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Abstract

Federations among sets of Cloud Providers (CPs), whereby a set of CPs agree to mutually use their own resources to run
the VMs of other CPs, are considered a promising solution to the problem of reducing the energy cost. In this paper, we address
the problem of federation formation for a set of CPs, whose solution is necessary to exploit the potential of cloud federations
for the reduction of the energy bill. We devise a distributedalgorithm, based on cooperative game theory, that allows a set of
CPs to cooperatively set up their federations in such a way that their individual profit is increased with respect to the case in
which they work in isolation, and we show that, by using our algorithm and the proposed CPs’ utility function, they are able to
self-organize into Nash-stable federations and, by means of iterated executions, to adapt themselves to environmental changes.
Numerical results are presented to demonstrate the effectiveness of the proposed algorithm.

Index Terms

Cloud Federation, Cooperative Game Theory, Coalition Formation

I. I NTRODUCTION

Many modern Internet services are implemented as cloud applications consisting of a set ofVirtual Machines(VMs) that
are allocated and run on a physical computing infrastructure managed by a virtualization platform (e.g., Xen [1], VMware [2],
etc.). These infrastructure are typically owned by aCloud Provider(CP) (e.g., Amazon AWS, Rackspace, Windows Azure,
etc.), and are located into a (set of possibly distributed) data center(s).

One of the key issues that must be faced by a CP is the reductionof its energy cost, that represents a large fraction of the
total cost of ownership for physical computing infrastructures [3]. This cost is mainly due to the consumption of the physical
resources that must be switched on to run the workload.

To reduce energy consumption, two techniques are thereforepossible for a CP: (a) to minimize the number of hosts that
are switched on by maximizing the number of VMs allocated on each physical resource (using suitable resource management
techniques [4], [5]), and (b) to use resources that consume less energy.

Cloud federations [6], whereby a set of CPs agree to mutuallyuse their own resources to run the VMs of other CPs, are
considered to be a promising solution for the reduction of energy costs [7] as they ease the application of both techniques.

As a matter of fact, while each individual CP is bound to its specific energy provider and to the physical infrastructure it
owns, a set of federated CPs may enable the usage of more flexible energy management strategies that, by suitably relocating
the workload towards CPs that pay less for the energy, or thathave more energy-efficient resources, may reduce the energy
bill for each one of them.

In order to exploit the energy saving potential of cloud federations, it is however necessary to address the question concerning
its formation. As a matter of fact, it is unreasonable to assume that a CP unconditionally joins a federation regardless of the
benefits it receives, while it is reasonable to expect that itjoins a federation only if this brings it a benefit.

In this paper, we address the problem of federation formation for a set of CPs, and we devise an algorithm that allows these
CPs to decide whether to federate or not on the basis of the profit they receive for doing so. In our approach, each CP pays
for the energy consumed by each VM, whether it belongs to its own workload or to the one of another CP, but receives a
payoff (computed as discussed later) for doing so.

10.1109/CCGrid.2014.37
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2014.37


The algorithm we propose is based on cooperative game theory[8], [9]. In particular, we rely onhedonic games(see [10] for
their definition) whereby each CP bases its decision on its own preferences. Depending on the specific operational conditions
of each CP (i.e., the resource requirements of its workload,its cost of energy, the energy consumption of its physical machines,
and the revenue it obtains when running each VM on these machines), different federations (each one consisting of a subset of
the CPs), or even no federation at all, may be formed by the involved CPs. We callfederation setthe set of distinct federations
formed by a set of CPs.

The algorithm we propose computes the federation set that results in the highest profit that can be achieved by a set of
autonomous and selfish CPs. This derives from the fact that this algorithm ensures that all the federations formed by groups
of CPs arestable, that is CPs have no incentive to leave the federation once they decide to participate.

Unlike similar proposals (e.g., [11]), that rely on a centralized architecture in which a trusted third party computes the
federation set, we adopt a distributed approach in which each CP autonomously and selfishly makes its own decisions, and
the best solution emerges from these decisions without the need of synchronizing them, or to resort to a trusted third party. In
this way, we avoid two drawbacks that affect existing proposals, namely the difficulty of finding a third party that is trusted
by all the CPs, and the need to suspend the operations of all the CPs when the federation set is being computed.

The rest of this paper is organized as follows. In Section II,we describe the system under study, and provide some simple
motivating example. In Section III, we present a cooperative game-theoretic model of the system under study, and show
stability conditions and profit allocation strategies thatprovide the theoretical foundation for the distributed coalition formation
algorithm, that is also presented in this section. In Section IV, we present results from an experimental evaluation to show the
effectiveness of the proposed approach. In Section V, we provide a short overview of related works. Finally, conclusions and
an outlook on future extensions are presented in Section VI.

II. PROBLEM FORMULATION

In this section, we first formally describe the problem addressed in the paper (see Section II-A), and then we illustrate some
issues that must be properly addressed in order to properly solve it (see Section II-B).

A. System Description

We consider a set ofn CPs denoted byN =
{

1, 2, . . . , n
}

, where each CPi is endowed with a setHi of physical hosts.
We denote asH = H1 ∪ H2 ∪ · · · ∪ Hn the set of all the hosts collectively belonging to the various CPs. These hosts are
grouped into a setG of host classesaccording to their processor type and to the amount of physical memory they provide; all
the hosts in the same class are homogeneous in terms of processor and memory size. For anyh ∈ H we denote byg(h) the
function that gives the host class ofh (i.e., a functiong : H → G).

As discussed in [12], we assume that a hosth consumesCmin
g(h) Watts when its CPU is in the idle state,Cmax

g(h) Watts when

its CPU is fully utilized, and
(

Cmin
g(h) + f ·

(

Cmax
g(h) − Cmin

g(h)

)

)

when a fractionf ∈ [0, 1] of its CPU capacity is used. This
model, albeit simple, has been shown to provide accurate estimates of power consumption for different host types when running
several benchmarks representative of real-world applications [12].

Physical hosts run cloud workloads, consisting in a setJ = J1 ∪J2 ∪ · · · ∪ Jn of VMs, whereJi denotes the set of VMs
that compose the workload of thei-th CP (each VM contains the whole execution environment of one or more applications).

As typically done by CPs, VMs are grouped into a setQ of VM classesaccording to the computing capacity provided by
their virtual processors, and to the amount of physical memory they are equipped with; all the VMs belonging to the same class
provide the same amount of computing capacity and of physical memory. For instance, Amazon’s EC2 [13] defines theElastic
Compute Unit (ECU)as an abstract computing resource able to deliver a capacityequivalent to that of a 1.2 GHz 2007 Xeon
processor, and provides variousinstance types(that are equivalent to our VM classes) that differ among them in the number
of ECUs and in the amount of RAM they are equipped with. More specifically, small, medium, and large, corresponding to
VM class 1, 2, and 3, respectively, provide 1 ECU and 1.7 GB of RAM, 2 ECUs and 3.7 GB of RAM, and 4 ECUs and 7.5
GB of RAM, respectively.

For any VMj ∈ J , we denote byq(j) the function that gives its VM class (i.e., a functionq : J → Q). Using this notation,
for any j ∈ J we denote byCPU q(j) and byRAM q(j) the amount of computing capacity and of physical memory of VMj,
respectively. As an example, in the Amazon EC2 case we have thatCPU 1 = 1 ECU andRAM 1 = 1.7 GB, whileCPU 3 = 4
ECU andRAM 3 = 7.5 GB.

When allocated on a physical hosth, a VM j uses a certain fractionAq(j),g(h) of CPU capacity and a certain fraction
Mq(j),g(h) of physical memory.Aq(j),g(h) can be determined by measuring, with a suitable benchmark (e.g., GeekBench [14]),
the computing capacityCapv delivered by the virtual processor of VMs inq(j) and the capacityCapp delivered by the physical
processor of hosts ing(h), and then by dividing these quantities, i.e.,Aq(j),g(h) =

Capv

Capp
. For instance, ifCapv = 1, 000 and

Capp = 8, 000, thenAq(j),g(h) = 0.125. Mq(j),g(h) can instead be computed asMq(j),g(h) =
⌈

RAM q(j)

RAM size of hosts ing(h)

⌉

.



TABLE I
OPERATIONAL SCENARIOS OFCP1 , CP2 , CP3

(a) Characteristics of host classes
Host Class CPU RAM Cmin/Cmax

(GB) (W)

1 2× Xeon 5130 16 86.7/274.9
2 Xeon X3220 32 143.0/518.4
3 2× Xeon 5160 64 490.1/1, 117.8

(b) Characteristics of VM classes
VM Class Processor #CPUs RAM

(GB)

1 AMD Opteron 144 1 1
2 AMD Opteron 144 2 2
3 AMD Opteron 144 4 4

(c)Per-VM physical resource shares
Host Class Class-1 VM Class-2 VM Class-3 VM

1 (0.20, 0.062500) (0.4, 0.12500) (0.8, 0.2500)
2 (0.15, 0.031250) (0.3, 0.06250) (0.6, 0.1250)
3 (0.10, 0.015625) (0.2, 0.03125) (0.3, 0.0625)

Each CPi charges, for each VMj, a revenue rate(that depends on the classq(j) of that VM) that specifies the amount
of money that the VM owner must correspond per unit of time. For instance, Amazon charges0.08 $/hour,0.16 $/hour, and
0.32 $/hour forsmall, medium, and large instances, respectively. Consequently, CPi earns a global revenue rate that is given
by the sum of the revenue rates of individual VMs. To run its workload, CPi incurs an energy cost quantified by theenergy
cost rate(the amount of money that is paid per unit of time), which is the energy cost resulting from the allocation of (a
subset of) the workloadJ on its host setHi that must be paid per unit of time (see Section III-C for a discussion on the
optimization technique we use to minimize it). We define thenet profit rateof CP i as the difference between its global revenue
rate (obtained for hosting a set of VMs) and its global energycost rate (that it incurs to run such VMs).

Our goal is to allocate all the VMs inJ on the hosts inH (independently from the corresponding CPs) in such a way to
maximize thenet profit rateof each CPi. This goal can be achieved by finding the smallest set of hoststhat are sufficient
to accommodate the resource shares of all the VMs inJ such that the overall energy consumption is minimized, and by
providing a suitable revenue for those CPs that host VMs belonging to other CPs.

B. Issues in coalition formation

The most straightforward way to form a coalition1 is to include in it all the CPs (thegrand coalition). This solution is
certainly attractive because of its simplicity and ease of implementation, and can bring significant benefits to its participant.

To illustrate, let us consider three different CPs, named CP1, CP2, and CP3, whose operational scenarios are characterized by
the values shown in Table I, where we report the characteristics of the host classes (Table I(a)), of the VM classes (TableI(b)),
and the resource shares of each VM class (Table I(c)). Assume, for the moment, that we have both a way to compute the set of
hosts that must be switched on to minimize energy consumption (a suitable optimization problem is presented in Section III-C),
and a profit distribution rule that yields suitable revenuesto CPs hosting external VMs, so that the minimization of the energy
consumption within a federation of CPs corresponds to the maximization of their net profit rates (such a rule is discussedin
Section III-A).

Now, let us consider a simple scenario (that we nameScenario1) in which each CP owns30 hosts of a single class, and
in particular that CP1, CP2, and CP3 own only class-1, class-2, and class-3 hosts, respectively; furthermore, all the CPs have
the same workload (in particular, each CP has to allocate10 class-3 VMs) and energy cost (0.4 $/kWh).

If each CP uses only its own resources and allocate its own workload (i.e., no federation is formed), it achieves the energy
cost rate reported in Table II(a), where also the total cost rate is reported. If, conversely, they form a grand coalition(i.e, they
jointly perform a global workload allocation using the union of their respective host sets), their corresponding individual and
overall energy cost rates are reported in Table II(b).

As can be seen from these results, the grand coalition yieldsa smaller total cost rate of energy that, as discussed before
in Section II-A, corresponds to a larger net profit rates for the individual CPs. In particular, the overall energy cost rate is
reduced by28% (from 3.96 $/hour to2.85 $/hour), thanks to the fact that in the federation case only the hosts belonging to
CP1 are used to run all the VMs.

1In this paper, the termsfederationand coalition (which is widely adopted in the game-theoretic community) are used interchangeably.



TABLE II
SCENARIO1 RESULTS

CP Powered-on Consumed Power Energy Cost
Hosts (kW) ($/hour)

(a) no federation among CPs

CP1 10 2.37 0.95
CP2 10 3.68 1.47
CP3 4 3.84 1.54

Total 24 9.89 3.96

(b) federation among all the CPs

CP1 30 7.12 2.85
CP2 0 0.00 0.00
CP3 0 0.00 0.00

Total 30 7.12 2.85

TABLE III
SCENARIO2 RESULTS

CP Powered-on Consumed Power Energy Cost
Hosts (kW) ($/hour)

(a) no federation among CPs

CP1 22 10.47 4.19
CP2 13 14.03 5.61
CP3 13 14.03 5.61

Total 48 38.53 15.41

(b) federation among all CPs

CP1 41 19.71 7.89
CP2 9 9.93 3.97
CP3 4 4.47 1.79

Total 54 34.11 13.65

(c) CP1 and CP2 federated among them, CP3 alone

CP1 42 20.20 8.08
CP2 0 0.00 0.00
CP3 13 14.03 5.61

Total 84 34.23 13.69

Given the benefits resulting from the grand coalition in thisexample, it is natural to speculate whether the problem of
computing a federation set really arises in practice.

Unfortunately, as shown below, there are cases when the grand coalition does not represent the best solution for all the
involved CPs. Indeed, consider another scenario (that we name Scenario2) where the characteristics of the hosts and of the
VMs are the same as before (see Table III), but the number and type of hosts and VMs differ from those assumed inScenario
1. In particular, now CP1 owns 42 class-2 hosts and its workload consists in65 class-2 VMs, while CP2 and CP3 own 41
class-3 hosts each and both have61 class-2 VMs as workload.

The individual and overall energy cost rates correspondingto the optimal solution for the no federation and the grand
coalition cases are reported in Table III(a) and (b), respectively. Again, we observe a reduction of the energy cost in the grand
coalition case (seeTable III(a) and (b)), although this reduction is smaller than in theScenario1 case (it amounts to11.4%).

However, by looking at the results in Table III(c), we can observe that if CP1 and CP2 federate among them and exclude CP3,
their overall energy consumption rateis smallerthan in the case of the grand coalition, although the overallcost involving all
three CPs is higher. As a matter of fact, in the grand coalition the joint cost rate of CP1 and CP2 amounts to7.89+3.97 = 11.86
$/hour, while in the sub-coalition case it amounts to8.08 $/hour. This means that CP1 and CP2 have an incentive to leave the
grand coalition (in case it has been formed) and to form a federation including only them or, said in game-theoretic words,
the grand coalition isunstable(we discuss this concept in Section III).

This example shows that a more sophisticated solution than simply forming the grand coalition is necessary in order to
ensure stability and that, as a general rule, the resulting federation set may include several federations.



III. T HE COOPERATIVE CP GAME

As illustrated in the previous section, a CP must consider various factors before deciding whether to join or not a federation.
Among them, the most important ones are:

• Stability: a federation isstableif none of its participants finds that it is more profitable to leave it (e.g., to stay alone or
to join another federation) rather than cooperating with the other ones.

• Fairness: when joining a federation, a CP expects that the resulting profits are fairly divided among participants. As unfair
division leads to instability, it is necessary to design an allocation method that ensures fairness.

In this section, we model the problem of coalition formationas acoalition formation cooperative game with transferable
utility [8], [9], where each CP cooperates with the other ones in order to maximize its net profit rate, and we present a
distributed algorithm for solving this problem.

A. Characterization

Given a setN = {1, 2, . . . , n} of CPs (henceforth also referred to as theplayers), acoalitionS ⊆ N represents an agreement
among the CPs inS to act as a single entity (i.e.,S is a federation of CPs). Specifically, in this paper, a coalition S implies
that the CPs belonging toS perform a global allocation of their joint workloadJS by using as host set the unionHS of their
host sets. In other words, the CPs of the coalition act as a single CP with a load that is the composition of the loads and with
a host set that is a composition of the host sets of the coalition.

A coalition S is associated with arevenue rater
(

JS

)

and with anenergy cost ratee
(

JS ,HS

)

. The revenue rate ofS is
simply the sum of revenue rates of individual VMsj ∈ JS , while e

(

JS ,HS

)

can be derived by minimizing the energy cost
resulting from the allocation of the workloadJS on the host setHS (we discuss this in Section III-C).

We model the system under study by using the most common form of cooperative games, i.e., thecharacteristic form[8],
where the value of a coalitionS depends solely on the members of that coalition, with no dependence on how the players in
N \ S are structured (whereN \ S denotes the set difference).

Given the above definitions, for the system under study we define thecoalition valuev(·) as:

v
(

S
)

=
∑

i∈S

∑

j∈Ji

ri
(

q(j)
)

− e
(

JS ,HS

)

(1)

whereq(j) is the class of VMj (see Section II-A).
The valuev

(

S
)

must be divided, according to a given rule, among the participants toS. The sharexi(S) of v
(

S
)

received
by CP i is its payoff, and the vectorx(S) ∈ IR|N |, with each componentxi(S) being the payoff of CPi ∈ S, is thepayoff
allocation.

In our cooperative game, CPs seek to form coalitions in orderto increase their payoffs. As discussed at the beginning of
this section, payoffs should be fairly allocated so that stable coalitions can form.

In order to ensure fairness in the division of payoffs, we usethe Shapley value[15], a solution method that is based on the
concept ofmarginal contribution. 2

In particular, the Shapley value of playeri can be defined as:

φi

(

v
)

=
∑

S⊆N\{i}

∣

∣S
∣

∣!
(

n−
∣

∣S| − 1
)

!

n!

(

v
(

S ∪ {i}
)

− v
(

S
)

)

(2)

where the sum is over all subsetsS not containingi.
It is important to note that since the Shapley value for a player is based on the concept of the player’smarginal contribution

to a coalition (i.e., the change in the worth of a coalition when the player joins to that coalition), the larger is the contribution
provided by a player to the coalition, the higher is the payoff allocated to it. This means that, in a given CP federation, some
“more-contributing” CP will be rewarded by other “less-contributing” CPs to be enrolled in the federation.

Let us now discuss the stability. In game theory, a typical way to guarantee stability is to ensure that the allocation of
payoffs falls in the so calledcore [8], that can be intuitively defined as the set of payoff allocations that guarantees that no
group of players has an incentive to leave the coalitionN to form another coalitionS ⊂ N . It can be shown that a game with
a non-empty core contains allocations that can be voluntarily agreed by all players and are thereby stable, while in a game
with an empty core, some players (or groups of players) are better off when acting alone than when cooperating all together
(the grand coalitionN ).

Unfortunately, it can be shown that the core of cooperative CP game defined abovecan be empty(see Section A for a formal
proof of this statement).

2More specifically, we use theAumann-Drézevalue [16], which is an extension of the Shapley value for games with coalition structures.



maximizez = x0 + x1 + x2

subject to

x0 ≥ 6.21,

x1 ≥ 4.15,

x2 ≥ 4.15,

x0 + x1 ≥ 12.08,

x0 + x2 ≥ 12.08,

x1 + x2 ≥ 8.49,

x0 + x1 + x2 = 16.27,

x0 ≥ 0,

x1 ≥ 0,

x2 ≥ 0.

Fig. 1. The optimization model to test the emptiness of the core for theScenario2

TABLE IV
SCENARIO2: COALITION VALUES AND PAYOFFS

Coalition v(·) φi(v)

{1} 6.21 {6.21}
{2} 4.15 {4.15}
{3} 4.15 {4.15}
{1, 2} 12.08 {7.07, 5.01}
{1, 3} 12.08 {7.07, 5.01}
{2, 3} 8.49 {4.25, 4.25}
{1, 2, 3} 16.27 {7.31, 4.48, 4.48}

To illustrate the effects of a game with an empty core, we return to theScenario2 example of Section II-B, and we compute
the coalition values and payoffs corresponding to all the federations that can be formed by the three involved CPs. From these
values, that are tabulated in Table IV, we note that for the grand coalition we have thatφ1(v) + φ2(v) = 11.79, while for the
smaller coalition{1, 2} it results thatv

(

{1, 2}
)

= 12.08. That is, for CP1 and CP2, the coalition{1, 2} is more convenient
than the grand coalition, or, in other words, the grand coalition is unstable. More formally, we can prove that, for theScenario
2, the core is empty by simply solving the optimization problem shown in Figure 1, which directly derives from the definition
of the core (e.g., see [8]), to find one of the imputations (if any) inside the core. This optimization problem is infeasible (i.e.,
it does not exist any payoff vector(x0, x1, x2) that satisfies the core conditions) and hence the core is empty. These results
thus confirm the intuition provided in Section II-B, i.e., that in some situations the grand coalition may lead to instability.

It is important to note that, in general, the emptiness of thecore does not depend on the particular payoff allocation strategy,
but it is instead a peculiarity of the game. In order to solve this problem, we have thus to resort to a specific type of cooperative
game, the so calledcoalition formation cooperative game(see [9], [17], [18]) that, as shown later, achieves stability by forming
independent and disjoint smaller coalitions when the grandcoalition does not form (as in theScenario2 case discussed above).

More specifically, we consider a class of coalition formation games known ashedonic games[10], [18]. Hedonic games can
be seen as special cases of cooperative games where a player’s preferences over coalitions depend only on the composition
of his coalition. That is, players prefer being in one coalition rather than in another one purely based on who else is in the
coalitions they belong.

Let us reformulate our cooperative CP game as a hedonic game.Given the setN = {1, 2, . . . , n} of players (i.e., CPs),
we define acoalition partition as the setΠ = {S1,S2, . . . ,Sl} that partitions the CPs’ setN . That is, fork = 1, . . . , l, each
Sk ⊆ N is a disjoint coalition such that

⋃l

k=1 Sk = N andSj ∩ Sk = ∅ for j 6= k. Given a coalition partitionΠ, for any CP
i ∈ N , we denote bySΠ(i) the coalitionSk ∈ Π such thati ∈ Sk.

To set up the coalition formation process, we need to define apreference relationso that each CP can order and compare
all the possible coalitions it belongs and hence it can buildpreferences over them. Formally, for any CPi ∈ N , a preference
relation �i is defined as a complete, reflexive, and transitive binary relation over the set of all coalitions that CPi can form
(see [10]). Specifically, for any CPi ∈ N and givenS1,S2 ⊆ N , the notationS1 �i S2 means that CPi prefers being a
member ofS1 overS2 or at leasti prefers both coalitions equally. The strict counterpart of�i is denoted by≻i and implies
that i strictly prefers being a member ofS1 overS2. Note that the definition of a preference relation is one of the peculiarities



Step 0: Initialization.
At time t = 0, the CPs are partitioned as:

Π0 =
{

{

1
}

,
{

2
}

, . . . ,
{

n
}

}

,

h(i) = ∅, ∀i ∈ N .

Step 1: Coalition Formation Stage I.
Given the current coalition partitionΠc, each CPi investigates possible hedonic shift operations, in order to look for a coalition
Sk ∈ Πc ∪ ∅ (if any) such that:

Sk ∪ {i} ≻i SΠc(i).

Step 2: Coalition Formation Stage II.
If such coalitionSk is found, CPi decides to perform the hedonic shift rule to move toSk:

1) CP i updates its historyh(i) by addingSΠc(i).
2) CP i leaves its current coalitionSΠc(i) and joins the new coalitionSk.
3) Πc is updated:

Πc+1 =
(

Πc \
{

SΠc (i), Sk

}

)

∪
{

SΠc (i) \
{

i
}

,Sk ∪
{

i
}

}

.

Otherwise, CPi remains in the same coalition so that:
Πc+1 = Πc

Step 3: Coalition Formation Stage III.
Repeat Step 1 and Step 2 until all CPs converge to a final partition Πf .

Fig. 2. The Distributed Coalition Formation Algorithm

of the coalition formation process. In general, this relation can be a function of several parameters, such as the payoffs that
the players receive from each coalition, the approval of thecoalition members, and the players’ history, just to name a few.

In our coalition formation CP game, for any CPi ∈ N , we use the following preference relation:

S1 �i S2 ⇐⇒ fi(S1) ≥ fi(S2) (4)

whereS1,S2 ⊆ N are two coalitions containing CPi, andfi(·) is a preference function, defined for any CPi ∈ N and any
coalitionS containingi, such that:

fi(S) =

{

xi(S), if S /∈ h(i),

−∞, otherwise.
(5)

wherexi(S) is the payoff received by CPi in S, andh(i) is a history set where CPi stores the identity of the coalition that
it visited and left in the past. The rationale behind the use of h(·) is to avoid that a CP visit the same set of coalitions twice
(a similar idea has also been used in previously published work, such as in [19], [20]). Thus, according to Eq. (5), each CP
prefers to join to the coalition that provides the larger payoff, unless it has already been visited and left in the past. The strictly
counterpart≻i of �i is defined by replacing≥ with > in Eq. (4).

B. A Distributed Coalition Formation Algorithm

We are now ready to define our distributed algorithm for coalition formation that allows each player to decide in aselfish
way to which coalitions to join at any point in time.

This algorithm is based on the followinghedonic shift rule(see [21]): given a coalition partitionΠ = {S1, . . . ,Sl} on the
set N and a preference relation≻i, any CPi ∈ N decides to leave its current coalitionSΠ(i) and join another coalition
Sk ∈ Π ∪ ∅ (with Sk 6= SΠ(i)) if and only if Sk ∪ {i} ≻i SΠ(i). The shift rule can be seen as a selfish decision made by a
CP to move from its current coalition to a new one,regardless of the effects of this move on the other CPs.

Whenever a CPi applies this rule, it updates its history seth(i) to store the coalitionSΠ(i) it is leaving. After the rule is
applied, the partitionΠ changes into a new partitionΠ′, such that:

Π′ =
(

Π \
{

SΠ(i),Sk

}

)

∪
{

SΠ(i) \
{

i
}

,Sk ∪
{

i
}

}

(6)

Using the hedonic shift rule and the preference relation defined in Eq. (4) and Eq. (5), we construct a distributed coalition
formation algorithm, shown in Figure 2.

To implement the proposed algorithm in a real environment, asuitable approach must be taken. For a centralized approach,
CPs can rely to a central coordinator, to which CPs communicate their decisions and from which CPs obtain information to
update their local state. For what regards a distributed approach, suitable techniques for neighbor discovering, communication



and synchronization must be used. To this end, well-known algorithms exist in distributed and multi-agent systems literature
(e.g., see [22], [23]).

It is worth noting that the presented algorithm can be executed at specific instants of time or when new VM requests arrive
to CPs, thus making our coalition formation mechanism able to adapt to environmental changes.

We now prove that our algorithm always converges to a stable partition.

Proposition 1. Starting from any initial coalition structureΠ0, the proposed algorithm always converges to a final partition
Πf .

Proof. The coalition formation phase can be mapped to a sequence of shift operations. That is, according to the hedonic shift
rule, every shift operation transforms the current partition Πc into another partitionΠc+1. Thus, starting from the initial step,
the algorithms yields the following transformations:

Π0 → Π1 → · · · → Πc → Πc+1 (7)

where the symbol→ denotes the application of a shift operation. Every application of the shift rule generates two possible
cases: (a)Sk 6= ∅, so it leads to a new coalition partition, or (b)Sk = ∅, so it yields a previously visited coalition partition
with a non-cooperatively CP (i.e., with a coalition of size1). In the first case, the number of transformations performedby the
shift rule is finite (at most, it is equal to the number of partitions, that is the Bell number; see [24]), and hence the sequence
in Eq. (7) will always terminate and converge to a final partition Πf . In the second case, starting from the previously visited
partition, at certain point in time, the non-cooperative CPmust either join a new coalition and yield a new partition, ordecide
to remain non-cooperative. From this, it follows that the number of re-visited partitions will be limited, and thus, in all the
cases the coalition formation stage of the algorithm will converge to a final partitionΠf .

We address the stability of the final partitionΠf by using the concept ofNash-stability(see [10]). Intuitively, a partitionΠ
is considered Nash-stable if no CP has incentive to move fromits current coalitionSΠ(i) to join a different coalition ofΠ, or
to act alone. More formally, a partitionΠ = {S1, . . . ,Sl} is Nash-stableif ∀i ∈ N , SΠ(i) �i Sk ∪ {i} for all Sk ∈ Π ∪ ∅.

Let us show that the partition to which our algorithm converges is Nash-stable.

Proposition 2. Any final partitionΠf resulting from the algorithm presented in Figure 2 is Nash-stable.

Proof. To show this, we use the proof by contradiction technique. Assume that the final partitionΠf is not Nash-stable.
Consequently, there exists a CPi ∈ N and a coalitionSk ∈ Πf ∪ ∅ such thatSk ∪ {i} ≻i SΠf

(i). Then, CPi will perform a
hedonic shift operation and henceΠf → Π′

f . This contradicts the assumption thatΠf is the final outcome of our algorithm.

The Nash-stability also implies the so calledindividual-stability (see [10]). A partitionΠ = {S1, . . . ,Sl} is individually-
stable if do not exist a playeri ∈ N and a coalitionSk ∈ Π ∪ ∅ such thatSk ∪ {i} ≻i SΠ(i) andSk ∪ {i} �j Sk for all
j ∈ Sk.

It is worth noting that Nash-stability only captures the notion of stability with respect to movements of single CPs (i.e., no
CP has an incentive to unilaterally deviate). However, it does not guarantee the stability with respect to other aspectsthat are
instead captured by other stability concepts. For instance, the stability with respect to movements of groups of CPs is captured
by the core-stability (see [10]), whereby no group of CPs can collectively defect and form a new coalition where each of
them is better off. Unfortunately, the two stability concepts are not related each other, in general (i.e., one stability concept
does not necessarily imply the other one). Moreover, there exist other stronger stability concepts but unfortunately there is not
warranty that a satisfying partition does exist (e.g., see [25]) and the check for the existence is computationally hard(e.g.,
see [26]). Finally, Nash-stability does not guarantee the maximization of the overall net profit (e.g., thesocial optimumin the
game-theoretic jargon) [27]. Despite all of that, Nash-stability is generally considered a reasonable trade-off.

Thus, we can conclude that our algorithm always converges toa partitionΠf which is both Nash-stable and individually
stable.

C. Computation of the Coalition Value

To use the game-theoretic model discussed in the previous section, we need a way to find (for a given coalition) the optimal
workload allocation (i.e., the allocation that minimizes the energy cost), that allows us to compute the coalition value.

To this end, we define aMixed Integer Linear Program(MILP) modeling the problem of allocating a setJS of VMs onto
a setHS of hosts so that the hourly energy cost is minimized.

We base our MILP on the model described in [28], that has been first revised to improve its computational performance and
then extended in order to incorporate the heterogeneity of physical resources and the energy cost.

The resulting optimization model is shown in Figure 3, wherewe use the same notation introduced in Section II-A,3 and we
denote witho(i) the function that is1 if host i is powered on and0 otherwise (i.e., a functiono : H → {0, 1}), with Lk and

3To ease readability, we simplify it by denoting withJ andH the cloud workload and the host set, respectively (i.e., we omit the dependence byS).



minimize e =
∑

i∈H

[

piC
min
g(i) + αi

(

C
max
g(i) −C

min
g(i)

)

+ pi(1− o(i))Lg(i) + (1− pi)o(i)Sg(i)

]

Ec(i)

+
∑

j∈J

bjiGc(h(j)),c(i),q(j) (8a)

subject to
∑

i∈H

bji = 1, j ∈ J , (8b)

∑

j∈J

bji ≤ |J |pi, i ∈ H, (8c)

αi ≤ pi, i ∈ H, (8d)
∑

j∈J

bjiMq(j)g(i) ≤ pi, i ∈ H, (8e)

∑

j∈J

bjiAq(j)g(i) = αi, i ∈ H, (8f)

bji ∈ {0, 1}, j ∈ J , i ∈ H, (8g)

αi ∈
[

0, 1
]

, i ∈ H, (8h)

pi ∈ {0, 1}, i ∈ H. (8i)

Fig. 3. The VM allocation optimization model

Sk the power (in W) consumed during the switch-on and switch-off operations of a host of classk, respectively, withGi1,i2,v

the hourly cost (in $/hour) to migrate a VM of classv from CP i1 to CP i2, with Ei the hourly cost (in $/Wh) of the energy
consumed by a host belonging to CPi, with c(i) the function that gives the CP that owns hosti (i.e, a functionc : H → N ),
and withh(j) the function that gives the host where VMj is allocated (i.e., a functionh : J → H).

In the optimization model we define, for any VMj ∈ J and hosti ∈ H, the following decision variables:bji is a binary
variable that is equal to1 if VM j is allocated to hosti; αi is a real variable representing the overall fraction of CPU assigned
to all VMs allocated on hosti; pi is a binary variable that is equal to1 if host i is powered on. The objective functione

(

J ,H
)

(hereafter,e for short) represents, for a specific assignment of decisionvariables, the hourly energy cost (in $/hour) due to the
power consumption induced by the federation of CPs to host the given VMs.

The resulting VM allocation is bound to the following constraints:

• Eq. (8b) imposes that each VM is hosted by exactly one host;
• Eq. (8c) states that only hosts that are switched on can have VMs allocated to them; the purpose of these constraints is

to avoid that a VM is allocated to a host that will be powered off;
• Eq. (8d) ensures that (1) the CPU resource of a powered-on host is not exceeded, and (2) that no CPU resource is

consumed on a host that will be powered off;
• Eq. (8e) assures that (1) the RAM resource of a powered-on host is not exceeded, (2) that VMs hosted on that host receive

their required amount of RAM, and (3) that no RAM resource is consumed on a host that will be powered off;
• Eq. (8f) states that all VMs must exactly obtain the amount ofCPU resource they require;
• Eq. (8g), Eq. (8h), and Eq. (8i) define the domain of decision variablesbji, αi, andpi, respectively.

As in [28], in order to keep into considerations QoS requirements related to each class of VMs, we assumed that each VMj
exactly obtains the amount of CPUCPU q(j) and RAMRAM q(j) as defined by its classq(j) (see Section II-A).

IV. EXPERIMENTAL EVALUATION

To illustrate the effectiveness of our algorithm for coalition formation, we perform a set of experiments in which we compute
the federation set for various scenarios including a population of distinct CPs.

In all scenarios, we consider4 CPs, whose infrastructures are characterized as reported in Table V, and we use the same
host classes, VM classes and VM shares as the ones defined in Table I. We also assume that all CPs use the same revenue
rate policy, that is they earn0.08 $/hour for class-1 VMs, 0.16 $/hour for class-2 VMs, and 0.32 $/hour for class-3 VMs.
Furthermore, without loss of generality, we also assume that the electricity price is the same for all CPs and it is equal to 0.4
$/kWh.



TABLE V
EXPERIMENTAL EVALUATION – CONFIGURATION OFCPS

CP # Hosts
Class-1 Class-2 Class-3

CP1 40 0 0
CP2 0 40 0
CP3 0 0 40
CP4 15 15 10

TABLE VI
EXPERIMENTAL RESULTS– WORKLOAD OF CPS IN THE CASE STUDY

CP # VMs
Class-1 Class-2 Class-3

CP1 0 12 13
CP2 18 5 11
CP3 17 18 11
CP4 3 2 0

Starting from this configuration, we set up400 scenarios that differ from each other in the workload of the various CPs, in
the power state of each host and in the VM migration costs. Specifically, in each scenario the workload of each CP is set by
randomly generating the number of VMs of each class as an integer number uniformly distributed in the[0, 20] interval. In
addition, to provide values to functiono(·), we randomly generate the power state (i.e., ON or OFF) of each host according to
a Bernoulli distribution with parameter0.5. Furthermore, the values forLk andSk, for each host classk, are computed as the
product of the electricity price, the maximum power consumption and the time taken to complete the switch-on or switch-off
operation. This switch-on/-off time is randomly generatedfor each host class according to a Normal distribution with mean of
300 µsec and standard deviation (S.D.) of50 µsec (e.g., see [29]). Finally, the VM migration costsGc1,c2,k from CPc1 to CP
c2 for each VM classk are computed as the product between the data transfer cost rate, the data size to transfer and the time
to migrate a VM of classk from CPc1 to CPc2, and assuming that our algorithm activates every12 hours. The data transfer
cost rate is taken from the Amazon EC2 data transfer pricing [13] and set to0.001 $/GB. Furthermore, we suppose that data
are persistently transferred during the migration time at afixed data rate of100 Mbit/sec for all CPs. For what concerns the
migration time, we assume that it is randomly generated according to a Normal distribution with mean of277 sec and S.D.
of 182 sec for VMs of class1, with mean of554 sec and S.D of364 sec for VMs of class2, and with mean of1108 sec
and S.D. of728 sec for VMs of class3 (e.g., see [30]). The migration cost between hosts of the same CP is assumed to be
negligible.

For each one the above scenario, we compute the federation set of the involved CPs by using an ad-hoc simulator written
in C++ and interfaced with CPLEX [31] to solve the various instances of the optimization model of Section III-C.

In the rest of this section, we first present a summary of the performance obtained by our algorithm over all scenarios, and
then, we illustrate its behavior by showing its run trace forone of these scenarios.

In Figure 4, we compare the performance of each scenario in terms of energy saving and net profit obtained with our algorithm
with respect to theno-federationcase (i.e., when CPs work in isolation). Specifically, the figures show, for each scenario, the
percentage of the reduction of energy consumption (see Figure 4a) and of the increment of net profit (see Figure 4b) that all
CPs obtain when they federate according to our algorithm with respect to the case of working individually. As can be seen
from the figures, our algorithm, with respect to always work non-cooperatively, allows the CPs to reduce the overall consumed
energy from11.3% to 33.6% (with an average of21.6%), and to increment the overall net profit from5.1% to 20.1% (with
an average of10.5%).

We can also analyze the benefits provided by our algorithm from the point of view of each CP. Results from our experiments
show that, from the CP perspective, the formation of federations yielded by our algorithm is always non-detrimental. Specifically,
it results that, on average, the net profit earned by CP1, CP2, CP3 and CP4 increases by nearly18.0%, 8.5%, 22.8% and4.3%
with respect to the no-federation case, respectively.

Finally, to illustrate how our algorithm works, we present the run trace for a single scenario, whose characteristics are
reported in Table VI.4 We select this scenario to illustrate the behavior of the algorithm when there are multiple Nash-stable
partitions.5

4Due to lack of space, we only report the number of VMs.
5Note, our algorithm’s output is always a single partition.
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Fig. 4. Performance of our algorithm with respect to the no-federation case

For this investigation, we show in Table VII all possible partitions together with the value functionv(·) of every coalition
inside each partition, and the corresponding Shapley values. 6 From the table, we can see that there are two Nash-stable
coalitions, namely

{

1, 2, 3, 4
}

and
{

{1, 3}, {2, 4}
}

. To arrive to one of these partitions, our algorithm works asfollows.
Starting from partition

{

{1}, {2}, {3}, {4}
}

(i.e., every CP works individually), there are two different sequences of hedonic
shift rules:

• Sequence#1:
{

{1}, {2}, {3}, {4}
} 3
−→

{

{1, 3}, {2}, {4}
} 2
−→

{

{1, 2, 3}, {4}
} 4
−→

{

{1, 2, 3, 4}
}

• Sequence#2:
{

{1}, {2}, {3}, {4}
} 3
−→

{

{1, 3}, {2}, {4}
} 2
−→

{

{1, 3}, {2, 4}
}

where the index on top of each arrow denotes the CP that performs the corresponding hedonic shift rule.
Regardless what partition is finally selected, from the third column of Table VII we can also observe that, for this scenario,

the partition value improvement for both Nash-stable partitions with respect to the non-cooperative behavior (i.e., partition
{

{1}, {2}, {3}, {4}
}

) is about10% for partition
{

{1, 3}, {2, 4}
}

and nearly17% for the grand-coalition.

V. RELATED WORKS

Recently, the concept of cloud federations [6], [32] has been proposed as a way to provide individual CPs with more flexibility
when allocating on-demand workloads. Existing work on cloud federations has been mainly focused on the development of
architectural models for federations [33], and of mechanisms providing specific functionalities (e.g., workload management
[34], [35], accounting and billing [36], and pricing [37]–[40]).

To the best of our knowledge, very little work has been carried out to jointly tackle the problem of dynamically forming
stable cloud federations for energy-aware resource provisioning. Indeed, much of the existing work only focuses on a single
aspect of the problem. In [41], the design and implementation of a VM scheduler for a federation of CPs is presented. The
scheduler, in addition to manage resources that are local toeach CP, is able to decide when to rent resources from other CPs,
when to lease own idle resources to other CPs, and when to turnon or off local physical resources. Unlike our work, this work
does not consider the problem of forming stable CP federations. In [42], a cooperative game-theoretic model for federation
formation and VM management is proposed. In this work, the federation formation among CPs is analyzed using the concept
of network games, but the energy minimization problem is notconsidered.

In [11], a profit-maximizing game-based mechanism to enabledynamic cloud federation formation is proposed. The dynamic
federation formation problem is modeled as a hedonic game (like our approach), and the federations are computed by means
of a merge-split algorithm. There are several important differences between this and our works: (1) we focus on the stability
of individuals rather than of groups, (2) we propose a decentralized algorithm, (3) we demonstrate the stability of the obtained

6Note, our algorithm does not necessarily enumerate all of such partitions.



TABLE VII
EXPERIMENTAL RESULTS– COALITION VALUES AND SHAPLEY VALUES FOR ALL THE 15 DIFFERENT PARTITIONS OF THE CASE STUDY

Π =
{

S1, . . . ,Sl

}

{

v
(

S1

)

, . . . , v
(

Sl

)

}

∑

Si∈Π v(Si)
{

φS1
, . . . , φSl

}

{

{

1
}

,
{

2
}

,
{

3
}

,
{

4
}

}

{

4.28, 3.45, 3.84, 0.38
}

11.95
{

{

4.28
}

,
{

3.45
}

,
{

3.84
}

,
{

0.38
}

}

{

{

1, 2
}

,
{

3
}

,
{

4
}

}

{

8.22, 3.84, 0.38
}

12.44
{

{

4.52, 3.70
}

,
{

3.84
}

,
{

0.38
}

}

{

{

1, 3
}

,
{

2
}

,
{

4
}

}

{

9.59, 3.45, 0.38
}

13.42
{

{

5.01, 4.57
}

,
{

3.45
}

,
{

0.38
}

}

{

{

1
}

,
{

2, 3
}

,
{

4
}

}

{

4.28, 7.82, 0.38
}

12.48
{

{

4.28
}

,
{

3.72, 4.10
}

,
{

0.38
}

}

{

{

1, 4
}

,
{

2
}

,
{

3
}

}

{

4.69, 3.45, 3.84
}

11.98
{

{

4.29, 0.40
}

,
{

3.45
}

,
{

3.84
}

}

{

{

1
}

,
{

2, 4
}

,
{

3
}

}

{

4.28, 4.33, 3.84
}

12.45
{

{

4.28
}

,
{

3.70, 0.63
}

,
{

3.84
}

}

{

{

1
}

,
{

2
}

,
{

3, 4
}

}

{

4.28, 3.45, 5.43
}

13.16
{

{

4.28
}

,
{

3.45
}

,
{

4.44, 0.99
}

}

{

{

1, 2, 3
}

,
{

4
}

}

{

13.27, 0.38
}

13.65
{

{

5.00, 3.70, 4.57
}

,
{

0.38
}

}

{

{

1, 2, 4
}

,
{

3
}

}

{

8.69, 3.84
}

12.53
{

{

4.39, 3.80, 0.50
}

,
{

3.84
}

}

{

{

1, 2
}

,
{

3, 4
}

}

{

8.22, 5.43
}

13.65
{

{

4.52, 3.70
}

,
{

4.44, 0.99
}

}

{

{

1, 3, 4
}

,
{

2
}

}

{

10.01, 3.45
}

13.46
{

{

4.63, 4.78, 0.60
}

,
{

3.45
}

}

{

{

1, 3
}

,
{

2, 4
}

}

{

9.59, 4.33
}

13.92
{

{

5.01, 4.57
}

,
{

3.70, 0.63
}

}

{

{

1, 4
}

,
{

2, 3
}

}

{

4.69, 7.82
}

12.51
{

{

4.29, 0.40
}

,
{

3.72, 4.10
}

}

{

{

1
}

,
{

2, 3, 4
}

}

{

4.28, 8.88
}

13.16
{

{

4.28
}

,
{

3.62, 4.36, 0.90
}

}

{

1, 2, 3, 4
}

{

14.01
}

14.01
{

4.78, 3.78, 4.76, 0.68
}

federations, and (4) we use the Shapley value instead of the normalized Banzhaf value (as in [11]), since the latter does not
satisfy some important properties [43].

In [44], the problem of sharing unused capacity in a federation of CPs for VM spot market is formulated as a non-cooperative
repeated game. Specifically, by using a Markov model to predict future non-spot workload, the authors introduce a set of capacity
sharing strategies that maximize the federation’s long-term revenue and propose a dynamic programming algorithm to find the
allocation rules needed to achieve it. Our work can complement this approach by providing a solution to the formation of CP
federations for non-spot VM instances.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper investigates a novel dynamic federation scheme among a set of CPs. To this end, we propose a cooperative
game-theoretic framework to study the federation formation problem, and a mathematical optimization model to allocate CP
workload in an energy-aware fashion, in order to reduce CP energy costs.

In the proposed scheme, we model the cooperation among the CPs as a coalition game with transferable utility and we
devise a distributed hedonic shift algorithm for coalitionformation. With the proposed algorithm, each CP individually decides
whether to leave the current coalition to join a different one according to his preference, meanwhile improving the perceived net
profit. Furthermore, we prove that the proposed algorithm converges to a Nash-stable partition which determines the resulting
coalition structure. Numerical results show the effectiveness of our approach.

The future developments of this research is following several directions. First of all, we would like to enhance the coalition
value function in order to account for possible request losses due to lack of physical resources. Furthermore, we want to
improve the game-theoretic and optimization models in order to include costs in terms of loss of revenues as well as other
aspects like the ones related to trustworthiness among CPs.

As a second direction, we plan to integrate the long-term resource provisioning solution proposed in this paper with
other short-term and medium-term resource management strategies (e.g., [5], [45]) to improve resource utilization and meet
application-level performance requirements, and with techniques for incremental VM migration (e.g., [46]).

Finally, we want to implement and validate the proposed algorithm in a real testbed.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art ofvirtualization,” in Proc. of
the 19th SOSP, 2003.

[2] “VMware Inc.” [Online]. Available: http://www.vmware.com
[3] T. E. S. Program, “Report to Congress on server and Data Center energy efficiency,” U.S. EPA, Tech. Rep., Aug 2007.
[4] M. Guazzone, C. Anglano, and M. Canonico, “Energy-Efficient Resource Management for Cloud Computing Infrastructures,” in Proc. of the3rd

CloudCom, 2011.

http://www.vmware.com


[5] L. Albano, C. Anglano, M. Canonico, and M. Guazzone, “Fuzzy-Q&E: achieving QoS guarantees and energy savings for cloud applications with fuzzy
control,” in Proc. of the3rd CGC, 2013.

[6] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman, E.Levy, A. Maraschini, P. Massonet,
H. Mu noz, and G. Tofetti, “RESERVOIR – When one cloud is not enough,” Computer, vol. 44, no. 2, 2011.

[7] A. Celesti, A. Puliafito, F. Tusa, and M. Villari, “Towards energy sustainability in federated and interoperable clouds,” in Communication Infrastructures
for Cloud Computing, H. Mouftah and B. Kantarci, Eds., 2013.

[8] B. Peleg and P. Sudhölter,Introduction to the Theory of Cooperative Games, 2nd ed. Springer Berlin Heidelberg, 2007.
[9] D. Ray, A Game-Theoretic Perspective on Coalition Formation, ser. The Lipsey Lectures. Oxford University Press, 2007.

[10] A. Bogomolnaia and M. Jackson, “The Stability of Hedonic Coalition Structures,”Game Econ Behav, vol. 38, pp. 201–230, 2002.
[11] L. Mashayekhy and D. Grosu, “A coalitional game-based mechanism for forming cloud federations,” inProc. of5th UCC, 2012.
[12] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-level full-system power models,” inProc. of the HotPower, 2008.
[13] “Amazon Elastic Compute Cloud.” [Online]. Available:http://aws.amazon.com/ec2
[14] “GeekBench: Next-generation processor benchmark.” [Online]. Available: http://www.primatelabs.com/geekbench
[15] L. S. Shapley, “A Value forn-person Games,” inContributions to the Theory of Games, H. Kuhn and A. Tucker, Eds., 1953, pp. 307–317.
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[38] J. Künsemöller and H. Karl, “A game-theoretical approach to the benefits of cloud computing,” inProc. of the8th GECON, 2012.
[39] M. Mihailescu and Y.-M. Teo, “Dynamic Resource Pricingon Federated Clouds,” inProc. of the10th CCGrid, 2010.
[40] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya, “Resource provisioning policies to increase iaas provider’s profit in a federated cloud environment,”

in Proc. of the13th HPCC, 2011.
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APPENDIX

In this section, we present a more formal proof of the possible emptiness of the core of the cooperative CP game defined
in Section III-A. To do so, we use the proof by construction technique, by providing an instance of the game for which the
core is empty.

In cooperative game theory, theBondareva-Shapley theoremprovides the necessary and sufficient conditions for the non-
emptiness of the core solution concept [8].

http://aws.amazon.com/ec2
http://www.primatelabs.com/geekbench
http://www.ibm.com/software/integration/optimization/cplex-optimizer


TABLE VIII
CONFIGURATION OFCPS

CP # Hosts
Class-1 Class-2 Class-3

CP1 0 2 0
CP2 1 0 0
CP3 1 0 0

CP # VMs
Class-1 Class-2 Class-3

CP1 0 4 0
CP2 0 1 0
CP3 0 1 0

CP Energy Cost
($/kWh)

CP1 0.4
CP2 0.4
CP3 0.4

TABLE IX
VALUES OFv(·) FOR CPS COALITIONS

CoalitionsS v
(

S
)

($/hour)
{

1
}

0.345
{

2
}

0.095
{

3
}

0.095
{

1, 2
}

0.513
{

1, 3
}

0.513
{

2, 3
}

0.225
{

1, 2, 3
}

0.623

Theorem A.1 (Bondareva-Shapley theorem). Given a cooperative game〈N , v〉, the core of〈N , v〉 is non-empty if and only
if for every functionα : 2N \ {∅} → [0, 1] where

∀i ∈ N :
∑

S∈2N : i∈S

α
(

S
)

= 1

the following condition holds:
∑

S∈2N \{∅}

α
(

S
)

v
(

S
)

≤ v
(

N
)

. (9)

We now show that for the cooperative CP game there exists at least one counterexample that violates the conditions Eq. (9)
of the Bondareva-Shapley theorem.

Let us consider a simple scenario consisting of the same hostand VM classes as defined in Section II-B, and of three CPs,
whose characteristics are reported in Table VIII.

We build the cooperative CP game〈N , v〉 whereN = {1, 2, 3} is the set of CPs andv(·) is the same characteristic function
defined in Eq. (1). In Table IX, we show the enumeration of all possible CP coalitions for this game along with their values.
To compute the coalition value we use the same revenue rate described in Section IV, that is0.08 $/hour for class-1 VMs,
0.16 $/hour for class-2 VMs, and0.32 $/hour for class-3 VMs.

Let us choose as functionα(·) in A.1 the following function:

α
(

S
)

=







1
2 , S ∈

{

{

1, 2
}

,
{

1, 3
}

,
{

2, 3
}

}

,

0, otherwise.

If the core is non-empty, Eq. (9) would hold. However, it results that:

v
(

{1, 2, 3}
)

<
1

2
·

(

v
(

{1, 2}
)

+ v
(

{1, 3}
)

+ v
(

{2, 3}
)

)



That is:

0.623 <
1

2
· (0.513 + 0.513 + 0.225),

0.623 < 0.625.

which clearly violates the conditions Eq. (9) of the Bondareva-Shapley theorem and hence the core for this game is empty.
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