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Abstract

Federations among sets of Cloud Providers (CPs), wherelgt af CPs agree to mutually use their own resources to run
the VMs of other CPs, are considered a promising solutioméoptroblem of reducing the energy cost. In this paper, weesddr
the problem of federation formation for a set of CPs, whodati®m is necessary to exploit the potential of cloud fetieres
for the reduction of the energy hill. We devise a distributdgorithm, based on cooperative game theory, that allowst afs
CPs to cooperatively set up their federations in such a way ttreir individual profit is increased with respect to thesedn
which they work in isolation, and we show that, by using ogoaithm and the proposed CPs’ utility function, they areeatal
self-organize into Nash-stable federations and, by meériterated executions, to adapt themselves to environmehianges.
Numerical results are presented to demonstrate the effeetss of the proposed algorithm.

Index Terms
Cloud Federation, Cooperative Game Theory, Coalition Fdion

I. INTRODUCTION

Many modern Internet services are implemented as cloudcapipins consisting of a set &firtual Machines(VMs) that
are allocated and run on a physical computing infrastreai@naged by a virtualization platform (e.g., Xeh [1], VM&42],
etc.). These infrastructure are typically owned b¢Zlaud Provider(CP) (e.g., Amazon AWS, Rackspace, Windows Azure,
etc.), and are located into a (set of possibly distributeath denter(s).

One of the key issues that must be faced by a CP is the redudfid® energy cost, that represents a large fraction of the
total cost of ownership for physical computing infrasturess [3]. This cost is mainly due to the consumption of thegitgl
resources that must be switched on to run the workload.

To reduce energy consumption, two techniques are thergissible for a CP: (a) to minimize the number of hosts that
are switched on by maximizing the number of VMs allocated achephysical resource (using suitable resource management
techniques([4],[[5]), and (b) to use resources that cons@se énergy.

Cloud federations [6], whereby a set of CPs agree to mutweéy their own resources to run the VMs of other CPs, are
considered to be a promising solution for the reduction argy costs[[7] as they ease the application of both techsique

As a matter of fact, while each individual CP is bound to itedfic energy provider and to the physical infrastructure it
owns, a set of federated CPs may enable the usage of morddlexibrgy management strategies that, by suitably refagati
the workload towards CPs that pay less for the energy, orite¢ more energy-efficient resources, may reduce the energy
bill for each one of them.

In order to exploit the energy saving potential of cloud fadiens, it is however necessary to address the questiarecoing
its formation. As a matter of fact, it is unreasonable to assihat a CP unconditionally joins a federation regardldéshe
benefits it receives, while it is reasonable to expect thptints a federation only if this brings it a benefit.

In this paper, we address the problem of federation form&to a set of CPs, and we devise an algorithm that allows these
CPs to decide whether to federate or not on the basis of thé pgrey receive for doing so. In our approach, each CP pays
for the energy consumed by each VM, whether it belongs tovis workload or to the one of another CP, but receives a
payoff (computed as discussed later) for doing so.
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The algorithm we propose is based on cooperative game tif@of@]. In particular, we rely orhedonic gameésee [10] for
their definition) whereby each CP bases its decision on its pimeferences. Depending on the specific operational dondit
of each CP (i.e., the resource requirements of its workl@adost of energy, the energy consumption of its physicathirees,
and the revenue it obtains when running each VM on these meshidifferent federations (each one consisting of a sudfse
the CPs), or even no federation at all, may be formed by thelied CPs. We callederation sethe set of distinct federations
formed by a set of CPs.

The algorithm we propose computes the federation set tlisaitsein the highest profit that can be achieved by a set of
autonomous and selfish CPs. This derives from the fact tlg@tgorithm ensures that all the federations formed by gsou
of CPs arestable that is CPs have no incentive to leave the federation oree diecide to participate.

Unlike similar proposals (e.g.l [11]), that rely on a celimed architecture in which a trusted third party computes t
federation set, we adopt a distributed approach in whicln €2 autonomously and selfishly makes its own decisions, and
the best solution emerges from these decisions without¢lee f synchronizing them, or to resort to a trusted thirdypam
this way, we avoid two drawbacks that affect existing pr@@snamely the difficulty of finding a third party that is tted
by all the CPs, and the need to suspend the operations ofealls when the federation set is being computed.

The rest of this paper is organized as follows. In Sedfibnvl,describe the system under study, and provide some simple
motivating example. In SectionJIl, we present a coopeeatpame-theoretic model of the system under study, and show
stability conditions and profit allocation strategies thaivide the theoretical foundation for the distributed|itiman formation
algorithm, that is also presented in this section. In Sedfifj we present results from an experimental evaluatiorhtmsthe
effectiveness of the proposed approach. In Seéifibn V, weiteca short overview of related works. Finally, conclusiand
an outlook on future extensions are presented in SeCtibn VI.

Il. PROBLEM FORMULATION

In this section, we first formally describe the problem addeel in the paper (see Section1I-A), and then we illustraees
issues that must be properly addressed in order to propeirhe & (see Sectioh 1I-B).

A. System Description

We consider a set af CPs denoted byV' = {1,2, . ,n}, where each CR is endowed with a se¥; of physical hosts.
We denote as{ = H, UHo U---UH, the set of all the hosts collectively belonging to the vasi@@Ps. These hosts are
grouped into a sef of host classesccording to their processor type and to the amount of phlsiemory they provide; all
the hosts in the same class are homogeneous in terms of poo@s memory size. For arlyc H we denote by (h) the
function that gives the host class bf(i.e., a functiong : H — G).

As discussed in[12], we assume that a Wostonsumescg“(ig) Watts when its CPU is in the idle staté',;”{,‘j; Watts when

its CPU is fully utilized, and(q';y,’z) +f- (O — Cgm(ig))) when a fractionf € [0,1] of its CPU capacity is used. This
model, albeit simple, has been shown to provide accurataasts of power consumption for different host types whemiog
several benchmarks representative of real-world apmicat12].

Physical hosts run cloud workloads, consisting in aget J; U J> U---U J, of VMs, where7; denotes the set of VMs
that compose the workload of thigh CP (each VM contains the whole execution environmentref or more applications).

As typically done by CPs, VMs are grouped into a €ebf VM classesaccording to the computing capacity provided by
their virtual processors, and to the amount of physical mgrttey are equipped with; all the VMs belonging to the sanas<!
provide the same amount of computing capacity and of phlysiemory. For instance, Amazon’'s ECG2 [13] defines Hiastic
Compute Unit (ECUps an abstract computing resource able to deliver a capegitiyalent to that of a 1.2 GHz 2007 Xeon
processor, and provides varioinstance typegthat are equivalent to our VM classes) that differ amongrttie the number
of ECUs and in the amount of RAM they are equipped with. Morecgjally, small medium andlarge, corresponding to
VM class 1, 2, and 3, respectively, provide 1 ECU and 1.7 GB AMR2 ECUs and 3.7 GB of RAM, and 4 ECUs and 7.5
GB of RAM, respectively.

For any VMj € 7, we denote by (j) the function that gives its VM class (i.e., a functign 7 — Q). Using this notation,
for anyj € J we denote byCPU ;) and by RAM ,;y the amount of computing capacity and of physical memory of ¥M
respectively. As an example, in the Amazon EC2 case we hawethl/, = 1 ECU andRAM, = 1.7 GB, while CPU3 =4
ECU andRAM3 = 7.5 GB.

When allocated on a physical host a VM j uses a certain fractionl,;) ,,) of CPU capacity and a certain fraction
M i5),9(n) o_f physical_memoryAq(j)_,g(h) can b(_e determined by measuring, with a suitablt_a benchmgk (@eekBencH [14]),
the computing capacit@'ap,, delivered by the virtual processor of VMs dfij) and the capacity’ap,, delivered by the physical

processor of hosts ip(h), and then by dividing these quantities, i.,;) 4n) = Yapy For instance, ifCap,, = 1,000 and
P

Cap
; RAM ,;
Cap,, = 8,000, then A,y ony = 0.125. My ;) 4(n) Can instead be computed a$,;) ;) = [RAM e T ing(h)_"




TABLE |
OPERATIONAL SCENARIOS OFCP;, CP,, CPs

(a) Characteristics of host classes

Host Class CPU RAM Cminjcmax
(GB) (W)
1 2x Xeon 5130 16 86.7/274.9
2 Xeon X3220 32 143.0/518.4
3 2x Xeon 5160 64  490.1/1,117.8
(b) Characteristics of VM classes
VM Class Processor #CPUs RAM
(GB)
1 AMD Opteron 144 1 1
2  AMD Opteron 144 2 2
3 AMD Opteron 144 4 4
(c)Per-VM physical resource shares
Host Class Clas3-VM Class2 VM Class3 VM

1 (0.20,0.062500)  (0.4,0.12500)  (0.8,0.2500)
2 (0.15,0.031250)  (0.3,0.06250)  (0.6,0.1250)
3 (0.10,0.015625)  (0.2,0.03125)  (0.3,0.0625)

Each CP; charges, for each VM, a revenue ratgthat depends on the clag$j) of that VM) that specifies the amount
of money that the VM owner must correspond per unit of timer. iRstance, Amazon charg€08 $/hour,0.16 $/hour, and
0.32 $/hour forsmall medium andlarge instances, respectively. Consequently, C&arns a global revenue rate that is given
by the sum of the revenue rates of individual VMs. To run itskimad, CP: incurs an energy cost quantified by teeergy
cost rate(the amount of money that is paid per unit of time), which is #nergy cost resulting from the allocation of (a
subset of) the workload? on its host sef{; that must be paid per unit of time (see Secfion II-C for a a$sion on the
optimization technique we use to minimize it). We definerleéprofit rateof CP: as the difference between its global revenue
rate (obtained for hosting a set of VMs) and its global enexgst rate (that it incurs to run such VMs).

Our goal is to allocate all the VMs it on the hosts irH (independently from the corresponding CPs) in such a way to
maximize thenet profit rateof each CPi. This goal can be achieved by finding the smallest set of hbstsare sufficient
to accommodate the resource shares of all the VMg isuch that the overall energy consumption is minimized, and b
providing a suitable revenue for those CPs that host VMsrggtg to other CPs.

B. Issues in coalition formation

The most straightforward way to form a coalifbis to include in itall the CPs (thegrand coalitior). This solution is
certainly attractive because of its simplicity and easengflementation, and can bring significant benefits to itsigipent.

To illustrate, let us consider three different CPs, named, CP,, and CR, whose operational scenarios are characterized by
the values shown in Tablé I, where we report the charadteist the host classes (Taljle I(a)), of the VM classes (TEbg,
and the resource shares of each VM class (Table I(c)). Asstonthe moment, that we have both a way to compute the set of
hosts that must be switched on to minimize energy consum@icuitable optimization problem is presented in Secibg),
and a profit distribution rule that yields suitable reventee€Ps hosting external VMs, so that the minimization of thergy
consumption within a federation of CPs corresponds to theimiaation of their net profit rates (such a rule is discussed
Section1-A).

Now, let us consider a simple scenario (that we n&uenariol) in which each CP own80 hosts of a single class, and
in particular that CP, CPR,, and CR own only classt, class2, and class} hosts, respectively; furthermore, all the CPs have
the same workload (in particular, each CP has to allotatelass3 VMs) and energy cost)(4 $/kwh).

If each CP uses only its own resources and allocate its owRlaamt (i.e., no federation is formed), it achieves the eyerg
cost rate reported in Tabl€ ll(a), where also the total cat is reported. If, conversely, they form a grand coalifios, they
jointly perform a global workload allocation using the umiof their respective host sets), their corresponding iddie! and
overall energy cost rates are reported in Table 1(b).

As can be seen from these results, the grand coalition yeeldaller total cost rate of energy that, as discussed before
in SectionII=4, corresponds to a larger net profit rates fog individual CPs. In particular, the overall energy cose ria
reduced by28% (from 3.96 $/hour t02.85 $/hour), thanks to the fact that in the federation case dmyhosts belonging to
CP; are used to run all the VMs.

1in this paper, the termfederationand coalition (which is widely adopted in the game-theoretic community) ased interchangeably.



TABLE I
SCENARIO1 RESULTS

CP Powered-on  Consumed Power Energy Cost

Hosts (kw) ($/hour)
(a) no federation among CPs
CPh; 10 2.37 0.95
CP, 10 3.68 1.47
CPs 4 3.84 1.54
Total 24 9.89 3.96
(b) federation among all the CPs
CP; 30 7.12 2.85
CP, 0 0.00 0.00
CP; 0 0.00 0.00
Total 30 7.12 2.85
TABLE Il

SCENARIO2 RESULTS

CP Powered-on  Consumed Power Energy Cost

Hosts (kW) ($/hour)
(a) no federation among CPs
Ch, 22 10.47 4.19
CP, 13 14.03 5.61
CPs 13 14.03 5.61
Total 48 38.53 15.41
(b) federation among all CPs
Ch, 41 19.71 7.89
CP, 9 9.93 3.97
CPs 4 4.47 1.79
Total 54 34.11 13.65
(c) CP; and CR, federated among them, GRalone
Ch, 42 20.20 8.08
CP, 0 0.00 0.00
CPs 13 14.03 5.61
Total 84 34.23 13.69

Given the benefits resulting from the grand coalition in teiemple, it is natural to speculate whether the problem of
computing a federation set really arises in practice.

Unfortunately, as shown below, there are cases when thel graalition does not represent the best solution for all the
involved CPs. Indeed, consider another scenario (that weergcenario2) where the characteristics of the hosts and of the
VMs are the same as before (see Table Il1), but the numberygeddf hosts and VMs differ from those assumediTenario
1. In particular, now CP owns 42 class2 hosts and its workload consists @% class2 VMs, while CR, and CR own 41
class3 hosts each and both hageé class2 VMs as workload.

The individual and overall energy cost rates correspondinthe optimal solution for the no federation and the grand
coalition cases are reported in Tablé Ill(a) and (b), resypely. Again, we observe a reduction of the energy cost snghand
coalition case (seeTablellli(a) and (b)), although thisuctidn is smaller than in th&cenariol case (it amounts t@1.4%).

However, by looking at the results in Talblg lll(c), we can elye that if CR and CRB federate among them and exclude;CP
their overall energy consumption ratesmallerthan in the case of the grand coalition, although the overst involving all
three CPs is higher. As a matter of fact, in the grand coaliti joint cost rate of CPand CB amounts tdr.89+3.97 = 11.86
$/hour, while in the sub-coalition case it amounts3td8 $/hour. This means that GRnd CB have an incentive to leave the
grand coalition (in case it has been formed) and to form arfgm including only them or, said in game-theoretic words
the grand coalition isinstable(we discuss this concept in Sectionl IIl).

This example shows that a more sophisticated solution tirapls forming the grand coalition is necessary in order to
ensure stability and that, as a general rule, the resulédgration set may include several federations.



IIl. THE COOPERATIVECP GAME

As illustrated in the previous section, a CP must considaoua factors before deciding whether to join or not a fetiena
Among them, the most important ones are:

« Stability. a federation isstableif none of its participants finds that it is more profitable éave it (e.g., to stay alone or
to join another federation) rather than cooperating with dther ones.
« Fairness when joining a federation, a CP expects that the resultiofjtp are fairly divided among participants. As unfair
division leads to instability, it is necessary to design #ocation method that ensures fairness.
In this section, we model the problem of coalition format&s acoalition formation cooperative game with transferable
utility [8], [9], where each CP cooperates with the other ones inrammenaximize its net profit rate, and we present a
distributed algorithm for solving this problem.

A. Characterization

Given aset\ = {1,2,...,n} of CPs (henceforth also referred to as hayer9, acoalitionS C A represents an agreement
among the CPs 5 to act as a single entity (i.eS is a federation of CPs). Specifically, in this paper, a cimalitS implies
that the CPs belonging i8 perform a global allocation of their joint workloas by using as host set the uniGs of their
host sets. In other words, the CPs of the coalition act asges@P with a load that is the composition of the loads and with
a host set that is a composition of the host sets of the amaliti

A coalition S is associated with sevenue rater(jg) and with anenergy cost ratez(Jg,Hg). The revenue rate of is
simply the sum of revenue rates of individual VMs 7s, while e(js,Hs) can be derived by minimizing the energy cost
resulting from the allocation of the workloafls on the host set s (we discuss this in Sectidn TII1C).

We model the system under study by using the most common féreoaperative games, i.e., tleharacteristic form[8],
where the value of a coalitio§ depends solely on the members of that coalition, with no deeece on how the players in
N\ S are structured (wherd/ \ S denotes the set difference).

Given the above definitions, for the system under study wenéefiecoalition valuev(-) as:

u(S8) =" rilali) —e(Ts, Hs) @)
€S jJET;
whereq(j) is the class of VMj (see Section 1I-A).

The valueu(S) must be divided, according to a given rule, among the ppaiuts toS. The sharer;(S) of v(S) received
by CPi is its payoff and the vector:(S) € IRW!, with each component;(S) being the payoff of CH € S, is the payoff
allocation

In our cooperative game, CPs seek to form coalitions in otdéncrease their payoffs. As discussed at the beginning of
this section, payoffs should be fairly allocated so thablst@oalitions can form.

In order to ensure fairness in the division of payoffs, we tieeShapley valugl5], a solution method that is based on the
concept ofmarginal contributionf

In particular, the Shapley value of playecan be defined as:

o) = 3 BLEISE O s ) - o)) @

|
SCA\i) "

where the sum is over all subsefsnot containing;.

It is important to note that since the Shapley value for aglay based on the concept of the playenarginal contribution
to a coalition (i.e., the change in the worth of a coalitionewtthe player joins to that coalition), the larger is the dbation
provided by a player to the coalition, the higher is the pagtibcated to it. This means that, in a given CP federatiomes
“more-contributing” CP will be rewarded by other “less-tdlouting” CPs to be enrolled in the federation.

Let us now discuss the stability. In game theory, a typicay w@ guarantee stability is to ensure that the allocation of
payoffs falls in the so calledore [8], that can be intuitively defined as the set of payoff alii@ens that guarantees that no
group of players has an incentive to leave the coalifioio form another coalitiol C A. It can be shown that a game with
a non-empty core contains allocations that can be voluptagreed by all players and are thereby stable, while in aegam
with an empty core, some players (or groups of players) aterbeff when acting alone than when cooperating all togethe
(the grand coalitionV).

Unfortunately, it can be shown that the core of cooperatiPeg@me defined abowan be emptysee Sectioh A for a formal
proof of this statement).

’More specifically, we use thAumann-Drézevalue [16], which is an extension of the Shapley value for gauwith coalition structures.



maximizez = zo + x1 + x2
subject to
xo > 6.21,
x> 4.15,
zo > 4.15,
xo + x1 > 12.08,
To + x2 > 12.08,
T1 + x2 > 8.49,
To + x1 + x2 = 16.27,
0 2> 0,
z1 20,
T2 2 0.

Fig. 1. The optimization model to test the emptiness of the dor the Scenario2

TABLE IV
SCENARIO2: COALITION VALUES AND PAYOFFS

Coalition () ¢i(v)
(1} 6.21 {6.21}
2} 4.15 {4.15}
(3} 415 {4.15}

{1,2}  12.08 {7.07,5.01}
{1,3} 1208 {7.07,5.01}
{2,3} 8.49 {4.25,4.25}
{1,2,3} 16.27 {7.31,4.48,4.48}

To illustrate the effects of a game with an empty core, werreta theScenario2 example of Sectioh 1I-B, and we compute
the coalition values and payoffs corresponding to all tleefations that can be formed by the three involved CPs. Fhaset
values, that are tabulated in Tablel IV, we note that for thendrcoalition we have that; (v) + ¢2(v) = 11.79, while for the
smaller coalition{1, 2} it results thatv({1,2}) = 12.08. That is, for CR and CR, the coalition{1,2} is more convenient
than the grand coalition, or, in other words, the grand tioalis unstable. More formally, we can prove that, for 8eenario
2, the core is empty by simply solving the optimization prablshown in Figuréll, which directly derives from the definitio
of the core (e.g., se€l[8]), to find one of the imputations (if)anside the core. This optimization problem is infeasifile.,
it does not exist any payoff vectdry, 1, x2) that satisfies the core conditions) and hence the core isyefipése results
thus confirm the intuition provided in Sectién 1I-B, i.e.athn some situations the grand coalition may lead to inktgbi

It is important to note that, in general, the emptiness ofcitie does not depend on the particular payoff allocaticatesy,
but it is instead a peculiarity of the game. In order to sohis problem, we have thus to resort to a specific type of caijyer
game, the so calledoalition formation cooperative gan{eee [9], [17], [18]) that, as shown later, achieves stgbiiliy forming
independent and disjoint smaller coalitions when the g@ralition does not form (as in thecenario2 case discussed above).

More specifically, we consider a class of coalition formatgames known aBedonic gamegL0], [18]. Hedonic games can
be seen as special cases of cooperative games where a plaseférences over coalitions depend only on the compasitio
of his coalition. That is, players prefer being in one cdéatitrather than in another one purely based on who else isein th
coalitions they belong.

Let us reformulate our cooperative CP game as a hedonic gamen the set\' = {1,2,...,n} of players (i.e., CPs),
we define acoalition partition as the sell = {S;,Ss,. .., S} that partitions the CPs’ sé¥’. That is, fork = 1,...,[, each
S, C N is a disjoint coalition such tha\tjfczl S =N andS; NSy, = 0 for j # k. Given a coalition partitiodl, for any CP
1 € N, we denote bySr (i) the coalitionS;, € TI such thati € Sk.

To set up the coalition formation process, we need to defipeeterence relatiorso that each CP can order and compare
all the possible coalitions it belongs and hence it can bpiiteferences over them. Formally, for any €R N, a preference
relation =, is defined as a complete, reflexive, and transitive binagtiol over the set of all coalitions that GRean form
(see [10]). Specifically, for any CP € A and givenS;,S» C N, the notationS; =; So means that CR prefers being a
member ofS; overS, or at least; prefers both coalitions equally. The strict counterpartofis denoted by-; and implies
that: strictly prefers being a member 8% overS,. Note that the definition of a preference relation is one efghculiarities



Step 0: Initialization.
At time ¢ = 0, the CPs are partitioned as:

o= {1} 2. (o),
h(i) =0, VieN.

Step 1: Coalition Formation Stage |.
Given the current coalition partitiofl., each CPi investigates possible hedonic shift operations, in orddpok for a coalition
Sy, € 1. U B (if any) such that:
Sk U{i} =i St (4).

Step 2: Coalition Formation Stage Il
If such coalitionSy, is found, CP: decides to perform the hedonic shift rule to moveSia
1) CP: updates its history:(:) by addingSm,. ().
2; CPi leaves its current coalitio®, (i) and joins the new coalitios.
3) II. is updated:
ey = (HC \ {SHC (Z),Sk}) U {SHC (Z) \ {’L}Sk U {Z}}

Otherwise, CP remains in the same coalition so that:
Hc+1 =TIl

Step 3: Coalition Formation Stage Il
Repeat Step 1 and Step 2 until all CPs converge to a final iparfif.

Fig. 2. The Distributed Coalition Formation Algorithm

of the coalition formation process. In general, this relatcan be a function of several parameters, such as the papaff
the players receive from each coalition, the approval ofdbalition members, and the players’ history, just to nameva f
In our coalition formation CP game, for any G A/, we use the following preference relation:

S1 =i S = fi(S1) > [fi(S2) (4)

whereS;,S; C A are two coalitions containing CR and f;(-) is a preference function, defined for any € A" and any

coalition S containingi, such that:
z;(S), if S¢&h(),
fi(5)={ (5), 15 ¢hli) ©)
—00 otherwise

3

wherez;(S) is the payoff received by CPin S, andh(i) is a history set where CPstores the identity of the coalition that
it visited and left in the past. The rationale behind the usé(e) is to avoid that a CP visit the same set of coalitions twice
(a similar idea has also been used in previously publishedk vench as in[[19],[[20]). Thus, according to EQ! (5), each CP
prefers to join to the coalition that provides the largergfyunless it has already been visited and left in the pasé Strictly
counterpart-; of =, is defined by replacing- with > in Eq. (4).

B. A Distributed Coalition Formation Algorithm

We are now ready to define our distributed algorithm for d¢madi formation that allows each player to decide isefish
way to which coalitions to join at any point in time.

This algorithm is based on the followirtgedonic shift rule(see [21]): given a coalition partitiol = {S;,...,S;} on the
set N and a preference relatior;, any CP: € N decides to leave its current coalitidi;(z) and join another coalition
Sk € MU P (with S # S (i) if and only if S, U {i} >; Sn(¢). The shift rule can be seen as a selfish decision made by a
CP to move from its current coalition to a new omegardless of the effects of this move on the other.CPs

Whenever a CR applies this rule, it updates its history 3gt) to store the coalitiorSy;(4) it is leaving. After the rule is
applied, the partitiodI changes into a new partitiol’, such that:

I = (1 {Su(@), S }) U {Su(i)\ {i}, 8¢ U {i} | 6)

Using the hedonic shift rule and the preference relatiomedfin Eqg. [##) and Eq[15), we construct a distributed caaliti
formation algorithm, shown in Figuig 2.

To implement the proposed algorithm in a real environmestjitable approach must be taken. For a centralized approach
CPs can rely to a central coordinator, to which CPs commtmitteeir decisions and from which CPs obtain information to
update their local state. For what regards a distributedcagmb, suitable techniques for neighbor discovering, camioation



and synchronization must be used. To this end, well-knowgnrahms exist in distributed and multi-agent systemgditigre
(e.g., seell22],123)).

It is worth noting that the presented algorithm can be exatat specific instants of time or when new VM requests arrive
to CPs, thus making our coalition formation mechanism abladapt to environmental changes.

We now prove that our algorithm always converges to a stabfstion.

Proposition 1. Starting from any initial coalition structurél,, the proposed algorithm always converges to a final pariitio
I1;.

Proof. The coalition formation phase can be mapped to a sequendefpbperations. That is, according to the hedonic shift
rule, every shift operation transforms the current pantifil. into another partitioril.;. Thus, starting from the initial step,
the algorithms yields the following transformations:

g —>1 —» - = 1, — [epg (7

where the symbol+ denotes the application of a shift operation. Every appiboaof the shift rule generates two possible
cases: (a)S, # 0, so it leads to a new coalition partition, or (5). = 0, so it yields a previously visited coalition partition
with a non-cooperatively CP (i.e., with a coalition of sike In the first case, the number of transformations perforimethe
shift rule is finite (at most, it is equal to the number of péotis, that is the Bell number; see [24]), and hence the segue
in Eq. (1) will always terminate and converge to a final pemitlI;. In the second case, starting from the previously visited
partition, at certain point in time, the non-cooperative I@®st either join a new coalition and yield a new partitiondecide

to remain non-cooperative. From this, it follows that thenitner of re-visited partitions will be limited, and thus, it the
cases the coalition formation stage of the algorithm wilveerge to a final partitiodI . O

We address the stability of the final partitidly by using the concept dflash-stability(see [10]). Intuitively, a partitiorl
is considered Nash-stable if no CP has incentive to move ftermurrent coalitionSr (¢) to join a different coalition oflI, or
to act alone. More formally, a partitiod = {S1,...,S,} is Nash-stablef Vi € A/, S (i) =; S U {i} for all S € TTU 0.

Let us show that the partition to which our algorithm conesrgs Nash-stable.

Proposition 2. Any final partitionII; resulting from the algorithm presented in Figure 2 is Natibte.

Proof. To show this, we use the proof by contradiction techniquesufige that the final partitiobl; is not Nash-stable.
Consequently, there exists a € N and a coalitionS;, € II; U () such thatS, U {i} >, Sm, (7). Then, CPi will perform a
hedonic shift operation and hendg — H’f. This contradicts the assumption thiat is the final outcome of our algorithm.[

The Nash-stability also implies the so calledlividual-stability (see [10]). A partitionll = {S;,...,S;} is individually-
stableif do not exist a playeii € N and a coalitionS;, € II U () such thatS, U {i} >; Su(i) and S, U {i} =, S for all
j € Sk.

It is worth noting that Nash-stability only captures theioontof stability with respect to movements of single CPs. (in®
CP has an incentive to unilaterally deviate). However, #sloot guarantee the stability with respect to other aspileatsare
instead captured by other stability concepts. For instatigestability with respect to movements of groups of CPsafstured
by the core-stability (see([10]), whereby no group of CPs can colledjivdefect and form a new coalition where each of
them is better off. Unfortunately, the two stability contepre not related each other, in general (i.e., one stalodihcept
does not necessarily imply the other one). Moreover, theist ether stronger stability concepts but unfortunatékrée is not
warranty that a satisfying partition does exist (e.g., &%)[and the check for the existence is computationally Hatd.,
see [26]). Finally, Nash-stability does not guarantee tlagimization of the overall net profit (e.g., tls@cial optimumin the
game-theoretic jargon) [27]. Despite all of that, Nashs#itg is generally considered a reasonable trade-off.

Thus, we can conclude that our algorithm always converges partitionII; which is both Nash-stable and individually
stable.

C. Computation of the Coalition Value

To use the game-theoretic model discussed in the previati®sewe need a way to find (for a given coalition) the optimal
workload allocation (i.e., the allocation that minimizé® tenergy cost), that allows us to compute the coalitionevalu

To this end, we define Wlixed Integer Linear ProgranfMILP) modeling the problem of allocating a sgk of VMs onto
a setHs of hosts so that the hourly energy cost is minimized.

We base our MILP on the model describedlini[28], that has besinrévised to improve its computational performance and
then extended in order to incorporate the heterogeneityhgsipal resources and the energy cost.

The resulting optimization model is shown in Figiite 3, whereuse the same notation introduced in Sedfionlfi-#d we
denote witho(4) the function that isl if host is powered on an@ otherwise (i.e., a function : # — {0,1}), with L, and

3To ease readability, we simplify it by denoting wit/i and A the cloud workload and the host set, respectively (i.e., wé the dependence b§).



minimize e = 3" [piCof + o (CHE - C5i0)

1€EH
+pi(1 = o(i)) Ly + (1 = pi)O(i)ng} 1230
+ ) 55iGe(h(5)) ei),a0) (8a)
JjeT
subject to
> b =1, jeJ, (8b)
1€H
JjET
a; < p;, i €H, (8d)
D biMygg <piy i€, (8e)
JjeT
Y biiAyge) = @i, i€ H, (8f)
JjET
bj: € {0,1}, jeJ,i€H, (89)
ai € [0,1], icH, (8h)
p; € {0,1}, 1€ H. (8i)

Fig. 3. The VM allocation optimization model

Sk the power (in W) consumed during the switch-on and switdlepérations of a host of clags respectively, withG;, ;, .
the hourly cost (in $/hour) to migrate a VM of clasfrom CPi; to CPis, with E; the hourly cost (in $/Wh) of the energy
consumed by a host belonging to @Rwith ¢(i) the function that gives the CP that owns hogte, a functionc : H — N),
and with h(j) the function that gives the host where VMis allocated (i.e., a functioh : 7 — H).
In the optimization model we define, for any VMe J and hosti € H, the following decision variabled;;; is a binary
variable that is equal td if VM j is allocated to host; «; is a real variable representing the overall fraction of CRsigned
to all VMs allocated on host, p; is a binary variable that is equal toif host i is powered on. The objective functi@rﬁj, H)
(hereaftere for short) represents, for a specific assignment of decigiables, the hourly energy cost (in $/hour) due to the
power consumption induced by the federation of CPs to hasgihen VMs.
The resulting VM allocation is bound to the following corasits:
« Eg. (8B) imposes that each VM is hosted by exactly one host;
« Eg. (8¢) states that only hosts that are switched on can he allocated to them; the purpose of these constraints is
to avoid that a VM is allocated to a host that will be poweref] of
« Eq. (8d) ensures that (1) the CPU resource of a powered-oni©io®t exceeded, and (2) that no CPU resource is
consumed on a host that will be powered off;
« Eq. (8&) assures that (1) the RAM resource of a powered-dnidiost exceeded, (2) that VMs hosted on that host receive
their required amount of RAM, and (3) that no RAM resourceassumed on a host that will be powered off;
« Eq. [8f) states that all VMs must exactly obtain the amoun€Bl resource they require;
 Eq. (89), Eq.[(8h), and Ed._{8i) define the domain of decisianablesb;;, a;, andp;, respectively.
As in [28], in order to keep into considerations QoS requiats related to each class of VMs, we assumed that eaclj VM
exactly obtains the amount of CPUPU ;) and RAM RAM ,(;) as defined by its clasgj) (see SectiofIl-A).

IV. EXPERIMENTAL EVALUATION

To illustrate the effectiveness of our algorithm for caalitformation, we perform a set of experiments in which we pate
the federation set for various scenarios including a pdjmraof distinct CPs.

In all scenarios, we considdr CPs, whose infrastructures are characterized as repartédhle[\, and we use the same
host classes, VM classes and VM shares as the ones definedlalTaVe also assume that all CPs use the same revenue
rate policy, that is they earf.08 $/hour for classt VMs, 0.16 $/hour for clas® VMs, and0.32 $/hour for class3 VMs.
Furthermore, without loss of generality, we also assumettieaelectricity price is the same for all CPs and it is eqod).t
$/kWh.



TABLE V
EXPERIMENTAL EVALUATION — CONFIGURATION OFCPs

CP # Hosts
Classi Class2 Class3
CP; 40 0 0
CP, 0 40 0
CP; 0 0 40
CPy 15 15 10
TABLE VI

EXPERIMENTAL RESULTS— WORKLOAD OF CPS IN THE CASE STUDY

CP # VMs

Class1i Class2 Class3
Ch; 0 12 13
CP, 18 5 11
CPs 17 18 11
CPy 3 2 0

Starting from this configuration, we set 4p0 scenarios that differ from each other in the workload of tagous CPs, in
the power state of each host and in the VM migration costscifigaly, in each scenario the workload of each CP is set by
randomly generating the number of VMs of each class as agenteumber uniformly distributed in th§®, 20] interval. In
addition, to provide values to functiax(-), we randomly generate the power state (i.e., ON or OFF) df éast according to
a Bernoulli distribution with parametéx5. Furthermore, the values fdr, and Sy, for each host clask, are computed as the
product of the electricity price, the maximum power constiompand the time taken to complete the switch-on or switfth-o
operation. This switch-on/-off time is randomly generafedeach host class according to a Normal distribution wittam of
300 psec and standard deviation (S.D.)50f usec (e.g., seé [29]). Finally, the VM migration co€ts, ., » from CP¢; to CP
co for each VM classt are computed as the product between the data transfer ¢esthra data size to transfer and the time
to migrate a VM of class: from CP¢; to CP ¢y, and assuming that our algorithm activates evignhours. The data transfer
cost rate is taken from the Amazon EC2 data transfer pri¢hi3j 4nd set td.001 $/GB. Furthermore, we suppose that data
are persistently transferred during the migration time &iked data rate of00 Mbit/sec for all CPs. For what concerns the
migration time, we assume that it is randomly generatedrdaug to a Normal distribution with mean &77 sec and S.D.
of 182 sec for VMs of classl, with mean of554 sec and S.D oB64 sec for VMs of clas, and with mean ofi108 sec
and S.D. of728 sec for VMs of class3 (e.g., seel[30]). The migration cost between hosts of thees@h is assumed to be
negligible.

For each one the above scenario, we compute the federatiaf gee involved CPs by using an ad-hoc simulator written
in c++ and interfaced with CPLEX [31] to solve the various instano&the optimization model of Sectign IIM}C.

In the rest of this section, we first present a summary of théopaance obtained by our algorithm over all scenarios, and
then, we illustrate its behavior by showing its run trace dae of these scenarios.

In Figure[4, we compare the performance of each scenarioritstef energy saving and net profit obtained with our algarith
with respect to theno-federationcase (i.e., when CPs work in isolation). Specifically, theifgg show, for each scenario, the
percentage of the reduction of energy consumption (seerélidd) and of the increment of net profit (see Figurke 4b) tHat al
CPs obtain when they federate according to our algorithrh waspect to the case of working individually. As can be seen
from the figures, our algorithm, with respect to always wookiftooperatively, allows the CPs to reduce the overall woresl
energy from11.3% to 33.6% (with an average 0£1.6%), and to increment the overall net profit frofnl % to 20.1% (with
an average ot0.5%).

We can also analyze the benefits provided by our algorithm fitee point of view of each CP. Results from our experiments
show that, from the CP perspective, the formation of fedamatyielded by our algorithm is always non-detrimentak&fically,
it results that, on average, the net profit earned by, @®,, CP; and CR increases by nearly8.0%, 8.5%, 22.8% and4.3%
with respect to the no-federation case, respectively.

Finally, to illustrate how our algorithm works, we presehetrun trace for a single scenario, whose characteristies ar
reported E Tabl&VIA We select this scenario to illustrate the behavior of therdigm when there are multiple Nash-stable
partitions.

4Due to lack of space, we only report the number of VMs.
5Note, our algorithm’s output is always a single partition.
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Fig. 4. Performance of our algorithm with respect to the edefation case

For this investigation, we show in Talle VIl all possible fitavns together with the value functiom-) of every coalition
inside each partition, and the corresponding Shapley salilj;om the table, we can see that there are two Nash-stable
coalitions, namely{1,2,3,4} and {{1,3},{2,4}}. To arrive to one of these partitions, our algorithm worksfalows.
Starting from partition{ {1}, {2}, {3}, {4}} (i.e., every CP works individually), there are two diffetesequences of hedonic
shift rules:

o Sequencet1l: {{1}, {2}, {3}, {4}} == {{1,3}, {2}, {4}} = {{1,2.3}, {4}} = {{1,2,3,4}}

. Sequence#2: {{1},{2}, {3}, {4}} -5 {{1,3}, {2}, {4}} = {{1,3},{2,4}}
where the index on top of each arrow denotes the CP that pesftre corresponding hedonic shift rule.

Regardless what partition is finally selected, from thedttwolumn of Tablé_ VIl we can also observe that, for this scenar
the partition value improvement for both Nash-stable parts with respect to the non-cooperative behavior (i.artifoon
{{1},{2},{3},{4}}) is about10% for partition {{1,3},{2,4}} and nearly17% for the grand-coalition.

V. RELATED WORKS

Recently, the concept of cloud federations [B], [32] hasqwm®posed as a way to provide individual CPs with more fldikybi
when allocating on-demand workloads. Existing work on didederations has been mainly focused on the development of
architectural models for federatioris [33], and of mechasiproviding specific functionalities (e.g., workload mgement
[34], [35], accounting and billing [36], and pricing [37}k4]).

To the best of our knowledge, very little work has been cdriet to jointly tackle the problem of dynamically forming
stable cloud federations for energy-aware resource pomig). Indeed, much of the existing work only focuses onrals
aspect of the problem. In_[41], the design and implememadiba VM scheduler for a federation of CPs is presented. The
scheduler, in addition to manage resources that are loczd¢h CP, is able to decide when to rent resources from othger CP
when to lease own idle resources to other CPs, and when t@tuon off local physical resources. Unlike our work, this wor
does not consider the problem of forming stable CP federatitn [42], a cooperative game-theoretic model for fedenat
formation and VM management is proposed. In this work, tltkefation formation among CPs is analyzed using the concept
of network games, but the energy minimization problem is austsidered.

In [11], a profit-maximizing game-based mechanism to endpfamic cloud federation formation is proposed. The dyami
federation formation problem is modeled as a hedonic gaike dur approach), and the federations are computed by means
of a merge-split algorithm. There are several importarfediinces between this and our works: (1) we focus on thelityabi
of individuals rather than of groups, (2) we propose a deeéinéd algorithm, (3) we demonstrate the stability of thaned

6Note, our algorithm does not necessarily enumerate all cifi gartitions.



TABLE VII
EXPERIMENTAL RESULTS— COALITION VALUES AND SHAPLEY VALUES FOR ALL THE 15 DIFFERENT PARTITIONS OF THE CASE STUDY

n={s,....5}  {o(S),...0(8)}  Ssenv(s) {650,105}
{{1}.(2}. (3} {4}}  {4.28,3.45,3.84,0.38} 11.95 {{a28}, {345}, {3.84}, {0.38} }
{1,2}, {3}, {4} {8.22,3.84,0.38} 12.44 {4.52,3.70}, {3.84}, {0.38}
{1,3},{2}, {4} {9.59,3.45,0.38} 13.42 {5.01,4.57}, {3.45},{0.38}
{1},{2,3}, {4} {4.28,7.82,0.38} 12.48 {4.28},{3.72,4.10}, {0.38}
{1,4},{2},{3} {4.69,3.45,3.84} 11.98 {4.29,0.40}, {3.45}, {3.84}
{1},{2,4}, {3} {4.28,4.33,3.84} 12.45 {4.28},{3.70,0.63}, {3.84}
{1}, {2}, {3,4} {4.28,3.45,5.43} 13.16 {4.28},{3.45},{4.44,0.99}
{1,2,3},{4} {13.27,0.38} 13.65 {5.00,3.70,4.57}, {0.38}
{1,2,4},{3} {8.69,3.84} 12.53 {4.39,3.80,0.50}, {3.84}
{1,2},{3,4} {8.22,5.43} 13.65 {4.52,3.70}, {4.44,0.99}
{1,3,4},{2} {10.01,3.45} 13.46 {4.63,4.78,0.60}, {3.45}
{1,3},{2,4} {9.59,4.33} 13.92 {5.01,4.57},{3.70,0.63}
{1,4},{2,3} {4.69,7.82} 12.51 {4.29,0.40}, {3.72,4.10}
{1},{2,3,4} {4.28,8.88} 13.16 {4.28},{3.62,4.36,0.90}
{1,2,3,4} {14.01} 14.01 {4.78,3.78,4.76, 0.6}

federations, and (4) we use the Shapley value instead ofdhmalized Banzhaf value (as in_[11]), since the latter dogs n
satisfy some important properties [43].

In [44], the problem of sharing unused capacity in a federatif CPs for VM spot market is formulated as a non-coopegativ
repeated game. Specifically, by using a Markov model to ptédgiiure non-spot workload, the authors introduce a seapécity
sharing strategies that maximize the federation’s lomgrteevenue and propose a dynamic programming algorithm tbtfia
allocation rules needed to achieve it. Our work can compirties approach by providing a solution to the formation & C
federations for non-spot VM instances.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper investigates a novel dynamic federation schemeng a set of CPs. To this end, we propose a cooperative
game-theoretic framework to study the federation forrmapeoblem, and a mathematical optimization model to allecalP
workload in an energy-aware fashion, in order to reduce GRggncosts.

In the proposed scheme, we model the cooperation among teea€R coalition game with transferable utility and we
devise a distributed hedonic shift algorithm for coalitfenmation. With the proposed algorithm, each CP indiviludecides
whether to leave the current coalition to join a differené@etcording to his preference, meanwhile improving thegieed net
profit. Furthermore, we prove that the proposed algorithmverges to a Nash-stable partition which determines thdtieg
coalition structure. Numerical results show the effecte®s of our approach.

The future developments of this research is following savéirections. First of all, we would like to enhance the doat
value function in order to account for possible requestdssdue to lack of physical resources. Furthermore, we want to
improve the game-theoretic and optimization models in otdenclude costs in terms of loss of revenues as well as other
aspects like the ones related to trustworthiness among CPs.

As a second direction, we plan to integrate the long-ternowe® provisioning solution proposed in this paper with
other short-term and medium-term resource managememegga (e.g.,[[5],[[45]) to improve resource utilizationdameet
application-level performance requirements, and witthiégues for incremental VM migration (e.d., [46]).

Finally, we want to implement and validate the proposed ritlgm in a real testbed.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, BR. Neugebauer, I. Pratt, and A. Warfield, “Xen and the antifialization,” in Proc. of
the 19 SOSP 2003.

[2] “VMware Inc.” [Online]. Available:| http://www.vmwar&om

[3] T. E. S. Program, “Report to Congress on server and DatdeCenergy efficiency,” U.S. EPA, Tech. Rep., Aug 2007.

[4] M. Guazzone, C. Anglano, and M. Canonico, “Energy-Eéiti Resource Management for Cloud Computing Infrastresttrin Proc. of the 3™
CloudCom 2011.


http://www.vmware.com

[5] L. Albano, C. Anglano, M. Canonico, and M. Guazzone, “BysQ&E: achieving QoS guarantees and energy savings fadcipplications with fuzzy
control,” in Proc. of the3 CGGC, 2013.
[6] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. LidyNagin, J. Tordsson, C. Ragusa, M. Villari, S. Claymanl.&:y, A. Maraschini, P. Massonet,
H. Mu noz, and G. Tofetti, “RESERVOIR — When one cloud is nobegh,” Computer vol. 44, no. 2, 2011.
[7] A. Celesti, A. Puliafito, F. Tusa, and M. Villari, “Towasdenergy sustainability in federated and interoperablads@ in Communication Infrastructures
for Cloud ComputingH. Mouftah and B. Kantarci, Eds., 2013.
[8] B. Peleg and P. Sudhéltentroduction to the Theory of Cooperative Game&! ed. Springer Berlin Heidelberg, 2007.
[9] D. Ray, A Game-Theoretic Perspective on Coalition Formatisar. The Lipsey Lectures. Oxford University Press, 2007.
[10] A. Bogomolnaia and M. Jackson, “The Stability of Hedo@oalition Structures,Game Econ Behawol. 38, pp. 201-230, 2002.
[11] L. Mashayekhy and D. Grosu, “A coalitional game-baseethanism for forming cloud federations,” Rroc. of 5" UCC, 2012.
[12] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A corguar of high-level full-system power models,” Proc. of the HotPower2008.
[13] “Amazon Elastic Compute Cloud.” [Online]. Availablbitp://aws.amazon.com/ec2
[14] “GeekBench: Next-generation processor benchmag@rilipe]. Available:| http://www.primatelabs.com/geekbla
[15] L. S. Shapley, “A Value fom-person Games,” it€ontributions to the Theory of Gamed. Kuhn and A. Tucker, Eds., 1953, pp. 307-317.
[16] R. Aumann and J. Dréze, “Cooperative games with doalistructures,”Int J Game Theqrvol. 3, no. 4, pp. 217-237, 1974.
[17] K. Apt and A. Witzel, “A Generic Approach to Coalition Foation,” Int Game Theor Rewol. 11, no. 03, pp. 347-367, 2009.
[18] J. Dréze and J. Greenberg, “Hedonic coalitions: Oglity and stability,” Econometricavol. 48, no. 4, pp. 987-1003, 1980.
[19] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjgrungfidedonic coalition formation for distributed task allomat among wireless agentdFEE
Trans Mobile Computvol. 10, no. 9, pp. 1327-1344, 2011.
[20] W. Saad, Z. Han, A. Hjgrungnes, D. Niyato, and E. Hossdwalition formation games for distributed cooperatianang roadside units in vehicular
networks,”IEEE J Sel Area Compnvol. 29, no. 1, pp. 48-60, 2011.
[21] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjgrungtfeseglfish approach to coalition formation among unmannedetiicles in wireless networks,”
in Proc. of the1st GameNets2009.
[22] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blaijstributed Systems: Concepts and Desigfi ed. Addison Wesley, 2011.

[23] G. Weiss, Ed.Multiagent System2™ ed. MIT Press, 2013.

[24] G. Rota, “The number of partitions of a seim Math Mon vol. 71, no. 5, pp. 498-504, 1964.

[25] H. Aziz and F. Brandl, “Existence of stability in hedontoalition formation games,” ifroc. of the11 AAMAS 2012, pp. 763-770.

[26] H. Aziz, F. Brandt, and H. Seedig, “Computing desiraplatitions in additively separable hedonic gamésiif Intell, vol. 195, pp. 316-334, 2013.
[27] C. Hasan, E. Altman, and J.-M. Gorce, “On the nash stghiit the hedonic coalition formation gamesEEE Trans Automat Contrsubmitted.

[28] D. Borgetto, H. Casanova, G. D. Costa, and J.-M. Piersenergy-aware service allocationFuture Generat Comput Systol. 8, no. 25, pp. 769-779,

2012.

[29] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap:niifiating server idle power,” ifProc. of the14t" ASPLOS2009.

[30] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper,ethcting the performance of virtual machine migration,”Rroc. of the MASCOT,2010.

[31] “IBM ILOG CPLEX Optimizer.” [Online]. Available: http//www.ibm.com/software/integration/optimizationler-optimizer

[32] R. Moreno-Vozmediano, R. Montero, and I. Llorente,d% Cloud Architecture: From Virtualized Data Centers to dfatbd Cloud Infrastructure,”
Computer vol. 45, no. 12, pp. 65-72, 2012.

[33] A. Ferrer, F. Hernandez, J. Tordsson, E. Elmroth, Ai-EAdin, C. Zsigri, R. Sirvent, J. Guitart, R. Badia, K. Djame, W. Ziegler, T. Dimitrakos,
S. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. thiia, A. Kipp, S. Wesner, M. Corrales, N. Forgo, T. SharifdaC. Sheridan, “OPTIMIS:
A Holistic Approach to Cloud Service Provisioningfuture Generat Comput Systol. 28, no. 1, pp. 66-77, 2012.

[34] A. Nordal, A. Kvalnes, J. Hurley, and D. Johansen, “BalaFederating Private and Public Clouds,”Rnoc. of the7!" SERVICES2011.

[35] L. Larsson, D. Henriksson, and E. Elmroth, “Schedulargd Monitoring of Internally Structured Services in ClouedErations,” inProc. of the16™
ISCC 2011.

[36] E. Elmroth, F. Marquez, D. Henriksson, and D. Ferrerccounting and Billing for Federated Cloud Management,Pic. of thes™ GCC, 2009.

[37] M. Hassan, M. S. Hossain, A. J. Sarkar, and E.-N. Huh di@&wative game-based distributed resource allocatiomiizdntal dynamic cloud federation
platform,” Inform Syst Frontpp. 1-20, 2012.

[38] J. Kiinsemdller and H. Karl, “A game-theoretical apgrh to the benefits of cloud computing,” Broc. of thes™ GECON 2012.

[39] M. Mihailescu and Y.-M. Teo, “Dynamic Resource Pricing Federated Clouds,” iRroc. of the10" CCGrid, 2010.

[40] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya, $Bearce provisioning policies to increase iaas providerdipin a federated cloud environment,”
in Proc. of the13™ HPCC, 2011.

[41] I. Goiri, J. Guitart, and J. Torres, “Economic model of a clgorovider operating in a federated cloudiiform Syst Frontvol. 14, no. 4, pp. 1-17,
2012.

[42] D. Niyato, Z. Kun, and P. Wang, “Cooperative virtual rame management for multi-organization cloud computingirenment,” in Proc. of the5™
VALUETOOLS$2011.

[43] R. van den Brink and G. van der Laan, “Axiomatizationstieé normalized Banzhaf value and the Shapley val8ef Choice Welfarevol. 15, no. 4,
pp. 567-582, 1998.

[44] N. Samaan, “A novel economic sharing model in a federatf selfish cloud providers|EEE Trans Parallel Distr SystTo appear.

[45] M. Guazzone, C. Anglano, and M. Canonico, “Exploitiny\figration for the automated power and performance manageof green cloud computing
systems,” inProc. of thelst E2DC, 2012.

[46] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and ratipn cost aware application placement in virtualizedtays,” in Proc. of the9th
Middleware 2008.

APPENDIX

In this section, we present a more formal proof of the poss#vhptiness of the core of the cooperative CP game defined
in SectionII=A. To do so, we use the proof by constructiochigique, by providing an instance of the game for which the
core is empty.

In cooperative game theory, tigondareva-Shapley theorepmovides the necessary and sufficient conditions for the non
emptiness of the core solution concegt [8].


http://aws.amazon.com/ec2
http://www.primatelabs.com/geekbench
http://www.ibm.com/software/integration/optimization/cplex-optimizer

TABLE VIl
CONFIGURATION OFCPs

CP # Hosts
Classi Class2 Class3
CP; 0 2 0
CP, 1 0 0
CP; 1 0 0
CP # VMs
Classi Class2 Class3
CPy 0 4 0
CP, 0 1 0
CP; 0 1 0
CP Energy Cost
($/kwh)
CPy 0.4
CP, 0.4
CPs 0.4
TABLE IX

VALUES OFv(-) FORCPS COALITIONS

Coalitions S v(S)

($/hour)

1 0.345

2 0.095

3 0.095
1,2 0.513
1,3 0.513
2,3 0.225
{1,2,3} 0.623

Theorem A.1 (Bondareva-Shapley theorem(iven a cooperative gamgV, v), the core of(N, v) is non-empty if and only
if for every functiona : 2V \ {0} — [0, 1] where

VieN: Y a(S)=1
Se2N:ieSs
the following condition holds:
a(S)v(S) < v(./\/) (9)
Se2M\{0}

We now show that for the cooperative CP game there existsast tme counterexample that violates the conditions[Eq. (9)
of the Bondareva-Shapley theorem.

Let us consider a simple scenario consisting of the sameamus/M classes as defined in Section 1I-B, and of three CPs,
whose characteristics are reported in TablelVIIl.

We build the cooperative CP gani&’, v) whereN = {1,2, 3} is the set of CPs and(-) is the same characteristic function
defined in Eq.[(I1). In TableIX, we show the enumeration of aksgible CP coalitions for this game along with their values.
To compute the coalition value we use the same revenue ratgilded in Sectiof 1V, that i9.08 $/hour for classt VMs,

0.16 $/hour for class2 VMs, and0.32 $/hour for class3 VMs.

Let us choose as function(-) in [A1] the following function:

Se {{1,2} {1,3}, {273}}’

otherwise

1
a(S) =%
0,

If the core is non-empty, Egl](9) would hold. However, it désthat:

v({1,2,3}) < % - (v({l,?}) +o({1,3}) + v({2,3}))



That is:

1
0.623 < 3 (0.513 + 0.513 4+ 0.225),
0.623 < 0.625.
which clearly violates the conditions E{J (9) of the Bondar&hapley theorem and hence the core for this game is enipty.
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