N
N

N

HAL

open science

Platform Calibration for Load Balancing of Large
Simulations: TLM Case
Cristian Ruiz, Mihai Alexandru, Olivier Richard, Thierry Monteil, Hervé
Aubert

» To cite this version:

Cristian Ruiz, Mihai Alexandru, Olivier Richard, Thierry Monteil, Hervé Aubert. Platform Calibra-
tion for Load Balancing of Large Simulations: TLM Case. IEEE/ACM International Symposium
on Cluster, Cloud and grid Computing (IEEE/ACM CCGrid), May 2014, Chicago, United States.
pp.465-472, 10.1109/CCGrid.2014.26 . hal-01228344

HAL Id: hal-01228344
https://hal.science/hal-01228344

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01228344
https://hal.archives-ouvertes.fr

Platform calibration for load balancing of large
simulations: TLM case

Cristian Ruiz*, Mihai Alexandru’f, Olivier Richard*, Thierry Monteil'*, Hervé Aubert'!
*INRIA MESCAL, LIG, 655 avenue de I’Europe, 38330 Monbonnot Saint Martin, France
TCNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
HUniv de Toulouse, INP, INSA, LAAS, F-31400 Toulouse, France
Cristian.Ruiz@imag.fr, Mihai.Alexandru @laas.fr

Abstract—The heterogeneous nature of distributed platforms
such as computational Grids is one of the main barriers to
effectively deploy tightly-coupled applications. For those appli-
cations, one common problem that appears due to the hardware
heterogeneity is the load imbalance which slows down the
application to the pace of the slower processor. One solution
is to distribute the load adequately taking into account hardware
capacities. To do so, an estimation of the hardware capacities
for running the application has to be obtained. In this paper,
we present a static load balancing for iterative tightly-coupled
applications based on a profile prediction model. This technique
is presented as a successful example of the interaction between
experiment management tools and parallel applications. The
experiment management tool Expo is used that enabled to: (1)
provide a general, lightweight and descriptive way to capture the
tuning and deployment of a parallel application in a computing
infrastructure, (2) perform the tuning of the application efficiently
in terms of human effort and resources needed. This paper
reports the costs for carrying out the tuning of a large electro-
magnetic simulation based on TLM for the platform Grid’5000
and the improvements obtained on the total execution time of the
application.

Keywords—Load balancing, Experiment methodology, Large
scale system, Grid computing, High performance computing,
Transmission-line matrix methods.

I. INTRODUCTION

High Performance Computing (HPC) strives to achieve the
maximum performance of a given machine. The increasing
complexity of computing hardware architectures nowadays,
makes rise the number of variables to take into account to
achieve this maximum performance and it is even worse when
considering heterogeneous infrastructures as computational
Grids. A common problem is the computation imbalance
present in tightly-coupled applications that run in Grid infras-
tructures which is due to the unawareness of the underlying
infrastructure characteristics. One of the best options to get
the maximum performance is to tune the application code
for a given architecture. This approach is used by ATLASI1]
which gets its speed by specializing itself for a given plat-
form. Architecture aware tools such as hwloc[2] are now
available in high performance runtime environments of parallel
applications. Therefore, a deep knowledge of the underlying
infrastructure and application is the evident trend to achieve
the best performance. For some regular scientific codes, it is
possible to derive a performance model and the tuning of the
application can be guided based on this performance model[3].

This performance model can be constructed either from a
detailed understanding of the application execution or by
analyzing multiple runs. A multiple-runs approach is simpler
because it takes into account the complex interaction between
the application and for instance the memory hierarchy. To do
so, several tools such as profilers, tracers, statistical engines,
runtime environments have to be linked together in order to
carry out the task of automating the generation, collection
and treatment of performance information and provide the
appropriate data to create the model.

In this paper, it is shown how parallel applications can take
advantage from experiment management tools. A technique
of load balancing for large simulations codes based on a
prediction model is analyzed. This technique relies on the
interaction between experimental management tools and par-
allel applications. The technique is applied to a large electro-
magnetic simulation code based on Transmission-Line Matrix
(TLM) numerical method [4], deployed in a heterogeneous
Grid infrastructure. This technique is classified as a Static load
balancing which is well adapted to highly regular applications.
It requires few changes to the application code compared
to adopting a new programming model and given the high
memory requirements of the application, a dynamic approach
would generate a considerable overhead. The improvements
done to the experimental management tool ExpolS] are shown
as well. This enabled us to manage the modeling workflow
where the execution of big campaigns of application runs
are needed and the orchestration of different tools that could
participate in the process of creation of the performance model.
Doing this task efficiently is important in order to not delay
the execution of the real application, reduce the perturbation
of the results and provide in a short period of time valuable
information to the application.

The contribution of this paper is twofold:

e Show the importance of experiment management tools
in helping users to manage the complexity of dis-
tributed infrastructures, to automate several tasks and
to make efficient use of computational resources.

e A load balancing technique for regular scientific codes
based on the calibration of the platform and a predic-
tion model. The approach is not expensive in terms
of code source modification, user intervention and
presents almost no overhead. An average improvement
of 36% in the execution time is achieved.

The rest of the paper is organized as follows: Section
presents related work in load balancing techniques for paral-
lel applications and experiment management tools, which is
followed by a focus on the improvements done to our tool,
enabling it to manage an experiment workflow in a flexible and
efficient way (Section [[II). Section describes the approach
to achieve load balancing of large simulation codes. Finally,
the results are given in Section and the conclusions in
Section [V

II. RELATED WORK

The related work is organized into two parts: the load
balancing techniques in parallel applications and the different
techniques to carry out such a task. The second part presents
the state of the art of experiment management tools and works
related to the benchmarking of Grid platforms.

A. Load balancing of distributed applications

An important phase of the execution of parallel codes is
the assignment of work to compute units. The problem of
load balancing then is defined as the assignment of work to
the compute units according to its performance or load. This
assignment of work can occur at the startup of the application
(static partitioning) or it can happen several times during the
execution of the application (dynamic partitioning). Both of
them will be described in the following subsections.

1) Dynamic techniques: Dynamic techniques are very pop-
ular now given the apparition of infrastructures such as cloud
computing. It is the case of Charm++ runtime system [6]] which
through continuous estimation of processor load, it adapts
to the imbalance created by known fluctuations in shared
infrastructures. Another approach based on Charm++ [7] takes
into account the latency existing in cross-site communications
for Grid infrastructures. As it can be very cumbersome to
convert applications to newer paradigms such as Charm++,
AMPI was proposed in [8] which enables a bigger number
of application benefits from the framework features as load
balancing. These dynamic techniques were mainly created
due to the large presence of high irregular load in parallel
computational science and engineering. Our approach applies
to highly regular codes executed on Grid infrastructures where
the CPU is not shared between users. Therefore, the gain
obtained with a dynamic approach would be negligible and
there exist a potential overhead of context switching and
migration.

2) Static techniques: In [9], a static load balancing tech-
nique for mapping iterative algorithms onto heterogeneous
clusters is presented focusing on the complexity of application
partitioning and on efficient heuristics for the distribution
schemes. Load balancing for Grid applications is proposed as
well by PaGrid[[10] which proposes a partitioner to balance
mesh based applications. A graph is generated for the plat-
form where processors are weighed according to its relative
performance at executing standard benchmarks. This graph is
matched with the graph generated for the application. In [[11]
is described a resource-aware partitioning where information
about a computing environment is combined with traditional
partitioning algorithms. The approach collects information
about the computing environment and processes it for parti-
tioning use.

B. Experiment management tools

GrapBench[12] provides a framework to carry out a semi-
automatic benchmarking process for studying application be-
havior in grid infrastructures. The framework controls the
number of benchmarking measurements required by a given
application which are managed then by its experiment engine.
The work outlined here differs from this in that it provides
a more general experiment engine conceived to carry out
any kind of study for an application in distributed platforms.
Plush[13] is a widely used tool in PlanetLab, for deploying
and monitoring application execution in distributed platforms.
It provides abstractions to specify the steps to deploy an
application, however, a real experiment entity is not taken into
account. The inflexibility of its description language makes it
difficult to write parametric studies. ZENTURIO[14] enables
the management of parametric studies for an application in
a framework for experimenting, but their high number of
modules makes it difficult to port it to different platforms.

Workflows engines are well known for their capacity for
carrying out parametric studies. Vistrails[15] provides pa-
rameter exploration and comparison of different results. It
improves the experimentation activity providing data prove-
nance tracking mechanisms. One limitation of Vistrails is its
inability to adapt to distributed environments. Pegasus[16]
offers a mapping between tasks in a workflow and distributed
infrastructures (cloud, grid, clusters). Despite the capacity of
some workflow engines to use distributed infrastructures, it
is difficult to use them when considering the setup of an
application. This setup could incur several complex steps that
need a constant supervision. The approach proposed in this
paper addresses those issues giving a flexible and lightweight
experiment engine. The engine is based on two abstractions
resources and tasks, the latter can be combined to represent
a workflow. The workflow specification describes all the ex-
periment activity: platform access, application deployment and
setup, application execution, analysis and generation of results.

C. Transmission-Line Matrix

The main idea of this application is to simulate the propa-
gation of an electromagnetic field inside large structures such
as tunnels and airplane cabins. TLM numerical method models
the electromagnetic field propagation by filling the space with a
network of transmission-lines fed by electrical signals whose
voltage and current correspond to the electric and magnetic
fields. The intersection of these lines, that have the free-space
impedance, is modelled with the Symmetrical Condensed Node
(SCN) [17]] scheme, whose scattering matrix is derived directly
from the behavior of the fields. The TLM method requires
significant computing resources, but its algorithm has the
advantage of being parallelizable, which makes it possible to
simulate oversized structures on multiple computing machines.
Using a parallel approach, large electromagnetic structures can
be modeled by means of large scale computing systems such
as Grid or supercomputers in a HPC scenario.

In order to avoid a heavy TLM calculation, the discretized
domain is sliced into several sub-domains that are assigned
to the processors where will be computed in parallel. The
CPUs communicate between them to achieve the job. The
parallel approach, based on Message-Passing Interface (MPI),

is designed for Single Program Multiple Data (SPMD) pro-
gramming model as it is presented in [18]. In the proposed
parallel TLM application, a one-dimension Cartesian topology
is implemented for the partitioning process.

III. EXPO EXPERIMENT MANAGEMENT TOOL

Experiment
description

—

: Experiment
. Monitoring and
= results

Plat form T
module
l i

| ResourceSet

‘Tasks

Command
Control

Fig. 1: Expo architecture

Expo is an experiment management tool designed to sim-
plify and automate the conduction of experiments in distributed
platforms. All the experimental plan is captured (i.e., access to
the platform, experiment setup, experiment execution, results
analysis, etc.) in a workflow where sequences of commands
are grouped together in tasks and dependencies. This facilitates
the recreation of the experiment setup and in turn, it will
make easier the replay of experiments. Replayability of a
computational experiment is the first step towards experiment
reproducibility. The workflow tells how all the different tasks
have to be called in order to get the results of the experiment.
It comprehends tasks that can be executed sequentially, in
parallel, asynchronously, etc. Expo strives to simplify the
description of an experiment by providing a concise and
readable way to describe it, specially when dealing with a big
amount of nodes. It relies on parallel command executors as
TakTuk[19] which makes it scale with a big amount of nodes.

Expo architecture is described in Figure [T} which mainly
consists in six components: a Domain-Specific Language
(DSL) module features a flexible description language built on
top of Rub that enables to exploit all its richness in available
libraries and mainly its descriptiveness. The DSL flexibility and
scalability relies on two abstractions: ResourceSet and Tasks.
Those components interact together in order to provide the
necessary information to the Command Control and help it
in translating the experimental plan into commands. The plat-
form dependent module enables the interaction with different
platforms such as: Grid’5000, PlanetLatﬂ cloud computing
infrastructures, computing clusters, etc. This module works
as an interface for the DSL module, making an experiment
description independent from the platform. Expo makes few
assumptions about the resources to manage, relying on com-
mon system utilities suchs as: scp, ssh, unix commands,
TakTuk which can deploy itself. It only requires to run a Ruby

Uhttps://www.ruby-lang.org
Zhttps://www.planet-lab.org/

interpreter and few ruby libraries as described in its website
Thus, Expo architecture is very simple and ligthweight. The
schedule of the experimental workflow is done by the Task
manager which is in charge of the results collection and
experiment monitoring.

A. Expo ResourceSet

A ResourceSet is an abstract view of the resources and their
organization in distributed computational infrastructures such
as Grids. This abstraction was conceived in order to provide to
the user a concise way to express actions that have to be carried
out for a set of resources. Resources can be any computing
unit: processor cores, processors, nodes, clusters, sites, etc.
In Table [I] are shown some operators which gives to Expo a
high flexibility against another approaches in the description
language[S]]. At the same time, this abstract view enables the
generation of efficient parallel topology aware commands.

B. Expo Tasks

Expo adopts the notion of task, already exploited in
workflow management tools as [20] and Rakef_f] as well as
web application deployment frameworks such as Capistran(ﬂ
A Task describes what to do and the ResourceSet tells the
experiment management where to execute the task. Tasks
can be triggered by events (e.g, availability of jobs in the
infrastructure). Therefore, a complete unattended experiment
campaign can be carried out. In Listing [T| an example of a
definition of a task is shown. The compilation of a source code
instrumentation package is performed. This task is executed on
a ResourceSet which is represented by the variable resources.
For this case a parallel command will be generated that
will carry out the task for every machine represented in the
ResourceSet. This task could be useful when compiling a
program for different architectures.

Listing 1: Task abstraction

task :compile, :target => resources do

run(”cd “/Test_profiling/; tar —xf pdt.tgz”)

run(”cd 7/ Test_profiling/pdtoolkit —3.17/; ./configure™)

run(”cd "/ Test_profiling/pdtoolkit —3.17/; make install™)
end

C. Expo experiment mapping

Workflow engines map scientific workflows to distributed
platforms in an automatic form. Their mapping decisions are
driven by minimizing the time to run the workflow. Given that
the objective of a workflow is to perform a big computation, it
is more flexible when mapping the workflow into the comput-
ing platform. In contrast, an experimenting workflow aims at
performing tests. Some tests are targeted to a certain machine
architecture and it is important to take this into account when
performing the mapping of the workflow. Consequently, a way
to control the underlying infrastructure has to be provided.
There is a trade-off between descriptiveness and scalability
(efficient mapping). In Figure [2| is explained the procedure
to map an experiment description into a distributed platform,

3http://expo.gforge.inria.fr/
“http://rake.rubyforge.org/
Shttp://www.capistranorb.com

runs the command in parallel for all the nodes of
the cluster 1

run (”"make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh” ,: target => resources[:cluster_11])

runs the command hostname for each node se-
quentially

resources .each{ |node|

run(”hostname” ,: target => node) }

runs the command for different set of resources,
the length of the sets generated are powers of two. end

resources.each_slice_power2 do |nodes|
run (”mpirun —np 2 —machinefile #{nodes.nodefile} ./app”,:target => nodes. first)

selects the resources of a specific cluster, it keeps
the topology of the ResourceSet in order to gen-
erate the right parallel command.

fast_cluster = resources.select(:cluster){ |cluster |
cluster.properties[”clock_speed”]>1700000000

run (”~/benchmarks/NPB3.2—OMP/ bin/BT.A_out.4” ,: target => fast_cluster)

TABLE I: ResourceSet operations

All

Site 1
site 2 site 3

cluster 1

cluster 2

cluster 1 |k

ResourceSet details

Task

definition Granularity

All
\\‘ﬂ\

Cluster
Site

Node

1) Platform resource
acquisition

" Topology aware commands
for efficient deployment and
___execution

2) Creation of an abstract
representation of acquired
resources

3) Mapping

Task
manager

Experiment description \

(Abstract workflow)

Executable workflow

Fig. 2: Expo workflow mapping. Tasks are split according to the granularity of execution, generating sub-tasks for the executable workflow.
In the Figure, tasks are generated for 3 different clusters and 2 sites. The Task manager uses the information provided by the ResourceSet to

generate the topology aware commands

in this particular case a Grid computing infrastructure. 1)
The experiment management tool contacts the platform in
order to ask for resources, this step is known as resource
acquisition. 2) Once the resources are available a ResourceSet
is created which is an abstract representation of the resources
that will be used for the experiment. As already said, an
experiment is described as a workflow composed of tasks
and dependencies between them. This initial workflow is
known as abstract workflow which main goal is to capture the
experiment activity. Two important information are: the body
of the task which is simply all the sequence of commands
to execute and the granularity of execution. For the example
shown, this granularity can be: all resources, site, cluster,
node, etc. The task manager will be in charge of taking this
abstract workflow and map it into the infrastructure. It uses
the information provided by the granularity of execution in
order to generate the executable workflow. This is an expanded
version of the abstract workflow, where tasks have been split
according to the granularity of execution. This enables to
choose the best type of execution (parallel, asynchronous,
parallel-asynchronous, etc) and the less expensive in terms of
number of connections with the remote machines and threads
created for control the experiment. The tasks created at this
level guarantees the generation of topology aware commands
with TakTuk for an efficient deployment and execution. The
scalability of commands execution was already shown in a

previous publication[3].

IV. LOAD BALANCING APPROACH

Here, the technique of load balancing applied to the TLM
application is described. Considering a fully heterogeneous
infrastructure, such as Grid’5000, a Grid computing with
many clusters geographically distributed composed of different
hardware configurations. The application needs to assign an
adequate workload for each node in order to fully exploit the
infrastructure capacities. Given that the application is highly
regular as shown in [18], a static load balancing technique is
chosen, where all the work is divided and distributed at the
beginning. The amount of work assigned to each processor
depends on the relative performance of the application on
such processor. As this relative performance can be difficult
to get from processor characteristics, a prediction model is
used in order to have a more accurate indicator. It was already
shown that the expected runtime of the computation part of
the application scales linearly with the number of TLM cells
Nz, Ny, N, on the three Cartesian directions, y being the
partitioning direction. Thus, a simple linear function given in
is used to model the performance:

Teate = c1 + CQNachNzta ()

where ¢ 2 are the time coefficients corresponding to dif-
ferent blocks of the TLM application and ¢ represents the
number of computing iterations. The prediction model, given
in (EI), takes into consideration the algorithm to be executed
and the processor architecture performing the computation.
They represent the processor architecture information inside
the prediction model. This model takes into account the effects
of cache misses, according to the problem size. The first term
may be neglected as it is very small compared to the second
one. Lets consider that the partitioning procedure gives the
length of the computing sub-domain assigned to the process i,
as:

li = a; Ny, 2
with
p
> a1
i=1

for all p processes the structure is computed by. Consequently,
the amount of work is distributed according to the fact that the
computation time has to be the same for each process i:

Tcalc,; = ¢;Nzl;N.t, Vi € [1,}7] 3)

where ¢; is the second coefficient from (I)) corresponding
to the process i. This leads to describe by:

N,
lj = ——, 4
! iy ci

where [; is the work assigned to the process j. Therefore,
a construction of a prediction model of the application for
each different computing hardware available on the Grid
infrastructure has to be performed. In order to have a good
prediction model, a given set of chosen simulations have to
be run and analyzed for each different machine. Expo is
used to automate the task of conducting this big number of
executions. This process will be called calibration. The module
used to this end is described in Section The load-
balancing approach implemented in this work considers the
communication between different clusters being homogeneous.
The communication capabilities of the computing environment
are not taken into account. Not all resources have to be
involved especially when the structure to be computed is not
so large, because the communications due to an excess of
processors may slow down the entire simulation, despite the
increased accumulated speed.

The execution of the application will be wrapped in two
Expo modules, which will automate all the process in the
platform chosen for testing (Grid’5000).

e Calibration of the platform. This module runs once,
it can contact the platform in order to know if there
has been a change in the hardware configuration and
deploys the necessary calibration.

e Deployment of the application. Generation of a file
that contains platform fitness information for the appli-
cation and carry out the load balancing at application
level.

Platform
Calibration

Generation of estimates
(Information about the computing
environment)

Application
Deployment

Fig. 3: Expo Modules: the calibration modules is executed once

A. Expo calibration module

All the procedure of platform calibration was captured us-
ing Expo tasks abstractions. The following tasks were defined:

1) run reservation: make a request to the computing plat-
form in order to reserve the resources needed.

2) transferring code to each site on the grid: The code is
sent from one chosen site to every site in Grid’5000.

3) extracting and compiling the code: The code is extracted
and compiled with the right configuration.

4) calibration: 1t comprehends the execution of several
simulations with different parameters. Two types of calibration
are performed in order to take into account the cache effects.

5) compute coefficients: The statistical engine RE] is used
in order to process the files generated by the calibration and
perform a linear regression in order to calculate the coefficients
of the model.

6) free resources: It makes a request to the platform in
order to free the resources used by the calibration.

These tasks were described using Expo DSL using 180
lines. An extract of the description is shown in Listing [2] and
the different execution times of each task for different clusters
are shown in Table It is important to note that the time
to execute the whole module for a particular cluster mainly
depends on the execution time of the simulations. There is an
almost negligible overhead in the execution time with Expo,
which was already shown in [5].

In Figure {4 is shown the executable workflow generated
from the abstract calibration experiment definition. Here, the
level of execution is the job. The system submits a job into
the infrastructure for every different (different architecture)
cluster in Grid’5000. Thereby, every task defined in the ab-
stract representation is mapped into a cluster and managed
asynchronously. Several machines were used per cluster in
order to lower the time to get the results. The simulation were
deployed in parallel for this case using TakTuk which enable
us to maintain a low number of ssh connections to control
the experiment. In Figure [3] it is shown the heterogeneity of
Grid’5000 in terms of coefficients of the prediction model.
This figure was generated using the results obtained by the
calibration module.

Advantages of using Expo:

e It helps to deploy efficiently the simulations used
for the calibration part, making independent from the

Shttp://www.r-project.org/

Task name Execution time [sec] per cluster

Cl C2 C3 C4 C5 C6 C7 C8 C9 CI10
Transfert site 15.09 13.31 16.32 14.06 26.76 42.55 10.26 10.46 11.92 35.03
Compiling code | 21.84 24.35 30.14 22.38 23.49 27.10 20.56 21.36 29.94 20.28
Calibration 1770.14 | 4860.31 3630.55 1770.47 | 4660.67 7590.81 1640.23 1600.83 3430.70 1620.87
Free resources 1.76 1.62 2.20 1.25 1.33 1.54 1.42 1.77 1.06 1.55

TABLE II: Execution time of the different tasks that compose the calibration module.

Transfering necessary
software to the
infrustructure gateway,

Runing reservation

Ja

g, 9

Run calibration C1
(ic_study)

Iy

Write results to a 3.
file C1 A

Run calibration €2
(parametric study)

Free resources

Write results to a
file c2

Fig. 4: Experiment calibration executable workflow

cluster

adonis

chingchint

~

S
T

)

chirloute
edel
2e-07- genepi
granduc
graphene
griffon

hercule

orion
16-07-

Prediction model coefficient

paradent
parapide
parapluie

pastel

reims
02400~

sagittaire

Cluster

Fig. 5: Heterogeneity of Grid’5000

platform. More than 1359 simulations were necessary
to get data for the prediction model.

e Makes all the procedure more reproducible and repeat-

able.

e Frees the application from implementing this function-
ality. Relying on more flexible languages for this task.

Listing 2: Extract of calibration module

task :transfering_tlm, :target => resources.gw do
put (""/TLM/tlm_vl.tar","/tmp/tlm_test.tar", :method => "scp")
end

task :run_reservation, :depends => [:transfering_tlm] do
reserv.run!

end

task :transfert_site, :target => resources, :depends => [:run_reservation] do

options_put = {:method => "scp", :nfs => :site)

run("mkdir -p ~/Exp_tlm")

put ("/tmp/tlm_test.tar", " /Exp_tlm/tlm_test.tar", options_put)
end

task :compiling, :target => resources, :depends => [:transfert_site] do

check ("ls ~/Exp_tlm/TLMME/") then
run("cd “/Exp_tlm/; tar -xf tlm_test.tar")
run ("make -C ~/Exp_tlm/TLMME/tlm/")

end

end
task :calibration_c2, :target => resources, :depends => [:compiling] do

params_c2.each_with_index{ |par,index]|
number_sim = 1
RUNS.times do
tag = {:parameters => par, :size => size_c2[index] }
commands =["cd ~/Exp_tlm/TLMME/tlm/;./run 1 #{par} matched"]
run (commands, :ins_per_machine => number_sim, :log => tag)
end
puts "Finishing parameter #{par}"
}
end

V. RESULTS
A. Experimental platform

The simulations were performed on Grid’5000
platform[21]. For performance reasons, only two processes
are executed on grid nodes, each one on a different processor.
The architectures of the computing nodes from Grid’5000
are different from cluster to cluster. The same clusters
where used in order to keep the homogeneity between the
experiment results concerning the simulation time. These
clusters are geographically distributed in two sites. These
sites are connected by RENATER, the French network for
research and teaching. All Expo description files used two
run the experiments are available in]

B. Using different configurations

Here, it was evaluated the performance gain obtained using
load balance under different hardware configurations. In order
to show the improvement in performance for large simulations,
we opted for using different simulation sizes proportional to
the number of nodes. This enabled to maintain a favorable
rate between computation and communication. The results are
shown in the Fig.[6] A maximum gain of 42.84% was obtained

7 http://expo.gforge.inria.fr/

edel-genepi luxembourg-nancy-reims nancy-luxembourg

w
S

Performance Gain [%)]
N
S

=
)

0- - l

20.50

Number of nodes 4 6

Fig. 6: Using different heterogeneous configurations. First tests used
cluster located in the same site (edel-genepi). The other two series
of test used different geographically distributed sites (luxembourg,
nancy, reims).

1 4 8 16 32 64 128
No of processes

Fig. 7: Gain obtained with the same simulation parameters changing
the number of nodes.

using clusters located in the same site. The gain obtained
using several geographically distributed sites varies a great
deal, we observed here performance gains ranging from 3.25%
to 19.92%.

C. Changing the number of nodes

The experiment simulates the electromagnetic field propa-
gation, using the TLM method, for 10000 time steps inside a
waveguide structure, having the dimensions: 172 mm width,
86 mm height, 2432 mm length, a mesh step of 1 mm.
In this experiment the computing nodes belong to Griffon,
Chingchint and Chirloute clusters. The simulation time values
are presented in Fig. [7] The maximum gain obtained when
using load-balancing approach is about 36%. The values of
the simulation time when the load is balanced according to
the calibration model given by Expo are smaller than the
time values when the structure is divided identically on all
MPI processes. The gain obtained by load balance approach

decreases while the number of processes increases, because
the computation time decreases according to communication
time.

D. Large structure

In order to prove the real benefits of the grid environment
for TLM large simulations, a supersized rectangular matched
waveguide, discretized upon 95 million TLM cells is simu-
lated. Its dimensions are: 345 mm width, 173 mm height, 1600
mm length and a mesh step of 1 mm.

1) Distributed experiment: In the first experiment, the
simulations are performed using four nodes from Griffon
and Chirloute clusters. The gain obtained by load balancing
approach is about 25.5%.

2) Local experiment: A second experiment was carried out
using nodes from clusters Paradent and Parapide which are
localized on the same site. The gain obtained by load balancing
approach is about 48.5%, much better than the distributed
experiment because the communication time is much smaller
between nodes on the same site.

VI. CONCLUSIONS AND FUTURE WORKS

This work showed the interaction between applications
and experiment management tools, which is not limited to
reproducibility purposes and replayability of experiments. This
calibration is an example of how experiment management tools
can free applications of doing cerating tasks and how can they
help them to perform a tuning for a given platform. The use
of tools as Expo serves the following purposes: it makes easy
the access to complex platforms, helping non-expert users to
make an efficient use of the resources. It helps to combine
tools in order to capture the experimenting process.

It is difficult to perform an efficient deployment of the
application using just information provided by the hardware.
Performance models based on runs provide a more accurate
information for using the platform resources more efficiently.
At the same time, a load balancing based on a performance
model gives to the application high flexibility for estimating
the best work placing for a certain size given the hardware
configuration.

In perspective, smarter reservation mechanisms taking into
account the calibration and the availability of the platform, the
different number of possible configurations for deploying and
their cost represent a viable solution toward fast and automatic
multidisciplinary application simulations.

VII. ACKNOWLEDGMENTS

This research was supported by the Hemera INRIA large
scale initiative.

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.1r).

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

R. C. Whaley and A. Petitet, “Minimizing development and mainte-
nance costs in supporting persistently optimized BLAS,” Software:
Practice and Experience, vol. 35, no. 2, pp. 101-121, February 2005,
http://www.cs.utsa.edu/ whaley/papers/spercw04.ps.

F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A generic framework
for managing hardware affinities in hpc applications,” in Parallel, Dis-
tributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, 2010, pp. 180-186.

T. Hoefler, “Bridging performance analysis tools and analytic
performance modeling for hpc,” in Proceedings of the 2010 conference
on Parallel processing, ser. Euro-Par 2010. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 483-491. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2031978.2032045

W. Hoeffer, “The transmission-line matrix method—theory and appli-
cations,” Microwave Theory and Techniques, IEEE Transactions on,
vol. 33, no. 10, pp. 882-893, oct 1985.

C. C. Ruiz Sanabria, O. Richard, B. Videau, and I. Oleg,
“Managing large scale experiments in distributed testbeds,” in
Proceedings of the 11th IASTED International Conference, IASTED.
ACTA Press, feb 2013, pp. 628-636. [Online]. Available: http:
/ldx.doi.org/10.2316/P.2013.795-011

A. Gupta, O. Sarood, L. Kale, and D. Milojicic, “Improving hpc
application performance in cloud through dynamic load balancing,” in
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, 2013, pp. 402-409.

G. Koenig and L. Kale, “Optimizing distributed application performance
using dynamic grid topology-aware load balancing,” in Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-
tional, 2007, pp. 1-10.

M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoeflinger, “Object-
Based Adaptive Load Balancing for MPI Programs,” in Proceedings of
the International Conference on Computational Science, San Francisco,
CA, LNCS 2074, May 2001, pp. 108-117.

H. Renard, Y. Robert, and F. Vivien, “Static load-balancing techniques
for iterative computations on heterogeneous clusters,” in Euro-Par
2003 Parallel Processing, ser. Lecture Notes in Computer Science,
H. Kosch, L. Bszrmnyi, and H. Hellwagner, Eds. Springer Berlin
Heidelberg, 2003, vol. 2790, pp. 148-159. [Online]. Available:
http://dx.do1.0org/10.1007/978-3-540-45209-6_24

S. Huang, E. Aubanel, and V. Bhavsar, “Pagrid: A mesh partitioner
for computational grids,” Journal of Grid Computing, vol. 4, no. 1,
pp. 71-88, 2006. [Online]. Available: http://dx.doi.org/10.1007/
$10723-005-9018-0

K. D. Devine, E. G. Boman, and G. Karypis, “Partitioning and load bal-
ancing for emerging parallel applications and architectures,” in Frontiers
of Scientific Computing, M. Heroux, A. Raghavan, and H. Simon, Eds.
Philadelphia: SIAM, 2006.

F. Nadeem, R. Prodan, T. Fahringer, and A. Iosup, “Benchmarking
grid applications,” in Grid Middleware and Services. Springer US,
2008, pp. 19-37. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-78446-5 2

J. Albrecht, R. Braud, D. Dao, N. Topilski, C. Tuttle, A. C. Snoeren,
and A. Vahdat, “Remote control: distributed application configuration,
management, and visualization with plush,” in Proceedings of the 21st
conference on Large Installation System Administration Conference, ser.
LISA’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 15:1—
15:19. [Online]. Available: http://dl.acm.org/citation.cfm?id=1349426.
1349441

R. Prodan and T. Fahringer, “Zenturio: an experiment management
system for cluster and grid computing,” in Cluster Computing, 2002.
Proceedings. 2002 IEEE International Conference on, 2002, pp. 9-18.

S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “Vistrails: visualization meets data management,”
in Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’06. New York, NY, USA: ACM,
2006, pp. 745-747. [Online]. Available: http://doi.acm.org/10.1145/
1142473.1142574

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil,

(17]

(18]

[19]

[20]

[21]

M.-H. Su, K. Vahi, and M. Livny, “Pegasus: Mapping scientific
workflows onto the grid,” in Grid Computing, ser. Lecture Notes in
Computer Science, M. Dikaiakos, Ed. Springer Berlin Heidelberg,
2004, vol. 3165, pp. 11-20. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-28642-4_2

P. Johns, “A symmetrical condensed node for the tlm method,” IEEE
Trans. on Microwave Theory and Tech., vol. 35, no. 4, pp. 370-377,
apr 1987.

M. Alexandru, T. Monteil, P. Lorenz, F. Coccetti, and H. Aubert, “Large
electromagnetic problem on large scale parallel computing systems,”
in International Conference on High Performance Computing and
Simulation, 2012.

B. Claudel, G. Huard, and O. Richard, “Taktuk, adaptive deployment
of remote executions,” in Proceedings of the 18th ACM international
symposium on High performance distributed computing, ser. HPDC
’09. New York, NY, USA: ACM, 2009, pp. 91-100. [Online].
Available: http://doi.acm.org/10.1145/1551609.1551629

M. Tanaka and O. Tatebe, “Pwrake: a parallel and distributed
flexible workflow management tool for wide-area data intensive
computing,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, ser. HPDC *10. New
York, NY, USA: ACM, 2010, pp. 356-359. [Online]. Available:
http://dot.acm.org/10.1145/1851476.1851529

Grid5000. (2013) Grid5000:hardware. [Online]. Available:
/Iwww.grid5000.fr/mediawiki/index.php/Special: GSKHardware

https:

http://dl.acm.org/citation.cfm?id=2031978.2032045
http://dl.acm.org/citation.cfm?id=2031978.2032045
http://dx.doi.org/10.2316/P.2013.795-011
http://dx.doi.org/10.2316/P.2013.795-011
http://dx.doi.org/10.1007/978-3-540-45209-6_24
http://dx.doi.org/10.1007/s10723-005-9018-0
http://dx.doi.org/10.1007/s10723-005-9018-0
http://dx.doi.org/10.1007/978-0-387-78446-5_2
http://dx.doi.org/10.1007/978-0-387-78446-5_2
http://dl.acm.org/citation.cfm?id=1349426.1349441
http://dl.acm.org/citation.cfm?id=1349426.1349441
http://doi.acm.org/10.1145/1142473.1142574
http://doi.acm.org/10.1145/1142473.1142574
http://dx.doi.org/10.1007/978-3-540-28642-4_2
http://dx.doi.org/10.1007/978-3-540-28642-4_2
http://doi.acm.org/10.1145/1551609.1551629
http://doi.acm.org/10.1145/1851476.1851529
https://www.grid5000.fr/mediawiki/index.php/Special:G5KHardware
https://www.grid5000.fr/mediawiki/index.php/Special:G5KHardware

	Introduction
	Related work
	Load balancing of distributed applications
	Dynamic techniques
	Static techniques

	Experiment management tools
	Transmission-Line Matrix

	 Expo experiment management tool
	Expo ResourceSet
	Expo Tasks
	Expo experiment mapping

	Load Balancing approach
	Expo calibration module
	run reservation
	transferring code to each site on the grid
	extracting and compiling the code
	calibration
	compute coefficients
	free resources

	Results
	Experimental platform
	Using different configurations
	Changing the number of nodes
	Large structure
	Distributed experiment
	Local experiment

	Conclusions and Future Works
	Acknowledgments
	References

