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Abstract—In this paper, we show that the problem of
configuring the topology of a data center network to opti-
mize data aggregation is NP-hard even when the number
of aggregators is 1. Further, the approximation ratio of the
algorithm proposed by Wang, Ng, and Shaikh [3] for the case
of a single aggregator is (k+1)/2, where k is the degree of
ToR (top-of-rack) switches and this algorithm also exhibits an
anomalous behavior- increase in the switch degree may result in
an increase in the aggregation time. By comparison, if topology
configuration is done using the longest processing time (LPT)
scheduling rule, the approximation ratio is (4/3-1/(3k)). We
show that for every instance of the single aggregator topology
configuration problem, the time required to aggregate using
the LPT configuration is no more than that using the Wang et
al. rule. By coupling the LPT rule with the rule of Wang et al.,
we achieve a better throughput as promised by LPT and at the
same time reduce the total network traffic. Experimental results
show that the LPT rule reduces aggregation time by up to 90%
compared to the Wang et al. rule. The reduction in aggregation
time afforded by a known improvement, COMBINE, of LPT
relative to Wang et al. is up to 90.5%. More interestingly, when
either of the LPT rule or COMBINE is augmented with the
Wang et al. rule, total network traffic is reduced by up to 90%
relative to using LPT and COMBINE with chains.

Keywords-Data Center Networks; Software Defined network-
ing; Big Data applications; Map-Reduce tasks

I. INTRODUCTION

A large data center may be comprised of thousands of
racks with each rack housing tens of computers [3]. Each
rack has a top-of-rack (ToR) switch with some number (k)
of optical links. Current commercial ToR switches have
k ≤ 10 [3]. Software defined networking (SDN) enables one
to dynamically (re)configure the topology of the network
comprised of ToR switches and their optical links. In the
case of OpenFlow enabled ToR switches, this reconfigura-
tion can be done by changing the OpenFlow rules stored
in each ToR switch. In big data applications [1], [2], the
time required to configure a desired network topology in
this way is small compared to the time required to run
the application using the configured topology. For example,
in a big data MapReduce application, the time required to
aggregate data from the mappers to the reducers is orders
of magnitude greater than the reconfiguration time. Hence,
the performance of these applications can be enhanced by
reconfiguring the network topology to one that is optimized
for the application rather than using a generic topology or
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Figure 1. Aggregation Tree prototype

the one used by an earlier application.
In this paper, we focus on network topology optimization

for the data aggregation task common to many big data
applications. In the data aggregation problem, data residing
in several racks of a data center are to be aggregated into
a single specified rack called the aggregator. In general, we
may have several aggregators with each aggregating data
from some subset of the racks. However, in this paper, we
limit ourselves to the case of a single aggregator. Figure 1(a)
shows an example aggregator tree. In this figure, the root (A)
denotes the aggregator rack, the remaining nodes (B, C, D,
E, and F ) denote racks from which data is to be aggregated
into the root, and the edges denote optical links. The shown
aggregator tree requires k ≥ 3 as node B uses three optical
links to connect to nodes A, D, and E. To accomplish the
required data aggregation, each node sends its data to its
parent who then sends the received data to its parent and so
on until all data reach the root. Suppose that node B has
2Gb of data to send to the root and that nodes D and E each
have 3Gb of data to send to the root as shown in brackets
in the figure. We assume that the data is transmitted in
packets, a node can receive incoming data from all children
in parallel, and that while a node is receiving packets from
its children, it can transmit previously received packets to
its parent. If each optical link has a bandwidth of 10 Gbps,
the data from B, D, and E can be aggregated into A in
(2 + 3 + 3)/10 = 0.8s. If C and F have 5Gb and 1Gb,
respectively, of data that is to be aggregated into A, the
time for this is 0.6s. Since A receives data from B and C
in parallel, the total aggregation time is max{0.8, 0.6} =
0.8s. When the aggregation tree of Figure 1(b) is used, the
aggregation time is max{0.1+0.3+0.3, 0.2+0.5} = 0.7s.

We define the total network traffic to be the sum of
the amounts of data moved through each optical link. For
example, the total network traffic using the topology of
Figure 1(a) is 8 (link AB) + 6 (link AC) + 3 (link BD)



+ 3 (link BE) + 1 (link CF ) = 21Gb and that using the
topology of Figure 1(b) is 7 + 7 + 3 + 3 + 2 = 22Gb. If we
swap nodes D and F in Figure 1(b), the total network traffic
becomes 20Gb and the aggregation time remains 0.7s.

In the single aggregator network topology optimization
(SANTO) problem, we are to determine a tree topology that
minimizes the aggregation time subject to the constraint that
the degree of every node (ToR) is at most k, where k is the
number of optical links at each node (ToR). SANTO-NT
is an extension of SANTO in which we seek a topology
that minimizes total network traffic subject to the constraint
that aggregation time is minimized. That is, from among the
topologies that minimize aggregation time, obtain one with
least total network traffic.

In this paper, we study the SANTO and SANTO-NT
problems and obtain the following results:
• SANTO is NP-hard for k ≥ 2. From this it follows that

SANTO-NT is also NP-hard for k ≥ 2.
• The approximation ratio for the algorithm proposed by

Wang et. al. [3] for SANTO is (k+1)/2 and this bound
is tight.

• The SANTO algorithm of Wang et al. [3] may result
in an increased aggregation time when the number of
optical links per rack is increased.

• SANTO may be solved by using any of the approxi-
mation algorithms proposed for minimum finish time
scheduling of identical machines. When the popular
LPT (Longest Processing Time) scheduling rule [4],
[5] is used, the approximation ratio for SANTO is
(4/3 − 1/(3k)). Further, for every SANTO instance,
the aggregation time of the constructed LPT topology
is no more than that of the topology constructed by
the algorithm of Wang et al. [3]. The COMBINE
scheduling rule can also be used to solve every SANTO
instance and it has an approximation ratio of 10/9,
which is proved for two machines in [6]. Once again
the constructed topologies always have at least as short
an aggregation time as those obtained by the algorithm
of Wang et al. [3].

• For SANTO-NT, we propose using either LPT or
COMBINE to partition the nodes (ToRs) into k sets
and then using the algorithm of Wang et al. [3] to
arrange the nodes in each partition into a tree topology.
We show that this algorithm minimizes total network
traffic subject to the partitioning obtained by LPT or
COMBINE.

• We show via experimentation that LPT and COMBINE
can reduce aggregation time as well as total network
traffic by up to 90% relative to the algorithm of Wang
et al. [3].

The remainder of this paper is organized as follows. In
Section II, we briefly review related work. SANTO is shown
to be NP-hard in Section III. The approximation ratio for
the SANTO algorithm of Wang et al. [3] is derived in Sec-
tion IV and its anomalous behavior (i.e, possible increase in

aggregation time with increase in the number of optical links
per rack) is demonstrated in Section V. In Section VI, we
show how the scheduling algorithms LPT and COMBINE
may be used to obtain a tree topology for SANTO. The
approximation ratio for this use of the algorithms stays the
same as for their native use in scheduling. In Section VII, we
show that using the algorithm of Wang et al. [3] to obtain a
tree topology for a given partitioning of nodes minimizes the
total network traffic for that partitioning. Our experimental
results are presented in Section VIII and we summarize our
conclusions in Section IX.

II. RELATED WORK

Customizing data center network topology to better suit
the needs of an application and thereby enhancing perfor-
mance has been the focus of intense recent research. For
example, Greenberg et al. [8] have proposed the use of
programmable commodity switches to reduce network cost
and enhance performance through the use of Valiant Load
Balancing, Al-Fares et al. [9] propose using commodity
Ethernet switches to support the full aggregate bandwidth
of large clusters, Guo et al. [10] use servers as nodes in the
interconnect, Das et al. [11] explore the use of OpenFlow
to control routing according to application need and Webb
et al. [12] propose to isolate applications and use different
routing mechanisms for them in fat-tree based data-centers.
The flow of big data traffic in data center networks has
also been studied. For example, Kavulya et al. [13] have
analyzed 10-months of Map-Reduce logs from the M45
supercomputing cluster at Yahoo! and Benson et al. [14]
have conducted an empirical study of the network traffic in
10 data centers that include university, enterprise, and cloud
data centers.

Our work is most closely related to the work of Wang,
Ng and Shaikh [3] who describe an ”integrated network
control for big data applications” that comprises ”OpenFlow-
enabled top-of-rack (ToR) switches”. Wang et al. [3]
propose an algorithm for SANTO as well as for the more
general case of multiple aggregators. Their algorithm for
SANTO has two steps. In the first step, the racks are sorted
into decreasing order of the amount of data they need to
send to the aggregator and in the second step, the racks are
placed into the tree topology in this order. The objective is to
place racks with ”higher demand closer to the aggregator”.
Consequently, the tree topology used is necessarily a tree
in which the root has degree k and every other non-leaf
node (with the exception of possibly one such non-leaf) has
degree k − 1.

III. SANTO IS NP-HARD

An instance of SANTO is characterized by k, which is
the number of optical links in a ToR switch; n, which is
the number of racks from which data is to be aggregated
into the aggregator; and di, which is the amount of data in
rack i, 1 ≤ i ≤ n, that is to be aggregated. We shall prove



SANTO NP-hard by using the known NP-complete problem
Partition in which we are given a multi-set of non-negative
integers si, 1 ≤ i ≤ m and seek to determine whether or
not the multi-set can be partitioned so that the sum of the
numbers in each partition is

∑
si/2.

Theorem 1. SANTO is NP-hard for k ≥ 2.

Proof: Consider any instance si, 1 ≤ i ≤ m of
the Partition problem. Without loss of generality, we may
assume that

∑
si is even as otherwise there can be no

partition. From this instance, we construct, for any k, an
instance of SANTO with n = m + k − 2 racks, di = si,
1 ≤ i ≤ m, and di =

∑
si/2, m < i ≤ n. Every

aggregation tree for this instance has k subtrees (some may
be empty). Let Di be the sum of the djs for the racks
in subtree i. The aggregation time is max{Di}/B, where
B is the link bandwidth 1. From this, it is easy to see
that the constructed SANTO instance can be aggregated in∑

si/2/B time iff the Partition instance has a partition.
Hence, SANTO is NP-hard.

Since SANTO is NP-hard, its extension SANTO-NT is
also NP-hard.

IV. APPROXIMATION RATIO FOR SANTO OF [3]

Let I be a SANTO instance with k optical links per rack.
Let T ∗(I) be the minimum aggregation time for this instance
and let TA(I) be the aggregation time for the topology
computed for this instance by some algorithm A. The ap-
proximation ratio of A is defined to be max{TA(I)/T

∗(I)},
where the max is taken over all instances I that have k
optical links per rack.

As mentioned in Section II, the SANTO algorithm of
Wang et al. [3] places racks as close to the aggregator as
possible in decreasing order of di. To be more precise, we
may assume the aggregator tree is constructed beginning
with the root node (i.e., the aggregator) and adding in the
n ≥ k remaining rack nodes one at a time top to bottom and
within a level from left to right. The degree of the root is
k and that of the remaining non-leaf nodes (except possibly
the last one) is k − 1. The degree of the last non-leaf node
is at most k − 1.

Theorem 2. The approximation ratio of the SANTO algo-
rithm of [3] is (k + 1)/2 and this bound is tight.

Proof: Consider the SANTO instance d1 ≥ d2 ≥ · · · ≥
dn with k optical links per rack. Let B be the link bandwidth
and let ai = di/B, 1 ≤ i ≤ n. Let T ∗ be the optimal
aggregation time and let TW be the aggregation time using
the aggregation topology constructed by the algorithm of
[3]. We first observe that T ∗ ≥ max{a1,

∑
ai/k}.

1Note that the aggregation time is independent of the structure of
the individual subtrees and depends only on the Dis. In particular, the
aggregation time is the same for subtrees that are chains and for those that
are well balanced.
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Figure 2. Tightness of the Wang’s Bound

First, consider the case k = 2. When n is odd,

2TW = 2a1 + 2a3 + 2a5 + . . .+ 2an

≤ a1 + a1 + a2 + a3 + a4 + a5 + . . . an

= a1 +

n∑
1

ai

≤ T ∗ + 2T ∗ = 3T ∗

When n is even,

2TW = 2a1 + 2a3 + 2a5 + . . .+ 2an−1

≤ a1 + a1 + a2 + a3 + a4 + a5 + . . . an−1

= a1 +

n−1∑
1

ai

≤ T ∗ + 2T ∗ = 3T ∗

So, when k = 2, TW /T ∗ ≤ 3/2.



Generalizing this proof to arbitrary k, we get

2TW = 2a1 + 2(ak+1 + ak+2 + · · · a2k−1) + · · ·
≤ a1 + a1 + a2 + · · · a2k−1 + · · ·
≤ a1 +

∑
ai

≤ T ∗ + kT ∗ = (k + 1)T ∗

So TW /T ∗ ≤ (k + 1)/2.
The tightness of this bound is established by demonstrat-

ing an instance for each k for which this bound is achieved.
Figure 2 gives these instances for 2 ≤ k ≤ 5. The shown
instances are easily generalized to higher values of k.

V. ANOMALOUS BEHAVIOR OF SANTO ALGORITHM OF
[3]

A surprising observation regarding the behavior of the
algorithm in [3] is that the aggregation time may increase
with increase in the number of optical links, k, per rack. To
see this, consider the SANTO instance with n = 7 racks and
d1:7 = {10, 9, 8, 7, 6, 5, 4}. Figure 3 shows the constructed
aggregation tree for k = 3 and 4. The aggregation time
(assuming B = 1) is 23 when k = 3 and 25 when k = 4.
When all dis are the same and n = 7, the aggregation time
for the case k = 4 is 25% more than when k = 3 (4 nodes
are placed in the leftmost subtree when k = 4 compared to
3 when k = 3).
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Figure 3. Anomalous behavior of SANTO algorithm of [3]

VI. SANTO USING LPT AND COMBINE

As noted in Section III, the aggregation time is
max{Di}/B, where Di is the amount of data to be trans-
mitted to the aggregator by the racks in subtree i, 1 ≤ i ≤ k,
of the root of the aggregator tree. So, to minimize the
aggregation time we can use any of the many heuristics
developed to partition a multiset of numbers into k subsets
so that the size of the largest subset is minimum. This k-
partitioning problem is identical to the well studied problem
of scheduling k identical and independent machines so as to
minimize the finish time. In this paper, we focus on the LPT
(longest processing time) rule and the COMBINE algorithm
whose approximation ratios have been derived in [4]–[6].

A. Longest Processing Time First (LPT)

The LPT rule [4], [5] assigns jobs to machines one job
at a time. Jobs are assigned in decreasing order of their
length (i.e., processing time). When a job is considered for
assignment, it is assigned to that machine on which it will
finish earliest (i.e., the machine for which the sum of the
processing times of the jobs so far assigned is least). In the
context of SANTO, the LPT rule becomes: (a) assign racks
to the subtrees of the aggregator one at a time, (b) assign
racks to subtrees in decreasing order of di, (c) when a rack
is considered for assignment, assign it to the subtree for
which the sum of the dis of the racks already assigned to it
is least. Once the partitioning into subtrees has been done,
the racks assigned to individual trees may be organized using
any topology for that subtree. The approximation ratio for
the LPT rule is (4/3− 1/(3k)) and this bound is tight [4],
[5]. Note that this bound applies not only to the machine
scheduling problem for which it was originally developed
but also to SANTO. Comparing the performance of the LPT
rule and that of the algorithm of Wang et al. [3], we see
that when k = 2, the LPT rule may generate aggregator
trees whose aggregation time is at most 16.7% more than
optimal while the aggregation time using the algorithm of
Wang et al. [3] may be as much as 50% more than optimal.
When, k = 10, these percentages become 30% and 450%!
Interestingly, there is no SANTO instance for which the
algorithm of Wang et al. [3] results in a smaller aggregation
time than obtained using the LPT rule. This is established
below.

Lemma 1. Let Di be the sum of the dis for racks assigned
to subtree i, 1 ≤ i ≤ k of an aggregator tree T . Suppose
that kj, j ≥ 1, new racks are added to these subtrees using
the LPT rule. Let the amount of data to be transmitted from
these new racks to the aggregator, respectively, be b1 ≥ b2 ≥
· · · ≥ bkj and let D′i be the sum of the data associated with
the racks in subtree i following the assignment of these new
kj racks. Then,

max{D′1, D′2 · · ·D′k} ≤ max{D1, D2 · · ·Dk}+
j∑

i=1

bi

Proof: We use induction on j.
Induction Base. j = 1 and b1 ≥ b2 ≥ · · · ≥ bk are added to
T using the LPT rule. We have the following cases:

1) At least one subtree of T gets no new rack: Let X
be the value of Di for one of the subtrees of T to
which none of the bis are assigned by LPT. Since,
LPT assigned no new rack to this subtree, it follows
that
max{D′1, D′2 · · ·D′k} ≤ X + bk

≤ max{D1, D2 · · ·Dk}+ bk

≤ max{D1, D2 · · ·Dk}+ b1

2) Each subtree of T gets a new rack: Since there are k
subtrees and k new racks, each subtree gets assigned



exactly one new rack by LPT. So,
max{D′1, D′2 · · ·D′k} ≤ max{D1, D2 · · ·Dk}+ b1

Induction Hypothesis. Assume that the lemma is true for
j = q ≥ 1.

Induction Step. We show that the lemma is true when
j = q + 1. Let D′i be the sum of data in the racks assigned
to subtree i following the addition of b1 ≥ · · · ≥ bkq to tree
T . From the induction hypothesis, it follows that

max{D′1, D′2 · · ·D′k} ≤ max{D1, D2 · · ·Dk}+
q∑

i=1

bi

Let T ′ be the aggregation tree following the addition of
these kq racks using LPT. Now, add the remaining k racks
to T ′ using LPT. The associated bs are bkq+1 ≥ bkq+2 · · · ≥
bkq+k. Let D′′i be the sum of the data associated with the
racks in subtree i following the assignment of these k racks.
We consider the same two cases as in the induction base.

1) At least one subtree of T ′ gets no new rack: Let X be
the value of D′i for one of the subtrees of T ′ to which
none of the k new bis is assigned by LPT. Since, LPT
assigned no new rack to this subtree, it follows that

max{D′′1 , D′′2 · · ·D′′k}
≤ X + bkq+k

≤ max{D′1, D′2 · · ·D′k}+ bkq+1

≤ max{D1, D2 · · ·Dk}+
q∑

i=1

bi + bq+1

≤ max{D1, D2 · · ·Dk}+
q+1∑
i=1

bi

2) Each subtree of T ′ gets a new rack: Since T ′ has k
subtrees and k new racks are added, each subtree gets
assigned exactly one new rack by LPT. So,

max{D′′1 , D′′2 · · ·D′′k}
≤ max{D′1, D′2 · · ·D′k}+ bkq+1

≤ max{D1, D2 · · ·Dk}+
q∑

i=1

bi + bq+1

≤ max{D1, D2 · · ·Dk}+
q+1∑
i=1

bi

Lemma 2. Let k, d1 ≥ · · · ≥ dn, where n = k((k − 1)j −
1)/(k−2) for some integer j ≥ 1, be an instance of SANTO.
Let DW (j) and DL(j) denote the maximum data in any
subtree of the aggregation tree generated by the algorithm
of Wang et al. [3] and the LPT rule, respectively. DL(j) ≤
DW (j), j ≥ 1.

Proof: Note that when n = k((k − 1)j − 1)/(k − 2),
the aggregation tree constructed by the algorithm of Wang
et al. [3] has exactly j + 1 levels and that each level is full
(i.e., the root has k child racks, each child of the root has
k − 1 children racks and (k − 1)2 grandchildren racks, and

so on). We prove DL(j) ≤ DW (j), j ≥ 1, by induction on
j.
Induction Base. j = 1. Both algorithms assign exactly one
rack to each subtree of the aggregator tree. So, DW (1) =
DL(1) = d1.
Induction Hypothesis. Assume that the lemma is true for
j = q, where q is some integer ≥ 1.
Induction Step. We show that the lemma is true for j = q+1.
Let d′1 ≥ d′2 ≥ · · · ≥ d′ks, s = (k − 1)q be the last racks
(i.e., racks with the smallest data) in the SANTO instance.
The algorithm of Wang et al. [3] places these racks at the
lowest level of the aggregation tree. It is easy to see that

DW (q + 1) = DW (q) +

s∑
i=1

d′i

Let Di be the amount of data in the racks assigned by LPT
to subtree i of the aggregation tree following the assignment
of the first n − ks racks. From the induction hypothesis, it
follows that

DL(q) = max{D1, D2 · · ·Dk} ≤ DW (q)

Using Lemma 1, we get
DL(q + 1) ≤ max{D1, D2 · · ·Dk}+

s∑
i=1

d′i

≤ DW (q) +

s∑
i=1

d′i

= DW (q + 1)

Theorem 3. For every SANTO instance the aggregation
time using the LPT tree is less than or equal to that using
the aggregation tree generated by the algorithm of Wang et
al. [3].

Proof: For SANTO instances with number of racks
equal to n = k((k−1)j−1)/(k−2) for some integer j ≥ 1,
the theorem follows from Lemma 2. When other values of n,
we add fictitious racks with 0 data so that the total number
of racks (actual plus fictitious) equals k((k−1)j−1)/(k−2)
for some integer j ≥ 1. The addition of these fictitious racks
does not alter the behavior of either LPT or the algorithm of
Wang et al. [3] and the aggregation tree obtained by these
algorithms for the original instance may be obtained from
that for the augmented instance by simply discarding the
fictitious racks from the aggregation tree for the augmented
instance. This discarding of the fictitious racks does not alter
the aggregation time. From Lemma 2, we know that the LPT
aggregation time is no more than the Wang et al. aggregation
time for the augmented instance. Hence, the same is true for
the original instance.

B. COMBINE
The k-machine scheduling algorithm of Lee at al. [6]

uses the better of the schedules obtained by LPT and the
Multifit scheduling algorithm of Coffman et al. [7]. Multifit



Algorithm 1 COMBINE Algorithm [6]
Input: n racks with d1, d2, · · · dn data and k.
Output: A topology of the aggregation tree that minimizes

aggregation time.
1: Apply LPT and let T be the aggregation time.
2: if M ≥ 1.5A then
3: Stop.
4: end if
5: Apply Multifit in interval high = T and low =

max{A,maxi{ai}, T/(4/3− 1/(3m))}.

schedules the k machines by using the first-fit-decreasing
(FFD) heuristic for bin packing. This is done by attempting
to pack the jobs into k bins of size S using FFD. Note that S
represents the target finish time of the schedule. To find the
smallest S for which such a packing is possible using FFD,
a binary search for the smallest S is done in the interval
max{A,maxi{ai}} and max{2A,maxi{ai}}, where ai is
the duration of job i and A =

∑
ai/k. Coffman et al. [7]

have shown that the approximation ratio of Multifit is 8/7
and that, in practice, 7 iterations of the binary search are suf-
ficient. We describe COMBINE in Algorithm 1. By its very
nature, COMBINE guarantees schedules at least as good as
those produced by LPT. From Theorem 3, it follows that the
aggregation topologies obtained by COMBINE when used
to solve SANTO are at least as good as those obtained by
the algorithm of Wang et al. [3]. The approximation ratio of
COMBINE is proved to be 10/9 for two machines in [6].
Hence, using COMBINE in place of LPT gives us a better
approximation ratio for SANTO at the expense of increased
run time. Note that when Multifit is limited to 7 iterations,
its asymptotic complexity is the same as that of LPT but the
actual run time is larger by a constant factor.

VII. SANTO-NT

In SANTO-NT, the primary objective is to minimize
aggregation time and the secondary objective is to minimize
total network traffic. We propose using Algorithm 2 for
SANTO-NT. This algorithm first obtains a k-partition of
the racks using either LPT or COMBINE. The use of
this good partition guarantees an aggregation time with an
approximation ratio corresponding to that of either LPT or
COMBINE. Next, for each partition, the aggregation subtree
is obtained by placing racks with more data closer to the root
as is done by the algorithm of Wang et al. [3].

Theorem 4. For every k-partition, the total network traffic
is minimized by placing racks with more data as close to
the root as possible as is done by the algorithm of Wang et
al. [3].

Proof: The total network traffic is
∑

dihi, where di is
the data to be sent by rack i to the aggregator and hi is the
number of hops from rack i to the root of the aggregation

Algorithm 2 Algorithm for SANTO-NT
Input: n racks with d1, d2, · · · dn data and k.
Output: A topology of the aggregation tree that minimizes

aggregation time and total network traffic.
1: Use either LPT or COMBINE to k-partition the racks.
2: Use the SANTO algorithm of Wang et al. [3] to arrange

the racks in each partition into a tree of degree k − 1.
3: Make the constructed k trees the subtrees of the aggre-

gator.

tree. Within each partition, the algorithm of Wang et al. [3]
places the maximum possible number of racks at level 1,
then the maximum possible number at level 2, and so on.
Further, the placement is done in decreasing order of di. A
proof by induction on the number of racks in a partition
establishes the minimality of the network traffic generated
by the tree constructed for that partition.

We note that the proof of Theorem 4 also establishes the
optimality of the algorithm of Wang et al. [3] for minimizing
total network traffic. Consequently, the total network traffic
of the aggregation tree generated by Algorithm 2 cannot
be less than that of the aggregation tree generated by the
algorithm of [3]. This is not a concern as our primary
objective is to minimize aggregation time and not total
network traffic.

As an example, consider the SANTO-NT instance n = 10,
k = 3 and d1:10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Figure 4(a)
shows the aggregation tree generated using the algorithm of
Wang et al. [3]. The node labeled A (i.e., the root) is the ag-
gregator. Its aggregation time is 24/B and the total network
traffic is 84 units. A possible 3-partition obtained by LPT
is (we say possible because different partitions are possible
depending on how we implement the tie breaker) {10, 5, 4},
{9, 6, 3}, and {8, 7, 2, 1}. No matter how the 3 subtrees of
the aggregation tree are configured the aggregation time is
19/B so long as the racks are assigned to the subtrees using
this partition. Configuring the subtrees as chains with racks
assigned in decreasing order of di top-to-bottom gives us the
aggregation tree of Figure 4(b) for which the total network
traffic is 94. When the subtrees are configured according to
the algorithm of Wang et al. [3], the aggregation tree is as
in Figure 4(c). The total network traffic for this aggregation
tree is 84.

VIII. EXPERIMENTS

We conducted experiments to assess the reduction in
aggregation time that could be expected in practice using
either LPT or COMBINE instead of the algorithm of Wang
et al. [3]. We also assessed the reduction in the total network
traffic when we use the Wang’s algorithm in combination
with LPT and COMBINE.

Depending on the application, the data distribution among
the racks could range from fairly uniform to widely variable.
For example, when the racks are reporting the frequency of
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occurrence of each entry in a list of keywords in a target text
corpus that has been distributed across the racks, each rack
sends to the aggregator a fixed-size list of counts. On the
other hand when the racks are returning to the aggregator the
records in their local databases that satisfy a query, the size
of data being transmitted could vary widely from one rack to
the next. In an attempt to assess relative performance across
the range of data that aggregation instances may exhibit, we
use the following data sets:
• Uniform. The dis are drawn from a uniform distribution

with values in [1,1000000].
• Gaussian 1. The dis are drawn from a truncated Gaus-

sian distribution with mean 500 and standard deviation
1000 truncated in [200, 800].

• Gaussian 2. The dis are drawn from a truncated Gaus-
sian distribution with mean 500 and standard deviation
1000 truncated in [400, 600].

• Zipfian. The dis are drawn from a Zipfian distribution
with parameter 2.

We use a link bandwidth of 1 so that the data transmission
time equals the amount of data transmitted through a link.
As we have mentioned earlier, this does not affect our
results as we analyze percentage change in the values of
aggregation time and total network traffic. All our test data
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Figure 5. Average Aggregation Time with Aggregator Degree

have n = 10000 racks and the number, k, of optical links
per rack is varied between 2 and 100. For each choice of k
and the data distribution, we experimented with 20 randomly
generated instances and report the average aggregation time.
Our experiments were conducted on a 64-bit PC with a 2.80
GHz AMD Athlon(tm) II X2 B22 processor and 8GB RAM.

A. Aggregation Time
Figure 5 compares the average aggregation times of the

aggregator trees constructed by the 3 algorithms with the
degree of the aggregator (k). As expected, the aggregation
time using the algorithm of [3] is always greater than that
using the LPT or COMBINE algorithms. Further, the anoma-
lous behavior of the algorithm of [3] noted in Section V
is exhibited on our test data. However, neither LPT nor
COMBINE exhibits anomalous behavior. Note that in the
absence of anomalous behavior, an increase in k will not
increase the aggregation time. Figure 6 shows the percentage
reduction in aggregation time resulting from the use of LPT
compared to the algorithm of [3]. LPT reduces aggregation
time by as much as 90% for the random and the two
Gaussian data-sets. However the Zipfian dataset shows a
lower reduction of upto 50%. Figure 7 shows the percentage
reduction in aggregation time obtained using the aggregation
trees generated by COMBINE compared to those generated
by the LPT. For our data sets, this reduction was at most
0.4 to 0.5% for the 2 Gaussian data-sets the random and the
Zipfian data-sets however show no improvement and are not
shown.

B. Total Network Traffic
Figure 8 shows the percentage reduction in the total net-

work traffic using the optimal aggregation tree topology for
each of the k-partitions generated by LPT and COMBINE
as in Algorithm 2, compared to that generated when we
configure each partition as a chain from top to bottom in
decreasing order of the dis, in that partition. The reduction
varies from a low of about 60% to a high of about 90%.
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Figure 6. Percentage Reduction in Average Aggregation Time of LPT
relative to [3]
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Figure 7. Percentage Reduction in Average Aggregation Time of COM-
BINE relative to LPT

More interesting is the cost, in terms of increased network
traffic, of providing the reduced aggregation times using
the aggregation trees of LPT and COMBINE over using
an aggregation tree that minimizes total network traffic (i.e.,
using the aggregation tree generated by the algorithm of [3]).
Figure 9 shows this increase. COMBINE has a maximum
increase of around 90% for the Zipfian dataset, 9% for the
Gaussian1 data-set and even lower for the other data-sets.
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Figure 8. Percentage Reduction in Network Traffic for Algorithm 2 relative
to Chains

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80  90  100

%
 I

n
c

re
a

s
e

 i
n

 T
ra

ff
ic

Aggregator Degree

LPT
COMBINE

(a) Uniform

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  10  20  30  40  50  60  70  80  90  100

%
 I

n
c

re
a

s
e

 i
n

 T
ra

ff
ic

Aggregator Degree

LPT
COMBINE

(b) Gaussian 1

-0.5

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90  100

%
 I

n
c

re
a

s
e

 i
n

 T
ra

ff
ic

Aggregator Degree

LPT
COMBINE

(c) Gaussian 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

%
 I

n
c

re
a

s
e

 i
n

 T
ra

ff
ic

Aggregator Degree

LPT
COMBINE

(d) Zipfian

Figure 9. Percentage Increase in Network Traffic Algorithm 2 relative to
[3]

LPT however shows little increase in total network traffic-
a maximum of 6% for the Zipfian dataset and almost no
increase for the other datasets.

IX. CONCLUSION

We have shown that SANTO and SANTO-NT are NP-
hard even when the number of aggregators is 1. Since
SANTO is identical to the independent machine scheduling
problem, we can use the algorithms developed for the latter
problem to solve SANTO. In this study, we have focused on
using the scheduling algorithms LPT and COMBINE and
compared their performance to that of the algorithm pro-
posed by Wang et al. [3]. We have derived a tight approxima-
tion ratio, (k+1)/2 for the algorithm of [3]. By comparison,
the approximation ratio for LPT is (4/3− 1/(3k)). Further,
LPT never generates an aggregation tree that is inferior to
that generated by the algorithm of [3]. For SANTO-NT, we
propose using a good algorithm for machine scheduling to
obtain a k-partition of the racks and then using the algorithm
of [3] to place the racks in each partition into a subtree of
the aggregation tree. The placement of racks in this way
minimizes total network traffic subject to the constraints of
the obtained k-partition. Experiments conducted by us using
the LPT and COMBINE scheduling algorithms indicate a
reduction in aggregation time of up to 90%. This reduction
in aggregation time is accompanied by an increase in total
network traffic of up to 9% relative to using the algorithm of
[3] for COMBINE. On the other hand LPT generally does
not show an increase in the traffic except for few extreme
data-sets as illustrated in section VIII.
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