
HAL Id: hal-00978153
https://inria.hal.science/hal-00978153

Submitted on 12 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging Data in the Clouds: An Environment-Aware
System for Geographically Distributed Data Transfers
Radu Tudoran, Alexandru Costan, Rui Wang, Luc Bougé, Gabriel Antoniu

To cite this version:
Radu Tudoran, Alexandru Costan, Rui Wang, Luc Bougé, Gabriel Antoniu. Bridging Data in
the Clouds: An Environment-Aware System for Geographically Distributed Data Transfers. 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2014, Chicago,
United States. �hal-00978153�

https://inria.hal.science/hal-00978153
https://hal.archives-ouvertes.fr


Bridging Data in the Clouds: An

Environment-Aware System for Geographically

Distributed Data Transfers

Radu Tudoran∗‡, Alexandru Costan†, Rui Wang∗, Luc Bougé ‡, Gabriel Antoniu∗

∗INRIA Rennes - Bretagne Atlantique, France †IRISA / INSA Rennes, France †IRISA / ENS Rennes, France

{radu.tudoran, rui.wang, gabriel.antoniu}@inria.fr alexandru.costan@irisa.fr luc.bouge@bretagne.ens-cachan.fr

Abstract—Today’s continuously growing cloud infrastructures
provide support for processing ever increasing amounts of sci-
entific data. Cloud resources for computation and storage are
spread among globally distributed datacenters. Thus, to leverage
the full computation power of the clouds, global data processing
across multiple sites has to be fully enabled. However, managing
data across geographically distributed datacenters is not trivial
as it involves high and variable latencies among sites which come
at a high monetary cost. In this work, we propose a uniform data
management system for scientific applications running across
geographically distributed sites. Our solution is environment-
aware, as it monitors and models the global cloud infrastructure,
and offers predictable data handling performance for transfer
cost and time. In terms of efficiency, it provides the applications
with the possibility to set a tradeoff between money and time
and optimizes the transfer strategy accordingly. The system was
validated on Microsoft’s Azure cloud across the 6 EU and US
datacenters. The experiments were conducted on hundreds of
nodes using both synthetic benchmarks and the real life A-Brain
application. The results show that our system is able to model
and predict well the cloud performance and to leverage this into
efficient data dissemination. Our approach reduces the monetary
costs and transfer time by up to 3 times.

I. INTRODUCTION

An increasing number of scientific applications are currently

being ported on clouds to leverage the inherent elasticity

and scalability of these emerging infrastructures. Ranging

from large scale HPC experiments (e.g. for climate modeling

and high-energy physics) to applications capturing data from

wireless sensors networks and peforming really-time stream

processing, they all share a common feature: they produce and

handle extremely large datasets, in the order of Petabytes. To

enable this Big Data processing, cloud providers have set up

multiple datacenters at different geographical locations. The

goal is to provide redundancy and to ensure reliability in case

of site failures, as well as to optimally serve the needs of users

around the world by exploting locality. In this context, sharing,

disseminating and analyzing the data sets results in frequent

large-scale data movements across widely distributed sites. The

targeted applications are compute intensive, for which moving

the processing close to data is rather expensive (e.g. genome

mapping, high-energy physics simulations), or simply needing

large-scale end-to-end data movements (e.g. organizations

operating several data centers and running regular backup

and replication services between sites, applications collecting

data from remote sensors, satellites etc.). In all cases, the

cost savings (mainly computation-related) should offset the

significant inter-site distance (network costs etc). However,

the existing cloud data management services typically lack

mechanisms for dynamically coordinating transfers among

different datacenters in order to achieve reasonable QoS levels

and optimize the cost-performance. Being able to effectively

use the underlying storage and network resources has thus

become critical for wide-area data movements as well as for

federated cloud settings.

One approach explores the idea of leveraging the current

cloud data services as intermediate storage for transfers be-

tween several endpoints. However, in today’s cloud architec-

tures, this approach is not natural: computational nodes are

separate from storage nodes and communication between the

two exhibits a prohibitively high latency. Moreover, these ser-

vices are typically object-based and not POSIX-compliant; if

one needs to support standard file semantics, additional wrap-

pers are required to make the necessary translations. Existing

tools for file transfers [2], [3] have difficulties in adapting to

many files movements with potentially large aggregate sizes.

They also fail to achieve optimal throughput because of a (now

widely observed!) high performance variability [4] for cloud

operations, as well as network or endsystems bottlenecks. An

alternative would be to minimize data transfers by scheduling

computation close to data rather than the other way around, as

in the Hadoop [5] MapReduce processing framework, where

the same nodes serve for storage and computation. This may

often be impractical for compute intensive applications and it

is still not a solution when data must be moved for a variety

of other reasons (e.g. replication, aggregation, etc.).

To tackle these problems we introduce a cloud-based data

transfer system that supports large-scale data dissemination

across geographically distributed sites. This system automat-

ically builds and adapts performance models for the cloud

infrastructure, in order to efficiently schedule and optimize

data transfer tasks, and to effectively utilize the underlying

resources. It is enhanced with data management capabilities

such as: adaptive replication for faster data dissemination and



automatic optimization based on cost-performance constraints.

The key idea of our solution is to accurately and robustly

predict I/O and transfer performance in a dynamic cloud

environment in order to judiciously decide how to perform

transfer optimizations over federated datacenters. Estimates

are dynamically updated to reflect changing workloads, vary-

ing network-device conditions and configurations due to multi-

tenancy. Based on this monitoring we automatically estimate

the performance models for cloud resources. They are further

leveraged to predict the best combination of protocol and

transfer parameters (e.g. flow count, multicast enhancement,

replication degree) in order to maximize throughput or mini-

mize costs, according to application requirements. To validate

our approach, we have implemented the above system as part

of the Azure Cloud [6] so that applications could use it using

a Software as a Service approach.

Our contributions can be summarized as follows:

• An architecture and implementation for a monitoring ser-

vice tracking real-time information on the inter-datacenter

network connections status (Section III);

• A continuously-updated transfer performance model

leveraging the monitoring data to perform robust cost-

performance analysis (Section IV-A);

• A decision engine that uses this model to optimize data

transfers when conditions change (Sections IV-B and

IV-C);

• A fully-automated software system that integrates these

components to manage geographically-distributed data

for scientific applications (Section V);

• An extensive evaluation with synthetic benchmarks and

a real-life application from bioinformatics (Section VI).

II. THE GEOGRAPHICALLY DISTRIBUTED DATA

MANAGEMENT ECOSYSTEM

The handiest option for handling data distributed across

several data centers is to rely on the existing cloud storage ser-

vices. This approach allows to transfer data between arbitrary

endpoints via the cloud storage and it is adopted by several

systems in order to manage data movements over wide-area

networks [7], [8]. There is a rich storage ecosystem around

public clouds. Cloud providers typically offer their own object

storage solutions (e.g. Amazon S3 [9], Azure Blobs [10]),

which are quite heterogeneous, with neither a clearly defined

set of capabilities nor any single architecture. They offer

binary large objects (BLOBs) storage with different interfaces

(such as key-value stores, queues or flat linear address spaces)

and persistence guarantees, usually alongside with traditional

remote access protocols or virtual or physical server hosting.

They are optimized for high-availability, under the assumption

that data is frequently read and only seldom updated. Most

of these services focus on data storage primarily and support

other functionalities essentially as a ”side effect” Typically,

they are not concerned by achieving high throughput, nor by

potential optimizations, let alone offer the ability to support

different data services (e.g. geographically distributed trans-

fers, hints for efficient blob placement etc.). Our work aims is

to specifically address these issues.

A number of alternative solutions emerged in the context of

the GridFTP [2] transfer tool, initially developed for grids

and then adapted to clouds. Among these, the work most

comparable to ours is Globus Online [3], which provides high

performance file transfers through intuitive web 2.0 interfaces,

with support for automatic fault recovery. However, Globus

Online only performs transfers between GridFTP instances,

remains unaware of the environment and therefore its transfer

optimizations are mostly done statically. Several extensions

brought to GridFTP allow users to enhance transfer perfor-

mance by tuning some key parameters: threading in [11] or

overlays in [12]. Still, these works only focus on optimizing

some specific constraints and ignore others (e.g. TCP buffer

size, number of outbound requests). This leaves the burden of

applying the most appropriate settings effectively to scientists,

which are typically unexperienced users.

Other approaches aim at improving the throughput by

exploiting the network and the end-system parallelism or a

hybrid approach between them. Building on the nework par-

allelism, the transfer performance can be enhanced by routing

data via intermediate nodes chosen to increase aggregate band-

width. Multi-hop path splitting solutions [12] replace a direct

TCP connection between the source and destination by a multi-

hop chain through some intermediate nodes. Multi-pathing

[13] employs multiple independent routes to simultaneously

transfer disjoint chunks of a file to its destination. These

solutions come at some costs: under heavy load, per-packet

latency may increase due to timeouts while more memory

is needed for the receive buffers. On the other hand, end-

system parallelism can be exploited to improve utilization of a

single path. This can be achieved by means of parallel streams

[14] or concurrent transfers [15]. Although using parallelism

may improve throughput in certain cases, one should also

consider system configuration since specific local constraints

(e.g., low disk I/O speeds or over-tasked CPUs) may introduce

bottlenecks. More recently, a hybrid approach was proposed

[16] to alleviate from these. It provides the best parameter

combination (i.e. parallel stream, disk, and CPU numbers)

to achieve the highest end-to-end throughput between two

end-systems. One issue with all these techniques is that they

cannot be ported to the clouds, since they strongly rely on the

underlying network topology, unknown at the user-level.

Finally, one simple alternative for data management involves

dedicated tools run on the end-systems. Rsync, scp, ftp are

used to move data between a client and a remote location.

However, they are not optimized for large numbers of trans-

fers and require some networking knowledge for configuring,

operating and updating them. BitTorrent based solutions are

good at distributing a relatively stable set of large files but do

not address scientists’ need for many frequently updated files,

nor they provide predictable performance.



III. SYSTEM OVERVIEW

In this section we describe the founding principles of our

system and provide an overview of its architecture.

A. Design principles

To enable efficient geographically distributed data transfers,

we rely on the following ideas:

• Environment awareness. Cloud infrastructures are ex-

ploited using a multi-tenancy model, which leads to vari-

ations in the delivered performance of the nodes and the

communication links. Monitoring and detecting in real-

time such changes is a critical requirement for scientific

applications which need predictable performance. The

monitoring information can then be fed into higher-level

management tools for advanced provisioning and transfer

purposes over wide-area networks. This helps removing

the performance bottlenecks one-by-one and increases the

end-to-end data transfer throughput.

• Modeling the cloud performance. The complexity of the

datacenters architecture, topology and network infrastruc-

ture make simplistic approaches for dealing with transfer

performance (e.g. exploiting system parallelism) less ap-

pealing. In a virtualized environment such techniques are

at odds with the goal of reducing costs through efficient

resource utilization. Accurate performance models are

then needed, leveraging the online observations of the

cloud behavior. Our goal is to monitor the virtualized

infrastructure and the underlying networks and to predict

performance metrics (e.g. transfer time, costs). As such,

we argue for a model that provides enough accuracy for

automating the distributed data management tasks.

• Cost effectiveness. As expected, the cost closely follows

performance. Different transfer plans of the same data

may result in significantly different costs. In this paper we

ask the question: given the clouds interconnect offerings,

how can an application use them in a way that strikes

the right balance between cost and performance?

• No modification of the cloud middleware and loose

coupling. Data processing in public clouds is done at user

level, which restricts the permissions to the virtualized

space. Our solution is suitable for both public and private

clouds, as no additional privileges are required. Moreover,

stand alone components of the data management system

increase the fault tolerance and allow an easy deployment

across geographically distributed datacenters.

B. Architecture

The proposed system relies on three components, called

agents, that provide the following services: monitoring, data

transfers and decision management. These modules (depicted

in Figure 1) are replicated within the Virtual Machines (VMs)

of the datacenters where the applications are running. The

system is self-configurable: the discovery of its other peers

is done automatically using the user credentials to query the

cloud middleware. The scientific applications simply interact

Fig. 1. Architectural overview of the geographical distributed data manage-
ment system (GEO-DMS).

with the data management service using its extended API, in

order to perform wide-area data transfers.

The Monitoring Agent (MA) has the role of monitoring

the cloud environment and reporting the measurements to a

decision manager. Using the tracked data, a real-time online

map of the cloud network and resource status is continuously

constructed and made available to applications. The metrics

considered are: available bandwidth, throughput, CPU load,

I/O speed and memory status. New metrics can be easily

defined and integrated using a pluggable monitoring modules

approach. This component further records the monitoring

history. Such a feature is important from two perspectives:

on one hand, the tracked logs are used by the scientists to

better understand and profile their cloud based applications,

and on the other hand, this provides the base functionality for

a self-healing system.

The Transfer Agent (TA) performs the data transfers and

exposes a set of functions used to exploit the network par-

allelism (e.g. direct send, forward sending, read, split etc.).

These functions are used internally by the decision manager

to coordinate data movements, but are also made available

to users that might want to integrate the data management

into the application logic. Additional transfer optimizations

include: data fragmentation and recomposition using chunks

of variable sizes, hashing, acknowledgement for avoiding data

loss and duplications. One might consider the latter confir-

mation mechanism redundant at application level, as similar

functionality is provided by the underlying TCP protocol. We

argue that this can be used to efficiently handle and recover

from possible cloud nodes failures, when intermediate nodes

are used for transfers. Finally, the component also monitors the

ongoing transfers and provides real-time information about the

achieved throughput and the progress to completion.

The Decision Manager (DM) coordinates the transfer from

the source(s) to the destination(s), either through direct paths

or using multiple intermediate datacenters. The transfer is

done by replicating data across the nodes from a deployment

in a datacenter in order to increase the aggregated inter-



Fig. 2. A snapshot of the average inter-datacenter throughput (in MB/s) map
generated by the Monitoring Agent for the Azure cloud

datacenter throughput. This approach is based on the empirical

observation that intra-site transfers are at least 10x faster than

the wide-area transfers. Multiple parallel paths are then used

for all chunks of data, leveraging the fact that the cloud routes

packages through different switches, racks and network links.

The applications initialize the data movements by specifying

the transfer parameters (e.g. destination, completion time - cost

tradeoff or absolute values) to the DM. Based on these parame-

ters and on the cloud status, it chooses the appropriate number

of resources to perform the transfers, so that they satisfy the

efficiency constrains. By considering the global infrastructure

of the application (i.e. the datacenters in which the application

is deployed), the DM decides whether the transfer is done

directly between the nodes from the source and destination

datacenters, or using additional sites as intermediate hops. This

selection is updated at specific intervals based on the cloud

estimated performance, in order to reflect the inherent cloud

variability. The DM sees the network of TAs similar to a global

peer-to-peer network, which is used to coordinate data flows

towards the destination. Although a DM exists on all nodes for

availability reasons, each transfer is handled by a single entity,

typically the one contacted by the application to initialize the

transfer.

IV. ZOOM ON THE CLOUD AWARE DECISION MODEL

Multiple factors like multi-tenancy, wide-area-networks or

the commodity hardware contribute to the variation of the

performance in a cloud environment [4]. Figure 2 presents

a snapshot of the inter-datacenter throughput in the Azure

cloud, as tracked by the Monitoring Agent. There are two

options for modeling such complex infrastructures in order

to obtain an overview of the environment. Analytical models

predict the performance of the underlying resources using low-

level details about their internals alongside with workload

characterizations. Although less expensive and faster than

empirical models, they rely on simplified assumptions and

require complex details for better modeling. Sampling methods

perform active measurements of the targeted resources and

do not require understanding the increasingly-complex, and

often transparent, cloud internals. Our technique falls in the

empirical, sample-based category. In this section we describe

it and then show how to use it for predicting the transfers

cost/completion-time efficiency.

A. Cloud data transfer model

The monitoring information used for performance estima-

tions is collected in two phases: an initial learning phase, at

deployment startup; and a continuous monitoring phase during

the lifetime of the deployment. The measurements are done at

configurable time intervals in order to keep the system non-

intrusive.

We model and estimate the cloud performance (represented

by any of the tracked metrics) based on the accumulated

trace of the monitoring parameters about the environment (h -

history gives the fixed number of previous samples that define

the sliding time window). The cloud average performance (µ -

Equation 1) and the coresponding variability (σ - Equation 2)

are estimated at each moment i. These estimations are updated

based on the weights (w) given to each new measured sample.

µi =
(h− 1) ∗ µi−1 + (1− w) ∗ µi−1 + w ∗ S

h
(1)

σi =
√

γ − µ2

i (2)

γi =
(h− 1) ∗ γi−1 + w ∗ γi−1 + (1− w) ∗ S2

h
(3)

where S is the value of the sample to be integrated in

the model and γ (Equation 3) is an internal parameter used

for iteratively updating the variability (σ) as the system

progresses. Equation 3 is obtained by rewriting the formula

for the standard variability (i.e. σi =
√

1

N

∑N

j=1
(xj − µi)2),

in terms of the previous value at moment i−1 and the value of

the current sample. This rewriting allows to save the memory

that would have been needed to store the last N samples, if

the formula would have been applied directly.

Our approach weights each sample individually. For in-

stance, an outlier value in a stable environment is most

probably a temporary glitch and should not be trusted. To

select these weights, we consider the following observations:

• A high standard deviation will favor accepting new sam-

ples (even the ones farther from the average);

• A sample far from the average is a potential outlier and

it is weighted less;

• Less frequent samples are weighted higher (as they are

rare and thus more valuable).

These observations are captured in Equation 4, combining

the Gaussian distribution with a time reference component:

w =
e
−

(µ−S)2

2σ2 + (1− tf

T
)

2
(4)

where tf is the time frequency of the sample and T is

user time reference interval. This normalizes the weights with

values within the interval (0, 1): 0 - no trust and 1 - full trust.



B. Efficiency in the context of data management

Efficiency can have multiple declinations depending on

application context and user requirements. In clouds, the most

critical among these are the transfer time and the monetary

cost. Our model estimates these metrics for transferring data

between the source and destination sites, with respect to the

transfer setting (used resources, geographical location etc.).

• The Transfer Time (Tt) is estimated considering the

number of nodes (n) that are used in parallel to stream

data and the predicted transfer throughput (thrmodel),

obtained from monitoring the respective cloud link:

Tt =
Size

thrmodel

∗

1

1 + (n− 1) ∗ gain
(5)

where gain is the time reduction due to parallel transfers

(determined empirically, with values less than 1).
• The Cost of a geographical transfer is split into 3

components. The first corresponds to the cost charged by
the cloud provider for outbound data (outboundCost), as
usually inbound data is free. The other two components
are derived from the cost of the VMs (n - number of
VMs) that are leased: the network bandwidth (VMCBand)
and the CPU (VMCCPU ) costs. The ratio of the VM re-
sources used for the transfer is given by the intrusiveness
parameter (Intr). The final cost equation is:

Cost = n ∗ (Tt ∗ VMCCPU ∗ Intr+
Size
n

Tt
∗ Intr

V MCBand

) + outboundCost ∗ Size (6)

where for simplicity we considered that each of the n

nodes sends the same amount of data (Size
n

).

This model captures the correlation between performance

(time) and cost (money) and is able to adjust the tradeoff

between them dynamically during transfers. An example of

such a tradeoff is setting a maximum cost for a data transfer,

based on which our system is able to infer the amount

of resources to use. Although the network or end-system

performance can drop, the system rapidly detects the new

reality and adapts to it in order to satisfy the budget constraint.

The proposed model is rather simple, relying on a small set of

parameters, easily collected by monitoring tools (e.g. sample

history depends on the cloud variability) or set by users based

on the application type (e.g. the CPU-intrusiveness tolerated

by compute-intensive applications could be smaller: 5%, while

I/O-intensive applications would tolerate a bigger one: 10%).

These parameters are used to calibrate a general methodology

based on component monitoring, application side feedback

and behavior/pattern analysis to discover and characterize

situations leading to fluctuations of data access throughput.

Hence, this model is not tailored for specific configurations of

resources/services, and can be transported from one applica-

tion to another. This very simplicity allows the model to be

more general, but at the expense of becoming less accurate

for some precise, application dependent, settings. It was our

design choice to trade accuracy for generality. Moreover,

using knowledge discovery techniques for calibrating these

parameters reduces the possible impact of biased analysis

manually performed by administrators.

C. Multi-datacenter paths transfer strategy

With applications being currently executed across several

geographically distributed datacenters, an interesting option

for propagating the data from the source to the destination is to

use intermediate nodes from additional centers. This transfer

approach relies on multiple hops and paths instead of using just

the direct link between the source and destination sites. The

idea was first explored in the context of grids, several solutions

being proposed in conjunction with the GridFTP protocol [17],

[12]. In these private infrastructures, information about the

network bandwidth between nodes as well as the topology

and the routing strategies are publicly available. Using this

knowledge, transfer strategies can be designed for maximizing

certain heuristics [12]; or the entire network of nodes across

all sites can be viewed as a flow graph and the transfer

scheduling can be solved using flow-based graph algorithms

[17]. However, in the case of public clouds, information about

the network topology is not available to the users. One option

is to profile the performance. Even with this approach, in order

to apply a flow algorithm the links between all nodes need to

be continuously monitored. Worse, as the throughput of the

link between datacenters depends nonlinearly on the number

of nodes used (see Section VI-C), one would also need to

evaluate the throughput obtained by a different number of

nodes on a certain link. Such monitoring would incur a huge

overhead and impact on the transfer.

Our approach for solving the multi-datacenter path selection

problem in the clouds takes a different approach. We start

by selecting the shortest path (i.e. the maximum throughput)

between the source and the destination datacenters, which can

be evaluated at low cost as the total number of datacenters

is small (i.e. less than 10). Then, building on the elasticity

principle of the cloud, we try to add nodes to the transfer path,

within the datacenters that form this shortest path, in order to

increase the cumulative throughput of the link. More nodes

add more bandwidth, translating into an increased throughput.

However, as more and more nodes are added along the same

path, the additional throughput brought by them will become

smaller (e.g. due to network interferences and bottlenecks).

To address this issue, we consider also the next best path

(computed in the Algorithm 1 at lines 7-8). Having these

two paths, we can compare at any time the gain of adding

the node to the current shortest path versus adding a new

path (line 12 in Algorithm 1). Hence, nodes will be added

to the shortest path until their gain becomes smaller than the

gain of a new path, case in which, this new path will be

added to the transfer network. This will result in a transfer

topology that uses multiple paths along different datacenters.

The tradeoff between the cost and performance is controlled

by the user through the budget parameter from Algorithm 1.

This specifies how much the users are willing to pay in order

to achieve higher performance. The relationship between cost



Algorithm 1 The multi-datacenter path selection

1: procedure MULTIDATACENTERHOPSEND

2: Nodes2Use = Model.GetNodes(budget)
3: while SendData < TotalData do
4: MonitorAgent.GetLinksEstimation();
5: Path = ShortestPath(infrastructure)
6: while UsedNodes < Nodes2Use do
7: deployments.RemovePath(Path)
8: NextPath = ShortestPath(deployments)
9: UsedNodes+ = Path.NrOfNodes()

⊲ // Get the datacenter with minimal throughput
10: Node2Add = Path.GetMinThr()
11: while UsedNodes < Nodes2Use &
12: Node2Add.Thr >= NextPath.NormalizedThr do
13: Path.UpdateLink(Node2Add)
14: Node2Add = Path.GetMinThr()
15: end while
16: TransferSchema.AddPath(Path)
17: Path = NextPath
18: end while
19: end while

20: end procedure

and performance is discussed in Section VI-C3. The transfer

system increases the number of intermediate nodes in order to

reduce the transfer time as long as the budget allows. More

precisely, the system selects the largest number of nodes which

keeps the Cost from Equation 6 smaller than the budget (line

2 in Algorithm 1).

V. DESIGN AND IMPLEMENTATION

A prototype was built to validate the concepts explained in

Sections III and IV. The system was implemented in C# and

currently runs on the Microsoft Azure cloud.

The Monitoring Agent (MA) is designed as an ensemble of

autonomous multi-threaded, self-describing subsystems which

are registered as dynamic services, and are able to collaborate

and cooperate in performing a wide range of information

gathering tasks. The pluggable modules used for collecting

different sets of information, or interfacing with other monitor-

ing tools, are dynamically loaded and executed in independent

threads. In order to minimize intrusiveness on host systems, a

dynamic pool of threads is created once, and the threads are

then reused when a task assigned to a thread is completed. We

have also set a customizable intrusiveness threshold, which

limits the monitoring samples frequency when the VM is

highly loaded. This option is used for example by the DM

to suspend the throughput measurements during data trans-

fers, as this information can be collected directly from the

TA. Currently, the MA tracks several metrics: the available

bandwidth between the nodes and between the datacenters

using the iperf software [18]; the throughput, computed by

measuring the transfer time of random transfers of data; the

CPU performance, evaluated based on a small benchmark, that

we have implemented, performing mathematic operations.

The Transfer Agent (TA) is in charge of the data movements

using parallel TCP streams. The parallelization of the transfer

is done at cloud node level: data is not directly sent from

the source to the destination node, but part of it is sent

to intermediate nodes. These are then forwarding the data

towards the destination, exploiting the multiple parallel paths

existing between datacenters. Data is sent as chunks extended

with metadata information. Metadata is used for hashing and

deduplication, for recomposing the data at destination, as

packages can arrive in any order, and for routing the packages

and acknowledgements. As future work, we consider adding

support for other protocols (HTTP for content-based data or

UDP for handling geographical streaming data). The data

transfer functions can be accessed via an API or using a

set of simple commands similar to the FTP ones. Hence,

the Transfer Agents can be controlled both locally and from

remote locations (e.g. from other nodes or datacenters).

The Decision Manager (DM) implements the modeling and

the prediction components using the monitoring data. Based

on them, the efficiency of the transfer is computed at the

beginning at the transfer and then updated iteratively as the

transfer progresses. The DM selects the paths to be used (direct

or using multi datacenters) and coordinates the transfer (i.e.

what nodes and resources to provision) based on the time/cost

predictions in order to comply with the transfer constraints. For

instance, it computes whether a benefit (economy) is brought

by a set of resources if the transfer cost is within the limit,

or if by using an increased number of nodes for parallel

streaming of data the completion time can be significantly

reduced. The Manager further communicates with the TAs to

set the chunk size of the transfers via intermediate nodes in

order to maximize the resource usage while preserving the

non-intrusiveness constraints. Finally, it detects any resource

performance drops and either replaces them or asks the cloud

middleware to change them.

VI. EXPERIMENTAL EVALUATION

This section presents the evaluation of our solution on

the Azure cloud using synthetic benchmarks and a real life

application from bio-informatics, called A-Brain.

A. Experimental setup

The experiments were carried out on the Azure cloud using

datacenters from United States and Europe (North, South, East,

West US and North, West EU). We used the Small (1 CPU,

1.75 GB Memory and 100 Mbps) and Medium (2 CPU, 3.5

GB Memory and 200 Mbps) VM instances with tens of such

machines deployed in each data center, reaching a total of 120

nodes and 220 cores in the global system. To execute the A-

Brain application, we used the Extra-Large (8 CPU, 14 GB

and 800 Mbps) VM instances.

B. Assessing the cloud infrastructure variability

It is commonly known that clouds offer a variable perfor-

mance, analyzed in several previous works [19], [20], [21],

focusing on the intra-datacenter performance. When it comes

to the global cloud infrastructure, the variability is expected

to increase. We report here the performance evaluation for

data transfers between the cloud datacenters. We examined



Fig. 3. The performance variation during a week between from a client
in North Europe to the other European and US data centers. a) The TCP
throughput between sites. b) The writing times to AzureBlobs

2 scenarios: assessing the throughput variability (Figure 3 a))

and the latencies for stageing data into the AzureBlobs storage

service (Figure 3 b)). In both cases the measurements were

done from the North EU towards the other 5 EU and US

datacenters during one week, with hundreds of measurements

each day.

Figure 3 a) shows the average throughput and the standard

deviation achieved when transferring 100 MB of data using

Small instances, while Figure 3 b) shows the average time

and the standard derivation for sending 100 MB data to the

Azure Blobs. Besides the relatively high value of the standard

deviation, we notice that the measured values do not necessary

follow a trend and the performance drops or bursts can appear

at any time. This observation holds both for the neighboring

datacenter as well as for the remote ones.

C. Synthetic benchmarks

The next series of experiments evaluate the accuracy of the

sample-based cloud model, the intrusiveness of our approach

and its efficiency in terms of costs and performance.

1) Evaluating the performance prediction. Figure 4 presents

the accuracy of the estimations done using the monitoring

based model, for a 24 hour interval. The figure shows the

hourly averages (60 values per hour). The critical aspect

about the model’s accuracy is how the new samples are

integrated within the model. We have compared our solution,

based on a weighted integration (WSI), with 2 other sample

integration strategies. The first one (Monitor) considers that

the last sample describes the current reality and uses it as

expected performance; due to its simplicity and low cost it

is mostly used in the current systems. However, in our case

it gives the worst results as it is subject to the performance

variations. The second strategy considers a linear integration

of the samples (LSI), computing the future performance as an

average between the history and the new sample.

Fig. 4. a) The approximation of the TCP throughput using multiple
strategies (Monitor and Update, Linear Sampling Integration and Weighted
Sampling Integration). b)The average aggregated error in approximating the
TCP Throughput depending on the strategies.

Figure 4 a) shows how the real value of the throughput

between North US and North EU is approximated using the 3

strategies for sample integration. Our weighted approach has a

smoother approximation and is not that sensitive to temporary

variations as the other two. In Figure 4 b) we report the

difference (i.e. accuracy error) between the estimated value

and the real value. With an unstable tracked throughput (e.g.

interval 1 to 5 or 18 to 24), weighting the samples seems

to be a better option than using fixed integration strategies

(LSI). When the performance variations are less important,

both the linear and the weighted strategies give similar results.

This is explained by the fact that in a stable environment

the weights assigned to the samples converge towards 1, just

like in the case of the linear average. These relative errors

(10-15%) of the model can be easily tolerated as they result

in slightly moving the throughput performance around the

optimum value.

2) Evaluating the intrusiveness. We now analyze the impact

of higher resource utilization due to our management system

on the wide-area transfers. We measure the transfer time of

1 GB of data between the North EU and US datacenters.

The number of nodes that are used for the transfer is varied

from 1 to 5. For each node, we also vary the intrusiveness

parameter, which gives the percentage of the VM’s resources

(CPU, Memory and bandwidth) to be used by our system.

The highest values within each segment in Figure 5 corre-

spond to the situation when only 1 node is used for the transfer.

The lower values within each segment are obtained using

multiple nodes, leading to different transfer time reductions de-

pending on the intrusiveness level and the cloud performance.

Adding more resources does not reduce the transfer time with

the same percentage because: 1) the network bandwidth is

bound, 2) sending data from the source to the intermediate

nodes incurs an overhead and 3) the VM performance varies.



Fig. 5. The impact of the intrusiveness on the transfer time of 1 GB of
data between NUS and NEU, when varying the number of VMs used (1 to 5
within each segment)

Fig. 6. The tradeoff between transfer time and cost for multiple VM usage.
The values correspond to 1 GB transferred between North EU and North US

This observation supports our choice for a fine control of the

amount of resources used by the data management system.

3) Evaluating the transfer efficiency. Our next experiments

evaluate the relationship between the transfer efficiency and

the monetary cost. We focus on using intermediate nodes

to speed up parallel transfers. These nodes come at a cost,

either by leasing or taking them from the main computation.

Depending on how urgent the transfer is, a different number

of nodes can be considered acceptable. In fact, up to a

certain point, the time reduction obtained by using more nodes

prevents the transfer cost to grow significantly, as observed in

Figure 6 when using 3 up to 5 VMs. This happens because the

cost depends on the time the nodes are used for the transfer,

thus smaller transfer times reflect on smaller costs. Looking at

the cost/time ratio, an optimal point is found with 6 VMs for

this case (the maximum time reduction for a minimum cost).

However, as different applications can value costs differently,

leveraging the possibility of setting their customized cost/time

tradeoff seems useful.

4) Evaluating the environment-aware wide-area transfers.

The following experiment illustrates how the transfer effi-

ciency is improved using knowledge about the environment.

We consider sending increasing data sizes from a source

node to a destination. As we do the transfer in parallel, our

solution uses intermediate nodes from the same datacenter as

Fig. 7. Our approach (GEO-DMS) vs. simple parallel transfers. The result
show the average and the 95% confidence intervals for the transfer time

the source node. During the transfer, the performance (CPU

or bandwidth) of the used nodes can drop. Aware of these

changes, the Decision Manager adapts to them by relying less

on the problematic nodes (i.e. sending less data through those

links) or by choosing some alternate nodes. We compared

this environment-aware approach (GEO-DMS) with simply

performing the transfer in parallel, without considering the

environment. The same number of nodes were used to send in-

creasing amounts of data between two close (South and North

US) and two farther (North EU and North US) datancers. The

results in Figure 7 show that as the size of data and the distance

between datacenter increases, the environment-aware approach

reduces the transfer times. This is explained by the fact that

the transfers take longer and cloud performance changes can

thus occur. Considering also the 95% confidence intervals, we

can observe that we improve the transfers of up to 20% for

large datasets over simple parallel transfers strategies.

5) Comparing the performance with the existing solutions.

We compared our system with the Globus Online tool (using a

GridFTP backend server), with AzureBlobs (as an intermediate

storage for sending data between endpoints) and with direct

transfers (Figure 8). AzureBlobs is the slowest option as the

transfer has a writing phase with data being written by the

source node to the storage, followed by a read phase in which

the data is read by the destination. These steps incur significant

latencies due to the geographical remote location (of the source

or destination) and the HTTP-based access interfaces. Despite

these, AzureBlobs-based transfers are currently the only cloud

offering for wide-area data movements. Globus Online is a

good alternative but it lacks the cloud-awareness. Our solution

reduces the overall transfer time with a factor of 5 over the

default cloud offering and with up to 50% over other transfer

options that can be adapted for the cloud. Budget-wise, these

approaches do not incur the same costs. AzureBlobs adds

extra cost for using the persistent storage. EndPoint2EndPoint

corresponds to using one node, the cost/performance trade-

off was analyzed in Section VI-C3. When comparing with

GlobusOnline, the same setup was used meaning that higher

performances corresponds to lower costs.

6) Evaluating the multi-datacenter path strategy.



Fig. 8. Transfer time when the data size is varied for our approach (GEO-
DMS) and other existing options.

Fig. 9. The throughput between NEU and NUS datacenters for different
multi-datacenter path transfer strategies. The throughput is evaluated: a) in
time, while the overall number of nodes across datacenters is fixed to 25 ; b)
based on multiple nodes, while the time frame is kept fixed to 10 minutes

So far the evaluation focused on sending data between

the nodes in the source datacenter and the destination dat-

acenter. We now consider the scenario in which the nodes

from additional datacenters can be used as intermediate hops

to transfer the data. For this experiment we considered an

application deployed across all the 6 US and EU sites. Figure

9 presents the evaluation of the proposed approach, described

in Algorithm 1, for multi-datacenter path transfer, compared

with 3 other transfer strategies. The first one considers direct

transfers between the nodes of the source datacenter and the

destination (i.e. DirectLink). As the direct link between source

and destination might not be in fact the shortest, the other

strategies consider the shortest path (i.e. Dijkstra’s algorithm).

The selection of the shortest path can be done once, at the

beginning of the transfer (i.e. ShortestPath static) or each

time the monitoring systems provides a fresh view of the

environment (i.e. ShortestPath dynamic). The static strategy

shows the throughput obtained when the monitoring system

is not used. For all strategies, the same number of nodes was

used to perform the transfer.

In Figure 9 a) we present the cumulated throughput achieved

when 25 nodes are used to perform data transfers between the

NEU and NUS datacenters. We notice that the performance

of the shortest paths strategy and the one that we propose

Fig. 10. Execution times of the A-Brain application across 3 datacenters,
using AzureBlobs and GEO-DMS as a transfer backend. The bar indicate the
total time of transferring the files towards the Meta-Reducer located in NUS

are sometimes similar. This happens because our algorithm

extends the shortest path algorithm with mechanisms for

selecting alternatives paths when the gain brought by a node

along the initial path becomes too small due to congestions.

The performance gain increases with time, reaching 20% for

the 10 minute window considered. Alternatively, selecting the

route only once and not being environment aware decreases the

performance in time, becoming inefficient for large transfers.

In Figure 9 b) we analyze the throughput variation when

using an increasing number of nodes. We observe that for a

small number of nodes, the differences between the strategies

are very small. However, as more nodes are used for the

transfer, distributed across different geographical sites, our

algorithm is capable to better orchestrate their placement and

achieve higher throughput.

D. Experimenting with a real-life neuroimaging application

We present an evaluation of the time gains that can be

obtained for wide-area transfers in the context of a scientific

application from bio-informatics, A-Brain, which joins genetic

and neuro-imaging data analysis. Due to the large resource re-

quirements, that could not be obtained from the cloud provider

within a single datacenter, the application runs a MapReduce-

based processing across 3 datacenters; the final global result is

computed using a Meta-Reducer [22] that aggregates results

from all the datacenters. We compare the transfer times of

1000 files representing partial data, sent from each datacenter

towards the Meta-Reducer, using AzureBlobs as a transfer

backend and our solution (GEO-DMS). The results are shown

in Figure 10 for multiple file sizes, resulted from different

input data sets and configurations. For small datasets (108

MB from 3x1000x36KB files), the overhead introduced by

our solution, due to the extra acknowledgements, makes the

transfer inefficient. However, as the data size grows (120 GB),

the total transfer time is reduced by a factor of 3.

VII. CONCLUSION

This paper introduces a cloud-based data management

system for Big-Data science applications running in large,



federated and highly dynamic environments. Our solution is

able to effectively use the high-speed networks connecting

the cloud datacenters through optimized protocol tuning and

bottleneck avoidance, while remaining non-intrusive and easy

to deploy. At its core, it uses a sampling-based model for

cost-performance in a cloud setting to enable efficient trans-

fer operations across a group of geographically distributed

datacenters. As an example, by distributing data locally, it

enables high wide-area data throughput when the network core

is underutilized, at minimal cost. Our experiments show that

the system achieves high performance in a variety of settings:

it substantially improves throughput and reduces the execution

time for real applications by up to 3 times compared to state-

of-the-art solutions.

Encouraged by these results, we have started to explore

other data-management research issues, from a cloud providers

perspective. Apart from the practical applications shown in this

paper, our approach can be used to study the performance of

inter-datacenter or inter-cloud transfers. This is especially use-

ful for cloud users, to provide them with an enhanced visibility

into the actually-supported service levels. We believe that

cloud providers could leverage this tool as a metric to describe

the performance of resources with particular configurations.

As a further evolution, they could provide Introspection-as-a-

Service to reveal information about the cost of internal cloud

operations to relevant applications.

ACKNOWLEDGMENT

This work was supported by the joint INRIA - Microsoft

Research Center. The experiments presented in this paper were

carried out using the Azure Cloud infrastructure provided by

Microsoft in the framework of the ZCloudFlow project. The

authors would like to thank the Azure support teams from ATL

Europe for their valuable input and feedback.

REFERENCES

[1] Y. Chen and R. Sion, “To cloud or not to cloud?: Musings on costs
and viability,” in Proceedings of the 2Nd ACM Symposium on Cloud

Computing, ser. SOCC ’11. New York, NY, USA: ACM, 2011,
pp. 29:1–29:7. [Online]. Available: http://doi.acm.org/10.1145/2038916.
2038945

[2] W. Allcock, “GridFTP: Protocol Extensions to FTP for the Grid.” Global

Grid ForumGFD-RP, 20, 2003.
[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,

I. Raicu, and I. Foster, “The globus striped gridftp framework and
server,” in Proceedings of the 2005 ACM/IEEE conference on Supercom-

puting, ser. SC ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 54–.

[4] I. Foster, A. Chervenak, D. Gunter, K. Keahey, R. Madduri,
and R. Kettimuthu, “Enabling PETASCALE Data Movement and
Analysis,” Scidac Review, Winter 2009. [Online]. Available: http:
//www.scidacreview.org/0905/pdf/cedps.pdf

[5] “Hadoop,” http://hadoop.apache.org/.
[6] “Azure,” http://www.windowsazure.com/en-us/.
[7] T. Kosar and M. Livny, “A framework for reliable and efficient data

placement in distributed computing systems.” Journal of Parallel and

Distributed Computing 65, 10, p. 11461157, Oct. 2005.
[8] P. Rizk, C. Kiddle, and R. Simmonds, “Catch: a cloud-based adaptive

data-transfer service for hpc.” in Proceedings of the 25th IEEE Interna-

tional Parallel & Distributed Processing Symposium, 2011, p. 12421253.
[9] “Amazon S3,” http://aws.amazon.com/s3/.

[10] B. Calder and et al, “Windows azure storage: a highly available cloud
storage service with strong consistency,” in Proceedings of the 23rd

ACM Symposium on Operating Systems Principles, 2011.
[11] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data transfer

framework for large-scale science experiments,” in Proceedings of the

19th ACM International Symposium on High Performance Distributed

Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp.
717–724.

[12] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayappan,
I. Foster, and J. Saltz, “Using overlays for efficient data transfer over
shared wide-area networks,” in Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, ser. SC ’08. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 47:1–47:12.

[13] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and M. Han-
dley, “Data center networking with multipath tcp,” in Proceedings of the

9th ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-
IX. New York, NY, USA: ACM, 2010, pp. 10:1–10:6.

[14] T. J. Hacker, B. D. Noble, and B. D. Athey, “Adaptive data block
scheduling for parallel tcp streams,” in Proceedings of the High Per-

formance Distributed Computing, 2005. HPDC-14. Proceedings. 14th

IEEE International Symposium, ser. HPDC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 265–275.

[15] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data transfer
framework for large-scale science experiments,” in Proceedings of the

19th ACM International Symposium on High Performance Distributed

Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp.
717–724.

[16] E. Yildirim and T. Kosar, “Network-aware end-to-end data throughput
optimization,” in Proceedings of the first international workshop on

Network-aware data management, ser. NDM ’11. New York, NY, USA:
ACM, 2011, pp. 21–30.

[17] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayappan, and
J. Saltz, “A dynamic scheduling approach for coordinated wide-area data
transfers using gridftp,” in Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–12.
[18] “Iperf,” http://iperf.fr/.
[19] R. Tudoran, A. Costan, G. Antoniu, and L. Bougé, “A Performance

Evaluation of Azure and Nimbus Clouds for Scientific Applications,”
in CloudCP 2012 – 2nd International Workshop on Cloud Computing

Platforms, Held in conjunction with the ACM SIGOPS Eurosys 12

conference, Bern, Switzerland, 2012.
[20] H. J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early Obser-

vations on the Performance of Windows Azure,” in High Performance

Distributed Computing, Bern, Switzerland, 2010, pp. 367–376.
[21] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and

P. Maechling, “Data sharing options for scientific workflows on amazon
ec2,” in Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–9.

[22] A. Costan, R. Tudoran, G. Antoniu, and G. Brasche, “TomusBlobs:
Scalable Data-intensive Processing on Azure Clouds,” Journal of Con-

currency and computation: practice and experience, 2013.


