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Abstract—Managing and optimising cloud services is one of
the main challenges faced by industry and academia. A possible
solution is resorting to self-management, as fostered by autonomic
computing. However, the abstraction layer provided by cloud
computing obfuscates several details of the provided services,
which, in turn, hinders the effectiveness of autonomic managers.
Data-driven approaches, particularly those relying on service
clustering based on machine learning techniques, can assist
the autonomic management and support decisions concerning,
for example, the scheduling and deployment of services. One
aspect that complicates this approach is that the information
provided by the monitoring contains both continuous (e.g. CPU
load) and categorical (e.g. VM instance type) data. Current
approaches treat this problem in a heuristic fashion. This paper,
instead, proposes an approach, which uses all kinds of data and
learns in a data-driven fashion the similarities and resource
usage patterns among the services. In particular, we use an
unsupervised formulation of the Random Forest algorithm to
calculate similarities and provide them as input to a clustering
algorithm. For the sake of efficiency and meeting the dynamism
requirement of autonomic clouds, our methodology consists of
two steps: (i) off-line clustering and (ii) on-line prediction. Using
datasets from real-world clouds, we demonstrate the superiority
of our solution with respect to others and validate the accuracy
of the on-line prediction. Moreover, to show the applicability of
our approach, we devise a service scheduler that uses the notion
of similarity among services and evaluate it in a cloud test-bed.

I. INTRODUCTION

In the cloud computing domain, virtually everything can be

provided as an on-line, on-demand service [1]. Together with

scalability, heterogeneity and dynamism make clouds advanta-

geous for consumers, but from the provider’s perspective, they

make clouds difficult to manage and coordinate. Moreover,

security and privacy mechanisms also hinder management and

optimisation of cloud systems.

A prominent approach to cope with the complexity of cloud

systems is autonomic computing [2], which aims at equipping

such systems with capabilities to autonomously adapt their

behaviour according to dynamic operating conditions. To

achieve such self-management, the system entities in charge

of enacting autonomic strategies, the so-called autonomic
managers, require knowledge about the operating environment

as well as the system itself.

The abstraction provided by clouds restricts the knowledge

available to autonomic managers, and, consequently, limits

their range of actions. Data-driven approaches, without human

knowledge and intervention, can assist the operation of auto-

nomic managers. In particular, machine learning techniques,

such as clustering, generate knowledge consisting of groups

(i.e. clusters) of services with similar resource usage patterns.

This form of knowledge can be exploited by autonomic man-

agers for different purposes, such as: optimisation of resources,

service scheduling, and anomalous behaviour detection.

A critical aspect that complicates this approach is that

the information about services (called features) contains both

categorical (e.g. virtual machine instance type) and continuous
(e.g. CPU load) types of data. Current approaches address

this problem in a heuristic fashion: they either use only

one data type, which reduces distinguishability, or construct

combinations of data types by human expert intervention. Both

do not cope well with the dynamism of autonomic cloud:

when new types of services are introduced they may not be

distinguishable or a human intervention is necessary again.

In this paper, we tackle the challenge of providing a truly

autonomic and effective management of services in clouds

through similarity-based knowledge, calculated by using all
types of service features. To achieve this, we propose a

learning methodology relying on the Random Forest (RF)

algorithm [3]. We learn from the definition of services or

monitoring information and provide the similarities to a clus-

tering algorithm. In particular, for the sake of efficiency and

meeting the dynamism requirement of autonomic clouds, our

methodology consists of two steps: (1) off-line clustering,

to learn similarities and obtain the clusters; and (2) on-line
prediction, to predict to which of the computed clusters an

incoming new service belongs.

The main contributions of this paper are: (i) the analysis

of the specificities of the Autonomic Cloud (AC) domain and

the definition of the requirements of a clustering approach

for AC services; (ii) an off-line approach that relies on the

RF algorithm to learn the similarities among all observed

services, essentially a matrix, which is then provided to an

off-the-shelf clustering algorithm to identify clusters; (iii) a

cluster parsing to reduce the size of the matrix; which is then

used by (iv) the on-line prediction to reduce computational

requirements; (v) the performance and accuracy analysis of

the proposed methods using real-world datasets; and (vi) a use

case implemented in a cloud test-bed, which demonstrates the

benefits of the proposed solution through a novel scheduling

algorithm that employs the similarity of services to allocate

them in the cloud resources.
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The rest of the paper is organised as follows: Section II

discusses the potential uses of the similarity knowledge, in-

troduces the use case and illustrates the requirements of the

AC domain. Section III presents the proposed methodology.

Section IV describes the application of the methodology to

real-world datasets and in the use case. Section V reviews

related works, while Section VI draws conclusions and hints

at directions for future work.

II. SIMILARITY KNOWLEDGE AND DOMAIN

REQUIREMENTS

In this section, we discuss the benefits of the similarity

knowledge, present a use case and describe the requirements

of the AC domain for the solutions seeking this knowledge.

Similarity is a measure of how alike two services are.

We focus on the estimation of this measure based on ser-

vices definitions, such as Service-Level-Agreements (SLAs),

or monitoring information. In the domain, this knowledge is

versatile and can either be provided to a clustering algorithm

or directly used by autonomic managers. Therefore, it can deal

with a wide range of application scenarios. For example, clus-

tering can be employed in autonomic management for service

profiling, which dynamically groups services based on their

behaviour. It can be used for service scheduling, behaviour

prediction, and efficient identification of SLAs violations

during their enforcement. Another use concerns anomalous

behaviour detection, which aids autonomic managers to detect,

e.g., failures and intrusions, by assuming that the majority of

the services are normal and looking at the cluster with the

most dissimilar services.

Let us consider a motivating example of how similarity

knowledge can be used directly by an autonomic manager. A

provider enables its consumers to deploy any kind of service in

the cloud. Due to security concerns, the autonomic manager

relies exclusively on the descriptions and SLAs of services,

and on their monitoring information. Let us assume that the

autonomic manager notices that service A, which had only one

available CPU, violated a term of its SLA (concerning, e.g., the

completion time). Afterwards, a new service, named B, was

found to be similar to A and is clustered in the same group

of service A. Instead of assigning only one CPU to service B,

the autonomic manager can then decide to assign two CPUs

to avoid SLA violations, as occurred with service A.

To practically demonstrate the benefits of the similarity

knowledge, in Section IV-C, we describe the implementation

of a scheduling algorithm that assigns new services to the

nodes running the most dissimilar services in a cloud test-bed.

Therefore, the services allocated together tend to access differ-

ent resources and, thus, this algorithm reduces the competition

for the node’s resources (e.g. CPU or disk) and improves

performance.

Despite the utility of the similarity and clustering algorithms

for the domain, designing or adapting them to the autonomic

domain is challenging [4]. Moreover, the cloud domain is

characterized by specific properties that hinder the clustering

task. We describe below the most relevant characteristics of

TABLE I
CORRESPONDENCE BETWEEN AUTONOMIC CLOUD CHARACTERISTICS

AND THE REQUIREMENTS FOR CLUSTERING ALGORITHMS.

AC Characteristics Requirements
Security, Heterogeneity, Dynamism Mixed Types of Features

Large-Scale, Dynamism On-line Prediction

Security, Heterogeneity,
Dynamism, Virtualization

Similarity Learning

Large-Scale, Multi-Agent Loosely-Coupled Parallelism

Heterogeneity Large Number of Features

the autonomic clouds and their impact on this task. Table I

summarises these characteristics and relate them to the re-

quirements for service clustering in the domain.

Data security is one of the biggest barriers for cloud

adoption. Approaches to improve security in the domain

are commonly based on data cryptography and control of

cross-layer transmission of information. To process the data

converted with these security measures, a clustering algorithm

needs to support different types of features (e.g. discrete, con-

tinuous, symbolic). Moreover, as these techniques obfuscate

the features of the data, they hinder the manual combination

of data types. Therefore, a data-driven similarity learning

approach is required.

Cloud systems contain a virtualization layer. A potential risk

that this layer brings to the domain is the fine-control over the

monitoring of resources [5], limiting the management of such

systems. In light of this loose control and of the uncertainty

added by virtualization, the data is heterogeneous and also

often incongruent [6]. These characteristics pose significant

challenges towards manual combination of data types.

To offer seemly infinity pool of resources, cloud providers

deploy large-scale clouds. The massive operational data gen-

erated in these environments requires a considerable amount

of resources to be processed. The knowledge discovery pro-

cess should not be invasive, i.e. should not impact on the

performance of the cloud services provision. Accordingly, a

clustering algorithm should run in parallel to cope with the

large quantity of services within an acceptable time (low

overhead) and to divide its computational load and to operate

close to the data sources, thus reducing the impact in single

resources and avoiding unnecessary network traffic.

Clouds are inherently dynamic. New resources are con-

stantly added and removed from the infrastructure. Further-

more, the types of services and the requested resources vary

over time (also due to the pay-per-use business model em-

ployed in clouds). Considering the number of services in the

domain (large-scale clouds), the number of clustering requests

and their inconstant arrival rate, it is impracticable to re-cluster

all services on each request. Hence, on-line prediction for new

services is a requirement for clustering algorithms. Moreover,

this dynamism is enabled also by the loose coupled nature

of the cloud infrastructure; therefore, the parallelisation of the

clustering algorithms should also be loosely coupled.

Virtually everything can be provided as a service in the

cloud domain. Due to such heterogeneity, some types of

services might require monitoring data types that may not be
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easily converted to continuous numerical data types, which

are the ones commonly accepted by the clustering algorithms.

Moreover, using only categorical or continuous data types may

lead to clusterings that do not distinguish different services

and thus may provide inferior performance. Instead, using pre-

processing techniques, such as discretisation, normalisation or

standardisation, and hand crafting new data types that combine

categorical and continuous data types, require human expert

intervention and full understanding of the dataset and the rela-

tionships among data types. Devising such heuristic solutions

in the autonomic cloud domain is even more complex, consid-

ering that clouds are dynamic. Indeed, this would require to

build a new heuristic every time the autonomic manager faces

a new service type. Moreover, these techniques are hindered by

security restrictions, virtualization and the variety of services

in the cloud domain. To overcome these limitations and, most

of all, to avoid manual expert intervention, mixed types of

features should be handled by the clustering algorithm.

On the other hand, due to the heterogeneity and complexity

of cloud services (e.g. services with 100 features), the cluster-

ing algorithm should process them in an acceptable time and

should not be invasive on the system. Therefore, the clustering

algorithm needs to support a large number of features.

Finally, autonomic computing employs agents to enact the

self-* properties. A clustering algorithm can benefit from this

arrangement by parallelizing its workload.

III. AUTONOMIC MANAGEMENT OF CLOUDS WITH

CLUSTERING

To achieve a meaningful measure of similarity among ser-

vices in the context of autonomic clouds, we assume no prior

knowledge. Since multi-dimensional correlations are difficult

to extract from raw data and performance features, we use

clustering methods to learn similarities and identify patterns.

From the range of available clustering algorithms, we seek

those that: (i) can handle mixed data types (continuous and

categorical) without human expert intervention, (ii) are fast

both in the training and prediction phases and (iii) offer

superior performance.

In the following, we first discuss our choice for unsuper-

vised clustering with RF to address the above requirements,

and then we proceed in defining our methodology for learning

similarities based on the RF algorithm, and for clustering

services using such obtained similarities.

A. Clustering as unsupervised machine learning

The lack of available labelled datasets and the dynamism of

the cloud limit the adoption of supervised learning approaches.

Thus, in this paper we adopt unsupervised learning, which

does not require labelled training data and is used to find

structures and patterns in data. For an extensive review on

the these solutions we refer to [7] and, specifically on on-line

clustering, to [8], [9]. Among the unsupervised solutions, we

seek an algorithm that can process data fast, can handle mixed

types, and ideally could process data in an online fashion.

Few existing clustering solutions handle mixed types of

data (e.g. [10], [11], [12]). Moreover, the majority of the

existing on-line clustering algorithms, which handle mixed

data types cannot handle cases with a large number of features.

For example, the HClustream [12] algorithm presents poor

performance results even with 10 features [13].

Another common approach to deal with mixed data types

is to devise data-driven solution that can learn similarities

among observations1 (we refer to [14] for a detailed review on

them). However, these solutions either require information a

priori about the data (known as supervised similarity learning),

which is not available in our context or are computationally

intensive and do not scale well.

Thus, in this paper, we propose a combination of a simi-

larity learning step to discover a proper measure of similarity

among observations and a clustering algorithm to group the

observations according to this measure of similarity. In light of

the domain requirements, as the means to obtain such notion

of similarity, we adopt the Random Forest (RF) algorithm [3].

B. Service Clustering with Random Forest in the AC Domain

The RF algorithm relies on an ensemble of independent

decision trees and was initially developed for regression and

classification. It has a training and a prediction step. In

its training step, RF uses bootstrapping aggregation (i.e. re-

sampling from the dataset) and random selection of features

to train T decision trees (where T is a number defined by

the user). In the prediction step, the observations are parsed

through all T trees and the classes of the observations are

defined aggregating the decision of each tree. For details on the

classification and regression algorithms we direct the reader to

[3]. In summary, the main characteristics of RF are:

• it can handle mixed features in the same dataset;

• due to feature selection, it effectively handles data with

a large number of features;

• it is one of the most accurate learning algorithms [15];

• it is efficient and scales well [15];

• the algorithm is easily parallelizable;

• generated forests can be saved for future use (in our case,

on-line prediction).

In [16], Breiman and Cutler proposed an unsupervised

version of RF. Intuitively, the algorithm works as follows:

(i) the training dataset (original data) is labelled as class one;

(ii) the same number of synthetic observations are generated

by sampling at random from the univariate distributions of the

original data (synthetic data); (iii) the synthetic data is labelled

as class two; (iv) the trees are trained with the original and

synthetic data; and (v) the original data is parsed through the

trees, which yield the references of the leaves in which the

observations ended up.

What is particularly relevant for our purpose is that this

algorithm generates an intrinsic similarity measure. Intuitively,

the principle used is the following: the more times two

1The features of a member of the data set form a one dimensional vector
(the observation). In this work, an observation corresponds to a service.
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observations end up on the same leaf, the more similar they

should be.
More formally, the similarity between two observations

xm, xn (m,n are the indices of the observations) is calculated

as follows. Each observation is parsed through all T trees of

the forest; the leaves in which the observations end up are

annotated as lim and lin respectively, where i is the index of

the tree. Let I represent an indicator function, which yields

1 if two observations end in the same leaf in that tree and

0 otherwise. Thus, the similarity between two observations is

defined as:

S(xm, xn) =
1

T

T∑

i=1

I(lim = lin) (1)

The similarity of all pairs of observations is calculated,

which results in an N × N matrix, named SIM , where

N is the number of observations. The dissimilarity matrix
(which is generated from the similarity matrix by applying

DISSIMnm =
√
1− SIMnm) is symmetric, positive and

lies in the interval [0,1]. This matrix requires a considerable

amount of fast memory when dealing with large datasets. To

address this issue, Breiman proposed the use of the references

of the leaves in which the observations ended up in each

tree, generating a N × T matrix (where N is the number

of observations and T the number of trees, where usually

N >> T ). Therefore, the forest can be built in parallel and the

system can generate the dissimilarity matrix when necessary.
To cluster the observations, the dissimilarity matrix is used

as input to a compatible clustering algorithm, for example,

the Partitioning Around Medoids (PAM) [17]. Otherwise,

the dissimilarity matrix can be transformed into points in

the Euclidean space to be used as input to other clustering

algorithms, e.g. the standardized version of K-means [18]. The

disadvantages of this extra step is the computational cost and

the time necessary to perform the transformation operation.
Due to the scale of autonomic clouds and the possible high

arrival rate of new observations, the domain requires very low

prediction time. The unsupervised RF algorithm (successfully

used in [19], [20], [21], [16]) needs to re-execute the whole

clustering process for each new observation, which is imprac-

ticable in our domain because of the high overhead of this

process. The alternative is to use online RF algorithms, which

learn similarities and cluster observations in an instantaneous

fashion without requiring all data a priori. Unfortunately, the

most known adaptations of this approach ([22], [23], [24],

[25], and even the most recent one [26]) are computationally

demanding and cannot make a fast prediction2. Finally, RF

2We use a batch mode RF implementation for training and, thus, we need
the observations a priori. We find this to be an adequate solution since the
training happens in parallel and when the system has available resources.
However, as the amount of monitoring data increases, off-line training can be
demanding. We could adapt an on-line RF algorithm for the training phase and
still use the on-line prediction algorithm we propose. However, adapting such
algorithms is not trivial, as they create intermediate leaves on the trees, which
are split when a minimum gain is reached. This approach is incompatible with
unsupervised learning as: (i) it creates pruned trees with maximum depth; and
(ii) the observations in intermediate leaves should be re-parsed on every new
split and the observations re-clustered.

has been used for similarity learning in [27] but this solution

requires labelled data, which is not available in the AC domain.

Therefore, we propose a novel on-line prediction algorithm

based on RF, to fulfill the requirements of the domain.

C. On-Line Prediction with RF

We propose a fast and minimal footprint on-line prediction

solution tailored to fulfill the requirements of AC (summarised

in Table I). This solution takes advantage of the design of the

clustering algorithm and pre-processes the trees in order to

permit a fast and low memory implementation.

The outcome of the classical RF similarity learning is the

N × T matrix, where N is the number of observations and

T is the number of trees. As N grows, this matrix may grow

significantly and have a large memory footprint. We propose a

solution which, instead, requires an M×T matrix, where M is

the number of clusters. Since M << N (typically M ≤ 20),

this matrix has a very small memory footprint.

Our solution, termed RF+PAM, combines the strengths of

similarity learning of RF with the computational benefits of

PAM and is divided in off-line training and on-line prediction,

which are coupled and thus are presented here together.

The training phase, as depicted in Figure 1, consists of the

following steps: (i) the forest is built using the training set,

which is composed of the original and synthetic data (as de-

scribed in the previous section); (ii) the original data is parsed

through the resulting forest, which yields the dissimilarity and

the N × T matrices; (iii) the dissimilarity matrix is given as

an input to the PAM clustering algorithm, which yields the M
medoids for the dataset, i.e. the observation of each cluster

which maximises the inter-cluster dissimilarity; and (iv) since

medoids correspond to actual observations, only the results of

the medoids are selected from the N × T matrix, enabling us

to store only the forest and this smaller M ×T matrix, which

consists of the references to the leaves where the medoids

ended up in each tree.

In the prediction phase of RF+PAM, the new observations

are parsed through the forest, and a dissimilarity matrix for the

new observations with respect to each medoid is generated.

Finally, each new observation is assigned to the cluster whose

medoid has the least dissimilarity to the new observation.

Intuitively, a new observation is assigned to the cluster of the

medoid which this observation ended up in the same leaf most

times, considering all trees, i.e. the most similar medoid.

Since we separate training from prediction, and our training

happens off-line, naturally we would expect at some point

to retrain the forest. The retraining requires the definition of

a mechanism to recognize when a forest should be rebuilt.

However, this mechanism is problem-specific and depends

on the available resources and accuracy requirements. In our

context, we propose a simple but effective threshold: a user

defined ratio between the number of new observations and the

total number of observations used to train the forest.

The benefits of RF+PAM are manifold: it can be trained

fast and in parallel; it handles, in a data-driven fashion,

mixed data types; and it can provide predictions in a rapid
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Fig. 1. Training phase of the proposed RF+PAM; notably, only the forest and the M × T matrix are stored for the prediction phase.

and efficient manner. In Section IV, we will demonstrate

the accuracy and effectiveness of our approach comparing it

with clustering based approaches that have been used in the

context of service management, but adapted to the problem

of service clustering. Since these methodologies rely mostly

on the K-means clustering algorithm, to isolate and quantify

the exact benefit of similarity learning, we also considered

a version of our RF based approach, termed RF+K-means,

which utilizes the K-means algorithm for clustering services

and a similarity measure obtained by RF. Note that we do not

necessarily advocate the use of RF+K-means, but we explained

it below for completeness and for the purpose of providing a

fair comparison with methodologies in the literature. We also

use it as a way to showcase the superiority of relying on PAM

in the context of autonomic service management.

The training phase of RF+K-means uses the same initial

steps of RF+PAM to obtain the dissimilarity matrix. However,

it needs an extra step before clustering. Since the standardized

version of K-means uses the Euclidean distance to cluster

observations, the dissimilarity matrix is first transformed into a

set of points in the Euclidean space using the Multidimensional

Scaler (MDS) algorithm [28]. Thus, the distances between the

observations are approximately equal to their dissimilarity.

Next, the observations are clustered using K-means, which

returns the cluster assignments of the observations. The out-

comes of this phase which needs to be stored are the N × T
matrix, the forest and the clustering assignments.

The on-line prediction phase of RF+K-means is composed

of the following steps: (i) parse the new observations through

the trees; (ii) calculate the dissimilarity between the new

observations and all original data using as the input the N×T
matrix of the original data and the result of step (i), which

consists of the references of the leaves in which the new

observations ended up; and (iii) assign each new observation

to the cluster with the least average dissimilarity between

the new observation and all the observations in that cluster.

Notably, this solution calculates only the dissimilarity of the

new observation to the original data, i.e. it does not require

the re-calculation of the whole dissimilarity matrix.

Although the differences between RF+K-means and

RF+PAM are subtle, the impact is significant. RF+PAM is

faster and has lower memory requirements, as it uses the

M ×T matrix, which is much smaller than the N ×T matrix

used by RF+K-means. Moreover, despite that the requirement

of the MDS step in the RF+K-means can open the road to the

wide range of algorithms that need a Euclidean distance for

clustering, it is computationally demanding.

IV. EXPERIMENTS

To understand the implications of the solutions described in

the previous section, we have implemented them in an open-

source multi-agent framework written in Python3. This tool

has both a standalone and a distributed version. In the latter,

agents can be placed in different resources to speed up the RF

training step and, thus, take advantage of cloud resources.

Our experiments are purposely designed to: (i) demonstrate

the importance of similarity learning and appreciate the clus-

tering quality compared to other methodologies using the same

dataset; (ii) validate the quality of on-line prediction, which

has been trained with less data, comparing to a version, which

has all the data available; and (iii) present a use case to

demonstrate the applicability of our solution in the domain.

For datasets, we use the first 12 hours of a publicly available

dataset released by Google [29] and of a dataset from a grid.

Specifically, the Google dataset contains traces from one of

Google’s production clouds with approximately 12500 servers.

The data consists of monitoring data of services in 5 minutes

intervals. To illustrate the content of the dataset, we list some

of the available features: CPU and memory usage, number of

tasks, assigned memory, unmapped page cache memory, disk

I/O time, local disk space, task’s requirements and priority.

The complete list of the features can be found in [29].

The second dataset, made available by the Grid Workload

Archives [30], contains the traces of a grid of the Dutch

Universities Research Testbed (DAS-2)4 with approximately

200 nodes. This dataset consists of the request of resources to

run services and has over 1 million observations. Among the

features available in the dataset there are: Average CPU Time,

Required Time, User ID, Executable ID and Service Structure.

A. Demonstrating the importance of RF based similarity
learning

In this section, we evaluated the use of RF for unsupervised

similarity learning in the autonomic cloud domain in an off-

line setting, i.e. all observations are available for the training

3Available in http://code.google.com/p/unsupervised-randomforest/ along
with the framework employed in our use case.

4http://www.cs.vu.nl/das2/
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of the forest. In particular, we compared the clustering quality

of our solution with two methodologies that used the Google’s

cloud dataset. Since these methodologies use K-means, for a

fair comparison and to illustrate the importance of similarity

learning, we use here RF+K-means.

The first methodology (Mt1) [31] is divided into four steps:

(i) selection and preparation of the features; (ii) application

of the off-the-shelf K-means clustering algorithm to construct

preliminary classes; (iii) definition of the break points for the

qualitative coordinates based on the results of the second phase

and (iv) merging of close adjacent clusters.

While applying Mt1 in the Google dataset, the authors

selected the CPU and Memory features, transformed into nor-

malised per hour values, and the Duration was normalised and

converted into seconds. In the second step, they heuristically

defined 18 classes that represent the combination of: Small,
Medium, Large for CPU and Memory, and Small and Large for

Duration, and clustered the data points using K-means. In the

third step, they employed these definitions and the clustering

results to define the break points to separate the observations

and, in the fourth step, they merged adjacent classes ending up

with 8 clusters. Evidently, Mt1 cannot be deployed as a general

solution for autonomic clouds given the necessary man-made

interventions. However, since it uses the same dataset, it was

considered here for comparison.

The second methodology (Mt2) [32] is defined as follows:

(i) selection of the continuous (numerical) features; (ii) cre-

ation of new features based on the existing ones (even if

redundant); (iii) normalisation of data and (iv) clustering the

data using K-means.

Mt2 has been applied to the considered dataset by defining

the number of clusters as 8. It is clear that in Mt2 the

categorical values are ignored and that the careful selection

of the features is critical; this deviates from the approach

proposed in this paper, which aims at offering a robust and

flexible solution that can accommodate many different settings.

Both methodologies employ K-means for clustering. There-

fore, for a fair comparison and to demonstrate the gain from

defining a dissimilarity matrix (i.e. learning the similarity be-

tween observations), we use as clustering algorithm K-means

rather than PAM. Hence, we used the dissimilarity matrix,

generated by the unsupervised RF similarity learning, as the

input for the MDS algorithm, and the resulting Euclidean

points as input for K-means clustering.

For all experiments, we defined the number of clusters

as 8 (as did Mt1 and Mt2). We considered two variants of

the original dataset, dropping certain features in each case:

Dataset 1 prepared for Mt1 (see the methodology definition),

and Dataset 2 which contains only all continuous features of

the original dataset (i.e. categorical ones are excluded), which

is used by Mt2. Then, we apply our methodology based on RF

to both datasets to compare its cluster quality with the other

two methodologies.

Clustering quality measures: Notably, unlike supervised

classification where several measures to evaluate performance

exist, clustering has no widely accepted measure. For Mt1,

TABLE II
QUALITY OF CLUSTERING WITH RF+K-MEANS.

Dataset 1 Dataset 2
Mt1 [31] RF+K-means Mt2 [32] RF+K-means

Connectivity 53.33 33.42 32.26 25.89

Dunn Index 0.01 0.08 0.06 0.15

Silhouette 0.67 0.98 0.89 0.99

the authors used the Coefficient of Variation (CV), i.e. the

ratio of the standard deviation to the mean. However, since

each data dimension has a different CV, this requires an un-

wieldy multi-dimensional comparison with large dimensions,

the interpretation of which is far from straightforward [32].

Therefore, in alignment with approaches in the clustering

literature, here we report some of the most popular indicators

for the comparison of clustering results. Connectivity indicates

the degree of connectedness of the clusters. The measure

has a value between 0 and ∞, with 0 being the best. Dunn
index is the ratio of the shortest distance between data points

in different clusters by the biggest intra-cluster distance (a

high Dunn index is desirable). Silhouette measures the degree

of confidence in the assignment of an observation; better

clustering has values near 1, while bad clustering -1 (in the

literature some works point out that over 0.75 is the best class

for an observation). These indicators (and others) are analysed

in [33], which recommends the Silhouette measure for the

evaluation of noisy datasets.

Table II summarises the results of the experiments on

the methodologies detailed above. These results show that

RF+K-means performed considerably better on both dataset,

considering any of the evaluation criteria, when comparing

methodologies applied to equivalent datasets. Similarity learn-

ing here outperforms the other approaches, leading to better

defined clusters, even when projected to the Euclidean space

with MDS. These results also demonstrate that our approach

works well in the considered application domain. We should

also note that, for a fair comparison, only the continuous

features of the datasets were used, although our RF solution

is able to handle also categorical features.

B. Evaluating the RF based on-line prediction

To assess the performance of the on-line prediction of

RF+PAM, we conducted experiments to verify the agreement

between two set-ups of the algorithm: a benchmark set-up,

where all the data are available for training/prediction, and

another set-up, with only a subset available for training and

the remaining set used for testing. We use the set-up with all

the data to obtain a ground truth cluster assignment, since all

information is available and we cannot expect the algorithm

(with less data to train) to perform better than that. We

evaluate the on-line prediction by measuring whether unseen

observations (not included in the training set) ended up in

the same cluster as assigned by the benchmark set-up. Thus,

accuracy in this context is measured as the agreement in the

cluster assignment.
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TABLE III
CLUSTERING AGREEMENT RESULTS.

Google Dataset DAS-2 Dataset
K RF+PAM RF+K-means RF+PAM RF+K-means

100 0.81 (0.32) 0.50 (0.37) 0.70 (0.23) 0.52 (0.21)

50 0.75 (0.19) 0.45 (0.19) 0.68 (0.17) 0.54 (0.18)

20 0.73 (0.09) 0.43 (0.11) 0.67 (0.11) 0.47 (0.08)

10 0.70 (0.06) 0.43 (0.13) 0.63 (0.09) 0.44 (0.09)

5 0.69 (0.05) 0.42 (0.06) 0.61 (0.07) 0.41 (0.01)

In the experiment, we first use all observations and obtain

the cluster assignments for the benchmark set-up. We proceed

carrying out a K-Fold cross-validation strategy to evaluate the

agreement. K-Fold cross-validation divides the dataset in K
partitions. It reserves one partition for testing and uses the

other K− 1 for training the trees and learning the similarities

and clusters. We execute the following steps K times, every

time using a different K-th partition:

1) Train a forest using the data in the K− 1 partitions and

obtain cluster assignments;

2) Predict the cluster assignment of the observations be-

longing to the K-th partition using the on-line RF

methodologies;

3) Compute the Adjusted Rand Index (see below for de-

tails) between the results of steps 2 and the ground truth

of the benchmark set-up.

To illustrate the power of PAM, we compare the results

of the above process, using RF+PAM and RF+K-means. A

measure of quality for comparison of clustering methodolo-

gies is the Adjusted Rand Index (ARI), which quantifies the

agreement of the clusters produced by each methodology. The

maximum value, 1, indicates that two results are identical

(complete agreement); value 0 indicates results equivalent to

random; the minimum value, -1, indicates completely different

results (for more details, we refer to [34]).

Table III presents the results of the experiments considering

both Google and DAS-2 datasets. The results are averaged over

all K-Folds and presented along with the standard deviation

(reported within parenthesis).

RF+PAM performs significantly better in the tests. This

difference is due to the reliance of the K-means version on

MDS to lower the dimensions and construct a Euclidean

distance. Since many features are used, the dimensionality

reduction step and embedding the observations in linear space

(from unfolding the higher dimensional manifold), achieved

with MDS, lead to poorer separability of the clusters.

Notably, these datasets are examples of real-world moni-

toring data from the cloud domain and are not (manually)

prepared (e.g. transformation or removal of features). When

comparing the results of the two datasets, we see clear

improvements with high dimensional data (Google’s dataset).

It indicates that RF is able - without heuristic or manual

expert intervention to prepare the dataset - to benefit from

the additional information contained in the features to obtain

clustering (through similarity learning) and can, dynamically,

adapt to scenarios where the relation among features change.

C. Cloud Use Case

To demonstrate the applicability of the on-line RF+PAM

methodology in the domain, we propose a scheduling algo-

rithm based on the similarity between services. Intuitively, the

scheduler assigns an incoming service to the node executing

the most dissimilar services, thus avoiding race conditions for

the node’s resources. For each node, the scheduler averages the

dissimilarity between the new service and the services running

in that node, then it assigns the service to the node with highest

average dissimilarity.

The scheduling steps are detailed in Algorithm 1. The

scheduler receives as parameter the new service and the list

of nodes, which also contains the list of the services running

in each node. Then, it clusters the new service and calculates,

for each node, the dissimilarity between the new service and

all services running in that node. According to the RF+PAM

methodology, this dissimilarity is calculated between the new

service and the cluster medoids of the running services. Then,

if there is at least one service running in the node, the total

dissimilarity is divided by the number of services. Otherwise,

since no service will compete for the same resource, the

dissimilarity for the node is defined as 1.1 to prioritize it in

the assignment phase (as the maximum dissimilarity is 1).

Algorithm 1 Calculate the dissimilarity between a new service

and the services running in the nodes of the cloud.

1: procedure CALCULATE DISSIMILARITY(nSer, node list)

2: nSer.c ← CLUSTER SERVICE(nSer.SLA)

3: for node in node_list do
4: node dissi ← 0
5: for s in node do
6: d ← dissimilarity(nSer, s.c) #c = cluster

7: node dissi ← node dissi + d
8: if node dissi > 0 then #Average Dissimilarity

9: node dissi ← node dissi/len(node.Sers)

10: else #No Services in the node, best case

11: node dissi ← 1.1

12: nodes dissi.append([node, node dissi])
13: ASSIGN SER(nSer, nodes dissi)

In the assignment phase, the scheduler assigns the service to

the node with most dissimilar services, after verifying whether

it has enough resources to run the service. When no node

is available, the service joins a waiting list. When a service

terminates, the scheduler selects the compatible service from

the waiting list with the highest dissimilarity to the services

running in the node (not considering the terminated one).

We employed these concepts in a framework that coor-

dinates the execution of services. In our use case, services

are applications defined by a SLA (service description and

quality of services’ requirements) using the SLAC language

[35], which are executed in a cloud. The framework has a

central scheduler that receives service requests and schedules

according to their SLAs. When it receives a new service, it

communicates with the RF+PAM implementation to request
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Fig. 2. Similarity Scheduling of the new services in the developed framework.

the clustering of the service. Then, the scheduler assigns the

service to a node and sends it to an agent deployed in that

node. Afterwards, it configures the Panoptes system [36] to

monitor the services and to send the collected information

to the scheduler. Finally, the scheduler uses this monitoring

information to manage the services, as depicted in Figure 2.

The experiments were conducted in a cloud using the

OpenNebula5 tool and 6 physical machines, providing 9 het-

erogeneous VMs in which the agents of a framework are

employed to execute services requested by consumers.

To assess the performance of the dissimilarity scheduling,

two other scheduling algorithms were used. In the first (named

Isolated), each service runs without any other service in the

same VM, thus having all resources available for the execution

of the service. This algorithm was implemented to serve as the

lower bound of the results, i.e. the best possible case since the

services are executed without interference from other services.

The second (named Random) assigns the services randomly

to the nodes. Notably, all three algorithms have the resource

admission control and services are assigned only to machines

that have enough resources to run them.

In the experiments, the services are generated based on the

distribution of the Google’s cloud dataset [29] at the beginning

of every round of tests and the same services are executed

using all three described algorithms. Each service has an

associated SLA, which is generated along with the service,

based on an estimation of the resources necessary to finish

the service within the completion time. The created features

are: CPU, RAM, Requirements, Disk Space, Completion Time

and Network Bandwidth. The services in the experiments are

of different types, such as web crawling, word count, machine

learning algorithms, number generation and format conversion,

which are close to real-world applications [37].

5http://opennebula.org

In real-world clouds, services arrive in variable intervals.

In our scenario, we assume that the services’ arrival is a

Poisson process, i.e. the time between consecutive arrivals has

an exponential distribution with parameter λ. Intuitively, the

higher the λ, the more often services arrive, e.g. for λ set to

0.2 a service arrives in average every 5 seconds, while for

λ set to 1 the same happens on every second. We vary the

value of λ in the experiments to analyse the performance of

the algorithm with different loads. On every experiment, we

generated 100 services and run all algorithms to schedule these

services. This procedure was repeated 10 times for every λ.

Figure 3 (a) shows overall runtime of the services given the

same input using all three algorithms and with different arrival

rates. On the other hand, Figure 3 (b) shows the reduction

of this total run time of the Dissimilarity scheduler in com-

parison to the Random. The Dissimilarity scheduler performs

significantly better than the Random, in particular reducing in

almost 30% the total run time for λ set to 0.8. The lower

bound, i.e. the Isolated scheduler, is in average around 20%

better than the Dissimilarity. However, the Isolated scheduler

requires each service to be executed alone in the resource,

which is impracticable in real-world deployments as it would

lead to low resource usage (idle resources) and high service

waiting time.

Furthermore, we tested the performance of the three al-

gorithms by fixing λ as 1 and varying the number of input

services (from 50 to 250). Figure 4 presents the results, which

show that the improvement of the Dissimilarity is similar to

the previous experiment even with higher number of services.

The results of all experiments suggest that the Dissimilarity

scheduler performs better when the cloud is not overloaded

since it has more options to allocate services in the node

with the most dissimilar ones. However, even with high arrival

rates (worst case scenario for this scheduler) and with a high-

number of input services, our solution performs significantly

better as it allocates the services that use different resources to-

gether. This approach reduces the competition for the resources

of the node, thereby improving the cloud’s performance.

In real-world deployments, other aspects of services, such

as service priority or SLA violation probability, must be

considered for designing a scheduler. Yet, our results suggest

that more complex schedulers can benefit from integrating

dissimilarity scheduling in their solutions.

V. RELATED WORKS

In this section, we discuss the relevant literature in the

cloud domain that uses a notion of similarity to support

decision systems with knowledge. In the service scheduling
field, several works, e.g. [38], [39], [40], [41], use a measure

of similarity. However, they consider only numerical features

and, as discussed in Section II, the domain requires the support

of different types of features. In our use case, we propose

a service scheduling algorithm, which uses the knowledge

on similarities among services to avoid race conditions in

the cloud resources. A similar approach was presented in

[37]; the authors manually combine features and employ
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Fig. 3. Total run time of the scheduling algorithms with different arrival rates (a), and reduction (%) in the total run time with the Dissimilarity scheduler
in comparison to the Random algorithm in this setting (b).

Fig. 4. Total run time of the scheduling algorithms with different numbers
of input services.

a supervised Incremental Naive-Bayes classifier to assign a

service. However, this approach depends on the hand-crafted

combination of features, which is problem-specific, and on

several parameters defined by the administrators.

Regarding the service profiling field, most approaches are

problem-specific, e.g. [42], [43] focus only on VMs. Hence,

they cannot cover the diversity of the services and the het-

erogeneity of clouds. The solution of Kahn et al. [44] on

workload characterisation clusters workload patterns by their

similarity. However, their similarity clustering algorithm is

based on simple heuristic metrics to accommodate VMs, which

does not cope with the dynamism of the AC domain.

In the anomalous behaviour detection field, [45] uses a

heuristic notion of similarity to cluster service requests and

detect anomalous behaviours. Similarly, Wang et al. [46] pro-

pose a methodology to detect anomalies for Web applications

in which the similarity among the workloads is used to detect

problematic requests. However, both works do not consider

different types of features.

In summary, most works in cloud which employ a notion

of similarity implicitly assume: homogeneity on the resources

and services; preparation and normalisation of the data for the

clustering process; and good representation of the relations of

data features. Our clustering solution, instead, does not rely on

these assumptions and is not problem-specific. Thus, it can be

used with any kind of service. Therefore, we advocate that our

solution, or an adaptation of our approach, could significantly

improve the decision-making in autonomic clouds.

VI. CONCLUSIONS

The characteristics of autonomic clouds hinder their man-

agement and the decision-making process, as they obfuscate

several details of the provided services and of the infras-

tructure. In this paper, we developed a methodology to feed

autonomic cloud managers with knowledge on the similarities

among services. This knowledge has a wide range of applica-

tions in the domain, e.g. for anomalous behaviour detection,

service profiling and service scheduling.

To feed the autonomic managers with such knowledge, we

devised a novel clustering methodology based on RF and

PAM. We validated it through several experiments, which used

real-world cloud datasets. Our methodology shows significant

benefits: superior performance, low memory footprint, support

to mixed types of features, support to a large number of

features and fast on-line prediction. Finally, to demonstrate

its applicability in the domain, we implemented and tested a

scheduling algorithm, which uses the notion of similarity to

assign incoming services.

As future works, we will investigate the characteristics of

RF, such as variable importance and feature selection, to

improve our methodology. Moreover, we plan to apply the

solution to the management of services, utilizing RF+PAM to

dynamically calculate the SLA violation risks.
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