component states. The approach showed better
results than monolithic, incremental and ensemble approaches
for several types of stream processing components with real-
time prediction performance.

Most previous research in this area focus on long latency
errors (e.g., memory leaks), through analysis of the temporal
distance between events [16] or the consumption of a single
resource [13] during long periods of time. Our work is the
first attempt to perform short-term online prediction of server
performance failures in services with long running connections
delivering packets with strict time constraints. We address that
problem by building an integrated self-healing framework for
streaming services that learns and evaluates models of pre-
failure patterns iteratively and performs proactive recovery
using migration of the server application and respective con-
nections using virtualization techniques.

III. PROBLEM STATEMENT

This section describes the failure prediction and recovery
problems addressed by SHStream. SHStream addresses two
main types of faulty behaviors: (1) fail-stop, when the server
stops answering to new requests and transmitting data on the
established connections; and (2) service quality degradation,
when servers put data on the network at rates below the video
encoding bitrates required for playback.

Assuming that the server never exceeds its nominal capacity
(ensured by load admittance), any performance failure is im-
puted to server anomalies. These anomalies can be caused by
hardware and software faults manifested by server abnormal
behaviors. Since the resultant errors can be covered by our
metrics (e.g., abnormal CPU utilization for the current client
workloads), they can be potentially predicted by our models.
However, we only recover connections when the error occurs
outside the server application process, as we need to copy the
last application state during failover to the target host.

A. Failure Prediction

Failure prediction can be defined as follows. Being F =
{normal, failure} one server state and M the vector of
values corresponding to application and system metrics, the
problem resumes to incrementally learn a classifier that maps
the space of possible values of Mt observed during periods
Ft = {normal} to a future failure state Ft+n = {failure},
being t the observation time and n > 0.

Several challenges arise when modeling server states that
precede failures (i.e., pre-failure patterns). Firstly, they should
exist. Secondly, they should be captured by metrics. Thirdly,
the model should correctly model them with a small error.
Finally, the respective learning instances gathered from logs
should be delimited in time to avoid mixing pre-failure pattern
instances with normal instances, in the row of log instances
preceding each failure.

B. Recovery

SHStream implements two recovery techniques: connection
redirection and server failover. Connection redirection is im-
plemented by the HTTP protocol through the REDIRECT
command. REDIRECT commands can be issued by the server
when clients request the establishment of a new connections.
The server then answers with the network address of the
target host, which will be used by the client to reissue
the connection. New connection requests can be redirected
to another host when the server reaches its capacity or is
experiencing performance problems. Server failover migrates
the server application to another host. This technique presents
two main challenges: (1) synchronization of application states
between the faulty and failover servers; and (2) server migra-
tion transparently to clients, requiring moving the server IP
address and TCP connection states to the target host to avoid
breaking the current sessions established with players.

IV. LEARNING ALGORITHMS

Online learning algorithms overcomes traditional batch
learning limitations to fulfill the online learning requirements
of dynamic systems [24]: (1) Incremental learning (parallel
learning and classification of instances); (2) Single pass
through data; (3) Limited time and memory (instances are
processed in a small and constant time using an approximately
constant amount of memory); and (4) Any-time learning (if
stopped before its conclusion, the algorithm should provide
the best possible answer). We evaluate three types of online
algorithms in our framework: decision trees, probabilistic
classifiers and ensemble algorithms.

A. Hoeffding trees

Decision trees are powerful, interpretable and efficient clas-
sifiers - with n examples and m attributes, the average cost
of basic decision tree induction is O(mn log n). Hoeffding
decision trees promise performance levels similar to batch
decision trees (e.g., C4.5 [25]). VFDT (Very Fast Decision
Tree) is a state of the art algorithm for creating Hoeffding
trees proposed by Domingos and Hulten [26]. VFDT builds

the tree iteratively by splitting each node when the number of
learned examples satisfies the Hoeffding Bound (1).

ε =

√
R2 ln(1

δ
)

2n
(1)

The Hoeffding Bound defines the split confidence, by stating
that with probability 1−δ, the true mean of a random variable
with range R does not differ from its estimated mean after n
independent observations by more than ε. Information gain
is the splitting criteria commonly used to build tree models.
It is defined as the difference between the weighted average
entropy of split subsets and the entropy of class distribution
before splitting, being the entropy defined as in (2). Entropy
measures the purity of subsets for a distribution of class labels
consisting of fractions p1, ..., pn, summing to 1.

entropy(p1, p2, ..., pn) =

n∑
i=1

−pi log2 pi (2)

We use two prediction strategies with Hoeffding trees. The
majority class is the strategy by default - i.e., filtering down
the tree to a leaf and retrieving the most likely class label.
The second approach explores Naive Bayes to also account
in the tree the conditional probabilities of the attribute values
given that class. This allows inclusion of information about the
number of times the attribute values were seen associated to
each class in the prediction process. Naive Bayes is naturally
incremental as it deals with heterogeneous data and missing
values and is a very competitive algorithm for small datasets
[27]. Adaptive Hoeffding Trees is another variant of Hoeffding
trees explored that uses ADWIN [28] to evolve trees with
new server behaviors, by monitoring performance of branches
on the tree and replace them with new branches with higher
accuracy.

B. Ensemble of Models

Ensembles group several models to perform classification
by means of voting. That configuration has been proved to
attain higher levels of accuracy than those obtained by single
classifiers alone [29]. We assess four ensemble algorithms in
our experiments that uses Hoeffding Trees as base models:
Weighted Majority Algorithm [30], OzaBoost [31], OzaBag
[31] and Option Trees [32].

1) Weighted Majority Algorithm: Learn models by giving
a positive weight to each model in the pool that correctly
classifies one learning example and discounting a given ratio
β of the weight of those that incorrectly classify learning
instances. The number of mistakes was proven to be bounded
in a sequence of predictions from a pool of algorithms A by
O(log |A|+ n).

2) OzaBoost: Learns several models in a sequence, increas-
ing weights of examples misclassified by former models in
the sequence to reinforce their learning by the latter models,
similarly to AdaBoost [33] for batch learning scenarios. This
algorithm divides the total weights into two halves, giving
one half to correctly classified examples and the other half to

misclassified examples. Misclassified examples are reinforced
intrinsically at the next sequence model by the classifier’s ac-
curacy - as it increases, the number of misclassified examples
decreases, getting more weight per example.

3) OzaBag: Learning from a bootstrap replicate of exam-
ples drawn randomly from the training dataset according to the
Poisson(1) distribution, similarly to Bagging [34] for batch
learning. Bootstrapping reduces variance errors caused by low
frequency examples in the dataset, as they have low probability
of being used to train models.

4) Hoeffding Option Trees: Typical Hoeffding trees with
additional option nodes leading to multiple Hoeffding trees
as separate paths. By representing several decision trees in
a single compact structure it it possible to reduce the space
required to save independent tree instances, as required for
traditional ensembles. Additionally, contrasting with other
ensemble models, model interpretability can be maintained if
a small number of option nodes is used [35].

V. SHSTREAM IMPLEMENTATION

This section presents the architecture, algorithms and
techniques implemented by the SHStream framework. The
SHStream was developed in Java and has the following main
dependencies:
• SIGAR [36]: an API to gather system reports;
• MOA (Massive Online Analysis): the implementation

of machine learning algorithms;
• mod SHS: a Lighttpd module implemented by us to

gather application-level metrics and control server load;
• OpenVZ tools [37]: for migration of virtual containers.
The SHStream framework runs within the server’s host to

ensure: (1) Scalability by avoiding centralized data gathering
and analysis; (2) Timeliness by enabling data gathering and
server control with minimum communication delays; and (3)
Integration through direct control over the server.

Fig. 1 presents the architecture of SHStream. It is divided
into two groups of features: monitoring and recovery. The
monitoring activity starts by aggregating data every α seconds,
gathered from application reports, system reports and web
server probing status reports. Later, these data are used
for load admittance, failure prediction and learning. Only
the classification output of the model with best prediction
performance is selected by the framework for prediction.
When one failure is predicted, the recovery is launched to
handle container migration to other hosts. The Lighttpd web
server is installed within an OpenVZ container with the H264
Streaming Module [38] and mod SHS. The H264 Streaming
Module ensures advanced features to streaming users - e.g.
time shifting seek. mod SHS gathers application-level metrics
data and redirects new connections to another server when the
load admittance component determines that the server reached
its limit. The disk is used for communication between the
virtual container and the SHStream tool, using a directory
shared by the container and the host domain. The recovery
manager communicates with OpenVZ tools for migration of
containers between host machines.

Data	 aggregation

Failure	 Prediction

Learning

Model	 Evaluation

M
O
A
	 A
P
I

Lighttpd
Web	 Server

mod_SHS

Virtual Container

Recovery
Recovery	 Manager

HTTP/1.1	 HEAD

H264	 Streaming	
Module

Failure	 Classification

Probing	 Agent

Load	 Admittance

App-level
Reports

SI
G
A
R

A
P
I

REDIRECT
Signal

REDIRECT
Signal

App-level
Reports

O
n
li
n
e	
M
ig
ra
ti
o
n

Monitoring

Operating	 System

OpenVZ	 Tools

Sy
st
em

	 R
ep
o
rt
s

Online	 Migration

...

Fig. 1: SHStream Architecture

A. Data Gathering

SHStream collects the 44 system metrics provided by
SIGAR, covering CPU, Memory, I/O and Network resources,
as well process-related metrics (e.g., CPU and memory con-
sumed by the web server process). The complete list of metrics
can be found at [36]. At application level, it collects several
performance metrics: response time (time until transmission of
first packet), number of failed connections, number of network
failures, bytes written at the current second, bytes read from
disk, number of active connections, number of connections
executed and number of connections recovered.

B. Failure Detection

As described in Section III, our approach covers both server
fail-stop failures and service quality degradation. Fail-stop
failures are detected through evaluation of server responsive-
ness. Responsiveness is determined through server responses
to HTTP/1.1 HEAD command requests, issued each α sec-
onds. On the other hand, service quality degradation are de-
termined by a service global condition and a connection-level
condition. The service global condition determines whether
at any time ti, the sum of transmitted bitrates for all active
connections, in average, since the beginning of transmission
t0 (i.e., the first byte transmitted) is smaller than the sum of
their respective video encoding bitrates, calculated as in (3).
That means that the server sent less data to the network than
the data required by players to play videos up to time ti.∑nConnections

j=1

BitsTransmittedj(t0(j),ti)

(ti−t0(j))·EncodingBitratej

nConnections
< 1 (3)

The service global condition identifies degraded service
states, but it unable to provide information about the number of
requests suffering from service degradation. The connection-
level condition determines, at any time ti, for each connection,

if the transmitted bitrate is below the respective video encoding
bitrate, as defined in (4):

BitsTransmitted(t0, ti)

(ti − t0) · EncodingBitrate
< 1 (4)

BitsTransmitted represents the bits transmitted by the server
to the player, for a given connection, since it starts at time t0
until the present time ti. When that value is smaller than the
video encoding bitrate, the player stops video playback until
enough data arrives.

C. Load Admittance

Admittance of new connections is allowed when the band-
width in excess being used by the actual connections being
served is sufficient to afford them. This rule allows easily
adaption to changes on server and network conditions. New
connections are accepted if the difference in the sum of
the actual transmission bitrates TBR (payload data) and the
sum of the encoding bitrates EBR, for all actual established
connections, is higher than a safe margin a, as shown in (5).
The value of a should be carefully chosen to afford the bitrate
of new connections.

nCurrent∑
i=1

TBR(i)− EBR(i) > a (5)

SHStream controls load admittance using a flag file to
inform the mod SHS module that the server has reached
its capacity. The existence of this file indicates that new
connections should be redirected to a new server, by sending
an HTTP REDIRECT command to the client.

This simple load admittance rule has been shown effective
in our experiments to control server load. More elaborated
admission schemes can be explored but this problem is out of
scope of the main research topic of this paper.

D. Failure Prediction

The main research problems addressing prediction in
SHStream address online iterative learning, evaluation of
models and classification of pre-failure patterns on logged
monitoring data instances. The learning process starts by
delimiting the pre-failure time window which isolates pre-
failure states from normal states. This is a non-trivial critical
task that could introduce large errors in the learning process,
since pre-failure states can be trained using data belonging
to normal states and vice-versa. Instead of performing a
sharp separation between normal and pre-failure periods, we
consider very short pre-failure periods preceded by a window
of uncertainty (Fig. 2a). Any data within this time window are
ignored in the learning process.

Algorithm 1 shows how models are handled for prediction,
learning and evaluation. One monitoring instance containing
metrics data is picked at the time. Such instance is classified
by each learning algorithm and the classification given by the
model with higher performance at the moment is chosen to
decide if recovery should be performed. Remaining classifica-
tions will be used later for statistics. After classification, each

Algorithm 1 Classification, learning and evaluation using
online models for failure prediction and diagnosis.
Require: size(buffer) is WindowOfUncertainty

loop
I ⇐ readNewInstance()
f ⇐ isFailState(I)

. Classification
for i = 1 to nModels do

pi ⇐ classifyFailurePrediction(Modeli, I)
ci ⇐ classifyFailureType(Modeli, I)

end for
if pmostAccurate is true then

launchRecovery(c)
end if

. Learning
L⇐ buildLearningInstance(I, f, p, c)
if not isBufferFull(buffer) then

jump to next loop iteration
end if
addToEnd(buffer, L)
F ⇐ removeFirst(buffer)
if distanceFail(buffer) ∈ [1, preFailWindow] then

for i = 1 to nModels do
learn(Modeli, F, prefailure)
updateModelStatistics(pi, ci, prefailure)

end for
else if distanceFail(buffer, F) is ∞ then

learn(Modeli, F, normal)
updateModelStatistics(pi, ci, normal)

end if
. Evaluation

mostAccurate⇐ evaluateBestModel(Model)
end loop

new instance is stored at the end of a buffer, to be used later for
learning (Fig. 2b). In the same iteration, the algorithm picks
the first buffer instance and evaluates it in terms of its ability
to predict the failures observed since it was gathered. One
failure is considered predicted by a given previous instance, if
the distance between both is less or equal than the pre-failure
window size. The buffer size is dimensioned by the window of
uncertainty’s size, ensuring that all instances within the buffer
preceding the pre-failure window are ignored for learning,
unless all the buffer instances were marked as normal. In such
case, they are learned as normal.

E. Model Evaluation Metrics

Prediction metrics are calculated using the number of true
positives (TP), false negatives (FN) and false positives (FP).
True positives are failure scenarios predicted correctly as
failures. False negatives are unpredicted failure scenarios and
false positives represent normal scenarios mispredicted as
failures. We use those values to calculate recall and precision
(6).

Recall =
TP

TP + FN
Precision =

TP

TP + FP
(6)

Recall represents the percentage of failure instances de-
tected by the classifier. This metric is important to evaluate
the coverage of our failure detector. Precision captures the
true positive rate of instances classified as failures.

F-measure (7) is a standard information retrieval metric,
calculated as the weighted harmonic mean of recall and preci-
sion. It provides a single value for comparison of classification
performance between prediction models.

Normal
Pre-
failure

Failure

Window
of	

Uncertainty

time

(a) The window of uncertainty and the temporal location
of normal, pre-failure and failure states.

X F

Window of Uncertainty

new
instance

learning
instance

Distance to Failure
ignored

learned
as normal X

learned
as failure X F

Pre-failure
window

(b) The three different scenarios of the learning buffer

Fig. 2: Data segmentation for learning of failure prediction
models.

F-measure =
2 · precision · recall
(precision+ recall)

(7)

F. Recovery

Virtualization technology is explored by SHStream to isolate
the web server application from the other processes and to
build an unit of migration between physical hosts. Virtualiza-
tion also avoids pre-reservation of resources in the failover
host, allowing the other applications within the target host to
fully use resources until they are reclaimed during migration.

We adopted OpenVZ, a OS-level server virtualization tech-
nology based on containers. Container-based virtualization
allows: (1) significantly smaller overheads than typical virtu-
alization and paravirtualization technologies [39] because they
run on top of the operating system; (2) server application
isolation from the rest of the system, avoiding migration of
errors originated outside the container during recovery; (3)
smaller migration downtimes, as the volume of data transmit-
ted between the primary and failover hosts is smaller.

We implemented the failover mechanism by copying the
container file to the failover host. Containers are migrated
between hosts, carrying their network IP address. During
migration, the container is suspended in the primary host, then
is copied to the failover host (using rsync [40]) and finally,
is instantiated in the failover host with the execution state
of the primary host. Our tests showed that online migration
is performed transparently to the user in less than 1 second.
Delays of that order can be absorbed by video-player buffers.

VI. EXPERIMENTAL WORK

This section presents the testbed, workloads and fault loads
used in the experimental work to evaluate our approach. It
further presents and discusses the results obtained to answer
the research questions stated in the Section I.

A. Testbed

Our tests were performed on a tested composed by four
machines connected by a 100Mbps Ethernet Network: two
servers (i.e., primary and failover servers), and two machines
running a script that coordinates execution of httperf [41]
instances to avoid client-side overloading. The script also
commands server fault injection through ssh commands that
invokes the Stress tool [42] in the server. The container
contains the Lighttpd web server 1.4.30 installed with the
H264 Streaming Module (mod h264 streaming version 2.2.7)
and the mod SHS module. The SHStream tool was installed
normally outside the virtual container and was configured to
gather performance metrics every 2 seconds. All machines
were configured with an Intel(R) Pentium(R) D CPU 3.00GHz,
2Gb RAM, running the Linux 2.6.18-92.1.22.el5 Kernel.

B. Workloads and Fault Loads

We ran a single test during 94 hours using ten H.264 videos,
encoded with bitrates of approximately 600 Kbps (standard
quality) and 2 Mbps (high quality). Three workload types were
devised with those encodings:
• Cached: the same file is streamed by all requests;
• Disk: each request streams exclusively one video file;
• Mix: two-third of requests stream the same file and the

other one-third of requests streams one file exclusively.
The workload type impacts considerably the number of

streams being served by the server. In our experiments we
observed that the number of connections supported by the
server for Cached type workloads is several times the num-
ber of connections allowed by the Disk configuration. This
phenomenon is explained by the bottleneck accessing disk-
stored content. Each workload type was submitted recurrently
in sequence with the order Cached, Disk and Mix, with inter-
request rates randomly set between 500 milliseconds and
5 seconds. The number of connections varies sinusoidally
between 0 and n, being n higher than the server limit. The
timespan delimited by each of those workload types is named
a scenario. Each scenario is associated to a single fault type:
normal (no fault), CPU, Memory, I/O and Misc. During the
lifespan of each scenario, the associated fault type is injected
randomly with the intensity required to cause a service failure.

C. Results

We ran experiments one first time without SHStream to
determine its overhead. The maximum number of connections
per second is the same when SHStream is running and when
it is not running. The explanation for this observation is that
streaming content is resource intensive and the SHStream
overhead is negligible when compared with the resources
consumed by streaming requests.

Fig. 3 shows the results of experimental tests. One failure
is considered predicted if it has a look-ahead time of at least
2 seconds to provide a temporal margin for recovery. This is a
fair assumption, given that recovery can be performed in less
than 1 second (as observed for container migration). Fig. 3a
relates the number of false positives and false negatives with
the number of failure instances used for learning, for the best
classifier chosen at each moment. It is noticeable that the 5
false positives observed occur after a high number of learning
instances. By contrast, the number of false negatives stabilizes
after 15 learning instances, occurring infrequently afterwards.
After stabilization, the classifier predicted almost all failures
consistently (Fig. 3b). All algorithms, except *Adwin and
Naive Bayes, achieved high levels of recall (Fig. 3c) and
precision (Fig. 3d) in the test. Recall stabilizes at 98% and
precision is around 99% for all ensemble algorithms and 98%
for standard Hoeffding trees, a little below its ensemble variant
counterparts. Ensemble algorithms achieved the highest pre-
diction performance but with small differences comparatively
to Hoeffding trees. The Weighted Majority Algorithm has the
highest F-measure (Fig. 4), followed by the HoeffdingOption-
Tree, OzaBag and OzaBoost.

D. Discussion

Experimental results showed that online learning algorithms
can be applied to creation of models of pre-failure patterns
with high failure prediction performance. The absence of false
positives during the early stages of learning avoided unneces-
sary recoveries when the model still has low discriminatory
power, due to the small number of learning instances available.
Another observation is that false negatives are consistent for
the first learned failure scenarios (up to 15 scenarios), but rare
afterwards. Consequently, it is possible to train models with
high prediction performance with a small number of failure
scenarios available.

Ensemble algorithms outperform other algorithms, when F-
measure is used for comparison. However, Recall can be a
better metric when recovery is performed with small costs and
contributing to a low impact of false positives on the service.
According to our tests, containers can be migrated to other
hosts in less than 1 second. Consequently, with such small
overheads, the 1% reduction in precision in standard Hoeffding
trees over ensemble models can be rewarded by the advantages
of Hoeffding trees: interpretability of models and efficiency
(only one model is required).

VII. CONCLUSION

This paper presents a self-healing framework for streaming
servers that uses online failure prediction as the core tech-
nique to avoid performance anomalies by means of proac-
tive recovery using container-based virtualization techniques.
This framework provides load admittance, failure prediction,
model evaluation and failover functionalities. Evaluation re-
sults showed that performance failures can be predicted with
high levels of prediction and recall. Additionally, despite
underperforming ensemble algorithms by a small margin, the

interpretability of Hoeffding trees may justify their use when
inexpensive recovery techniques like ours are used.

Our research work focused on failure prediction, despite
providing solutions for load admission and recovery problems.
Research on these two last topics will be developed in future
work.

ACKNOWLEDGMENT

This work was partially supported by FCT-Portugal under grant
SFRH/BD/35784/2007 and CISUC (Centre for Informatics and Sys-
tems of University of Coimbra).

REFERENCES

[1] T. Stockhammer, “Dynamic adaptive streaming over http –: standards
and design principles,” in Proceedings of the second annual ACM
conference on Multimedia systems, ser. MMSys ’11. New York, NY,
USA: ACM, 2011, pp. 133–144.

[2] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” Multimedia, IEEE, vol. 18, no. 4, pp. 62 –67, april 2011.

[3] N. Feamster and H. Balakrishnan, “Packet loss recovery for streaming
video,” in 12th International Packet Video Workshop. Pittsburgh, 2002.

[4] R. Puri and K. Ramchandran, “Multiple description source coding using
forward error correction codes,” in Signals, Systems, and Computers,
1999. Conference Record of the Thirty-Third Asilomar Conference on,
vol. 1, oct. 1999, pp. 342 –346 vol.1.

[5] S. Pertet and P. Narasimhan, “Causes of failures in web applications,”
CMU Parallel Data Laboratory, Tech. Rep., 2005.

[6] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Admission
control for web server systems - design and experimental evaluation,”
in Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 1,
dec. 2004, pp. 531 –536 Vol.1.

[7] M. Saxena, U. Sharan, and S. Fahmy, “Analyzing video services in web
2.0: a global perspective,” in Proc. of the 18th International Workshop
on Network and Operating Systems Support for Digital Audio and Video,
ser. NOSSDAV ’08. New York, USA: ACM, 2008, pp. 39–44.

[8] A. Iyengar, E. MacNair, and T. Nguyen, “An analysis of web server per-
formance,” in Global Telecommunications Conference, 1997. GLOBE-
COM ’97., IEEE, vol. 3, nov 1997, pp. 1943 –1947 vol.3.

[9] T. Abdelzaher and K. Shin, “Performance guarantees for web server
end-systems: a control-theoretical approach,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 13, no. 1, pp. 80 –96, jan 2002.

[10] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, Sep. 2002.

[11] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual machine
replication,” in Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, ser. NSDI’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 161–174.

[12] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory tcp: con-
nection migration for service continuity in the internet,” in Distributed
Computing Systems, 2002. Proceedings. 22nd International Conference
on, 2002, pp. 469 – 470.

[13] R. Powers, M. Goldszmidt, and I. Cohen, “Short term performance
forecasting in enterprise systems,” in Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data
mining, ser. KDD ’05. New York, NY, USA: ACM, 2005, pp. 801–807.

[14] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for estimation
of software aging in a web server,” in Empirical Software Engineering.
Proceedings of the International Symposium on, 2002, pp. 91 – 100.

[15] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of
software aging in a web server,” Reliability, IEEE Transactions on,
vol. 55, no. 3, pp. 411 –420, sept. 2006.

[16] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” in Dependable
Systems and Networks, 2006. DSN 2006. International Conference on,
june 2006, pp. 425 –434.

[17] X. Gu and H. Wang, “Online anomaly prediction for robust cluster
systems,” Data Engineering, International Conference on, vol. 0, pp.
1000–1011, 2009.

0	

2	

4	

6	

8	

10	

12	

14	
0	 7	 24
	

39
	

53
	

67
	

82
	

99
	

11
6	

13
3	

15
1	

16
6	

18
1	

20
1	

22
0	

23
9	

26
1	

27
6	

28
9	

30
2	

31
8	

33
5	

35
0	

36
6	

37
9	

39
4	

40
6	

41
8	

43
7	

44
9	

46
2	

47
6	

49
1	

50
8	

52
4	

53
9	

55
5	

56
8	

N
um

be
r	 o

f	 O
cc
ur
re
nc
es
	

Number	 of	 Failure	 Scenarios	 Used	 for	 Learning	

False	 Posi4ves	

False	 Nega4ves	

(a) Relation of the number of False Positives and False Negatives with the
number of failure scenarios used for learning.

566	

0	

100	

200	

300	

400	

500	

600	

0	 7	 24
	

38
	

52
	

65
	

80
	

97
	

11
3	

12
9	

14
6	

16
2	

17
7	

19
5	

21
4	

23
0	

25
1	

27
0	

28
4	

29
5	

31
0	

32
6	

34
2	

35
7	

37
2	

38
5	

40
0	

40
9	

42
4	

44
0	

45
4	

46
5	

47
8	

49
4	

51
1	

52
6	

53
9	

55
6	

56
9	

Tr
ue

	 P
os
i,
ve
s	

Number	 of	 Failure	 Scenarios	 Used	 for	 Learning	

Total	

Normal	

CPU	

Memory	

I/O	

MISC	

(b) Relation of the number of True Positives with the number of failure scenarios
used for learning.

0.8	
0.82	
0.84	
0.86	
0.88	
0.9	

0.92	
0.94	
0.96	
0.98	

1	

0	
10
66
1	

21
54
0	

32
45
7	

43
33
1	

54
39
0	

65
96
7	

77
00
8	

88
03
2	

99
20
7	

11
05
25
	

12
14
18
	

13
28
52
	

14
41
83
	

15
48
72
	

16
67
62
	

17
78
09
	

18
89
58
	

20
04
14
	

21
13
83
	

22
27
31
	

23
38
79
	

24
51
60
	

25
61
51
	

26
77
15
	

27
91
58
	

29
02
80
	

30
12
93
	

31
19
91
	

32
34
55
	

Re
ca
ll	

Seconds	

HoeffdingOp2onTreeNBAdap2ve	

HoeffdingOp2onTree	

HoeffdingTree	

NaiveBayes	

WeightedMajorityAlgorithm	

OzaBag	

OzaBagAdwin	

OzaBoost	

OzaBoostAdwin	

(c) Recall of each classifier

0.9	
0.91	
0.92	
0.93	
0.94	
0.95	
0.96	
0.97	
0.98	
0.99	

1	

0	
10
66
1	

21
54
0	

32
45
7	

43
33
1	

54
39
0	

65
96
7	

77
00
8	

88
03
2	

99
20
7	

11
05
25
	

12
14
18
	

13
28
52
	

14
41
83
	

15
48
72
	

16
67
62
	

17
78
09
	

18
89
58
	

20
04
14
	

21
13
83
	

22
27
31
	

23
38
79
	

24
51
60
	

25
61
51
	

26
77
15
	

27
91
58
	

29
02
80
	

30
12
93
	

31
19
91
	

32
34
55
	

Pr
ec
is
io
n	

Seconds	

HoeffdingOp1onTreeNBAdap1ve	

HoeffdingOp1onTree	

HoeffdingTree	

NaiveBayes	

WeightedMajorityAlgorithm	

OzaBag	

OzaBagAdwin	

OzaBoost	

OzaBoostAdwin	

(d) Precision of each classifier

Fig. 3: Failure prediction performance. Slashed lines represent small values below the amplitude window shown or the zero
value. Failures accounted as predicted were anticipated with a look-ahead time of at least 2 seconds.

0.9	
0.91	
0.92	
0.93	
0.94	
0.95	
0.96	
0.97	
0.98	
0.99	

1	

0	
10
66
1	

21
54
0	

32
45
7	

43
33
1	

54
39
0	

65
96
7	

77
00
8	

88
03
2	

99
20
7	

11
05
25
	

12
14
18
	

13
28
52
	

14
41
83
	

15
48
72
	

16
67
62
	

17
78
09
	

18
89
58
	

20
04
14
	

21
13
83
	

22
27
31
	

23
38
79
	

24
51
60
	

25
61
51
	

26
77
15
	

27
91
58
	

29
02
80
	

30
12
93
	

31
19
91
	

32
34
55
	

F-‐
m
ea
su
re
	

Seconds	

HoeffdingOp5onTreeNBAdap5ve	

HoeffdingOp5onTree	

HoeffdingTree	

NaiveBayes	

WeightedMajorityAlgorithm	

OzaBag	

OzaBagAdwin	

OzaBoost	

OzaBoostAdwin	

Fig. 4: Prediction F-measure of each model.

[18] Y. Tan, X. Gu, and H. Wang, “Adaptive system anomaly prediction
for large-scale hosting infrastructures,” in Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing, ser.
PODC ’10. New York, NY, USA: ACM, 2010, pp. 173–182.

[19] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam, “Critical event prediction for
proactive management in large-scale computer clusters,” in Proc. of the
ninth ACM SIGKDD international conference on knowledge discovery
and data mining, ser. KDD ’03. NY, USA: ACM, 2003, pp. 426–435.

[20] G. Hoffmann, K. Trivedi, and M. Malek, “A best practice guide to
resource forecasting for computing systems,” Reliability, IEEE Trans-
actions on, vol. 56, no. 4, pp. 615 –628, dec. 2007.

[21] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly?
application change? or workload change? towards automated detec-
tion of application performance anomaly and change,” in Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE
International Conference on, june 2008, pp. 452 –461.

[22] T. Kelly, “Detecting performance anomalies in global applications,”
in Proceedings of the 2nd conference on Real, Large Distributed
Systems - Volume 2, ser. WORLDS’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 42–47.

[23] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337 –351, oct.-dec. 2010.

[24] J. a. Gama, P. Medas, and R. Rocha, “Forest trees for on-line data,” in
Proceedings of the 2004 ACM symposium on Applied computing, ser.
SAC ’04. New York, NY, USA: ACM, 2004, pp. 632–636.

[25] I. Witten, E. Frank, and M. Hall, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2011.

[26] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, ser. KDD ’00. New York,
NY, USA: ACM, 2000, pp. 71–80.

[27] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: a perfor-
mance perspective,” Knowledge and Data Engineering, IEEE Transac-
tions on, vol. 5, no. 6, pp. 914 –925, dec 1993.

[28] A. Bifet and R. Gavalda, “Learning from time-changing data with adap-
tive windowing,” in SIAM International Conference on Data Mining,
2007, pp. 443–448.

[29] K. Tumer and J. Ghosh, “Error correlation and error reduction in
ensemble classifiers,” Connection science, vol. 8, no. 3-4, pp. 385–404,
1996.

[30] N. Littlestone and M. Warmuth, “The weighted majority algorithm,” in
Foundations of Computer Science, 1989., 30th Annual Symposium on,
oct-1 nov 1989, pp. 256 –261.

[31] N. C. Oza and S. Russell, “Online bagging and boosting,” in In Artificial
Intelligence and Statistics. Morgan Kaufmann, 2001, pp. 105–112.

[32] B. Pfahringer, G. Holmes, and R. Kirkby, “New options for hoeffding
trees,” in AI 2007: Advances in Artificial Intelligence, ser. Lecture Notes
in Computer Science, M. Orgun and J. Thornton, Eds. Springer Berlin
/ Heidelberg, 2007, vol. 4830, pp. 90–99.

[33] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Computational Learning
Theory, ser. Lecture Notes in Computer Science, P. Vitnyi, Ed. Springer
Berlin / Heidelberg, 1995, vol. 904, pp. 23–37.

[34] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–
140, 1996.

[35] R. Kohavi and C. Kunz, “Option decision trees with majority votes,”
in Proceedings of the Fourteenth International Conference on Machine
Learning, ser. ICML ’97. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997, pp. 161–169.

[36] (2012, Apr.) Hyperic’s system information gatherer (sigar) api.
http://sourceforge.net/projects/sigar/files/.

[37] (2012, Apr.) Openvz. http://wiki.openvz.org/Main Page.
[38] (2012, Apr.) H264 streaming module. http://h264.code-shop.com/trac.
[39] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. Shin et al., “Performance

evaluation of virtualization technologies for server consolidation,” HP
Laboratories Technical Report, 2007.

[40] (2012, Apr.) Rsync. http://everythinglinux.org/rsync/.
[41] D. Mosberger and T. Jin, “httperf - a tool for measuring web server

performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp.
31–37, Dec. 1998.

[42] (2012, Apr.) Stress tool. http://weather.ou.edu/ apw/projects/stress/.

