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Abstract—In practical Cloud/Grid computing systems, DAG
scheduling may be faced with challenges arising from severe
uncertainty about the underlying platform. For instance, it
could be hard to have explicit information about task execution
time and/or the availability of resources; both may change
dynamically, in difficult to predict ways. In such a setting,
the development of various kinds of just-in-time scheduling
schemes, which aim at maximizing the parallelism of ready
tasks of DAG, seems to be a promising approach to cope with
the lack of environment information and achieve efficient DAG
execution. Although many attempts have been tried to develop
such just-in-time scheduling heuristics, most of them are based
on DAG decomposition, which results in complicated and
suboptimal solutions for general DAGs. This paper presents
a priority-based heuristic, which is not only easy to apply
to arbitrary DAGs, but also exhibits comparable or better
performance than the existing solutions.
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I. INTRODUCTION

The popularity of Internet encourages distributed comput-
ing platforms such as Clouds [1] or Grids [2] to orchestrate
a vast number of computing resources to execute massive
computational applications, especially the group of work-
flow applications which are often derived from scientific
problems in the fields of mathematics, astronomy, etc [3].
These applications normally consist of tasks with complex
dependencies, and can be represented by a Directed Acyclic
Graph (DAG, for short).

Although many full-ahead static heuristics have been
proposed for DAG scheduling to minimize the makespan
(the whole application execution time) for heterogeneous
systems [4], [5], [6], [7], [8], these approaches may not
be suitable for highly dynamic Grid/Cloud environments
due to temporal unpredictability [9]: (i) the interdependent
task communication over the Internet may not be stable;
(ii) the non-dedicated resources in charge of executing the
DAG tasks may exhibit uncertain availability and/or task
processing rate. In contrast, a just-in-time scheduling scheme
attempts to minimize the impact caused by temporal un-
certainties by making scheduling decisions on-the-fly [10],
which means that the allocation of a task will not be
decided until the task becomes ready for execution. With

increasing interest in the topic in recent years, a just-in-time
scheduling scheme has been adopted in practical projects
such as Condor [11], where simple scheduling strategies, for
instance FIFO, have been used. In large scale computation
environments, from a user’s point of view, free resources
may quickly become busy if not allocated immediately [12].
Therefore, a scheduling pattern which allocates ready tasks
to resources immediately when they become available, is
encouraged. In this case, it has been observed that, due to
the aforementioned temporal unpredictability, using FIFO to
sequence the allocation of tasks may lead to an ineffective
execution of an application with complex task dependen-
cies [13]. This is because FIFO, which does not have any
deliberate prioritization of task allocation, may encounter a
so-called gridlock [13], namely, there are no ready tasks for
allocation when a set of resource requests arrive.

In order to minimize the risk of encountering this situa-
tion, a new scheduling goal called IC-scheduling has been
suggested by a series of papers [13], [9] to schedule the
tasks of a DAG application in such an order that the number
of ready tasks generated during execution is maximized for
assignment to the resources becoming available. Intuitively,
once the tasks of an application are executed in such an
order, the application should obtain a considerable parallel
speedup and the resource requests should be better utilized
no matter how the dynamic resources behave. Following the
suggested scheduling goal, a decomposition-based heuris-
tic named IC-Optimal (ICO, hereafter) and its extension
have been proposed in [9]. It has been shown in [14]
that ICO outperforms some simple scheduling strategies
maximizing the number of ready tasks, and minimizing
the makespan. However, it has been recognized that many
DAGs do not admit schedules that are optimal under IC-
scheduling [15]. This observation motivated the development
of another new paradigm called AREA-Oriented scheduling
(AO-scheduling, for short) [16], which weakens the often-
unachievable demand that the number of ready tasks is
maximized at every step to the always-achievable demand
that this number is maximized on average.

The strategy of maximizing the number of ready tasks
may be promising for DAG scheduling in dynamic comput-
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ing environments. However, both ICO and AO-scheduling
are restricted by their decomposition-based design feature,
and therefore have drawbacks of being highly complicated
and overlooking global optimization. This indicates the
necessity and the possibility of developing a new approach.
Given this motivation, this paper proposes a novel priority-
based heuristic (PB), which is easy to apply to an arbitrary
DAG topology and performs better than ICO and AO-
scheduling in executing DAG applications. The proposed
heuristic is expected to provide an efficient and effective
solution of just-in-time scheduling scheme for dynamic
Grid/Cloud computing systems.

The remainder of the paper is organized as follows:
the background information and the problem statement are
presented in Section II; the related work is reviewed in
Section III; the proposed PB heuristic is introduced in Sec-
tion IV with a case study; the performance of the heuristic
is evaluated in Section V; finally, a summary is provided in
Section VI.

II. BACKGROUND

In this section, we describe the DAG application model,
the execution model, the quality metrics used in our work,
and then state the problem we are going to address.

A. DAG Model

We focus on workflow applications which can be repre-
sented by a DAG modelled as follows: a DAG G = {N,E}
is a directed graph consisting of a set of nodes N and a set
of edges E, each of which is of the form (i → j), where
i, j ∈ N . A node i represents a workflow task, and an edge
i → j denotes the inter-task dependency between i and j.
The execution of j cannot begin until the execution of i has
been completed, and j becomes a ready node when all of
its parents are completed. Given an edge from i to j, i is
called a parent node of j, and j a child of i. Parentless nodes
are called source nodes, and childless nodes sink nodes. For
standardisation, it is specified that the DAG has a single
entry node and a single exit node, since all DAGs with
multiple entry or exit nodes can be equivalently transformed
to this specification. Apparently, an entry node of G must
be a source node, and an exit node must be a sink node.

B. Execution Model

Similar to the description in [14], it is assumed that a DAG
application is executed in a batch mode (a variant of which
is studied in [17]): A READY pool is maintained to hold
the ready tasks for the assignment to task execution requests
from resources. These available resources appear batch by
batch. As each batch arrives, the ready tasks are allocated by
means of one task per resource. If more resources arrive than
ready tasks, the unused resources will simply disappear, and
can be regarded as utilized by other applications. If fewer
resources arrive than ready tasks, the unallocated tasks will

be returned to the pool. Ideally, it can be assumed that all
of the tasks allocated at the ith batch will be completed
before the (i + 1)th batch arrives. More concretely, given
that a DAG with n nodes is being executed with a schedule
S in batch mode, when the ith coming batch appears with
ri resources and there are ti ready tasks in the ready-task
pool, then min (ri, ti) tasks will be allocated and executed.
Suppose that resource batches arrive constantly until all of
the tasks are completed, the duration between the moment
when the first batch arrived and when the last task completed
is recorded as the metric batched-makespan.

C. Quality Metrics

Based on the batch mode execution, our ultimate goal is to
determine a schedule S for the given DAG G (a permutation
of tasks indicating the order of assigning tasks to resources)
so that the batch-makespan is minimized.

When a batch of resources arrives, the goal is to maximize
the number of ready tasks for mapping to new resources.
Suppose that tasks will be executed and completed in the
order of their allocation [9], the goal becomes to produce
as many ready tasks as possible after each task execution.
Let NRS(i) denote the number of ready tasks appearing
at the completion of the ith task in the order of execution.
Obviously, NRS(n−1) ≡ 1 due to the DAG standardisation
adopted. A schedule S∗ is called the optimal schedule if it
maximizes the number of ready tasks at the completion of
each task, i.e.,

(∀i)NRS∗(i) = max
S′∈SG

{NRS′(i)} (1)

where SG is the set of all possible schedules of G and 0 ≤
i < n.

As many DAGs do not admit any optimal schedule [13],
for these DAGs, a metric called AREA (denoted by V (S))
as defined below, is proposed in [15] in order to describe a
sort of implicit quality of a schedule.

V (S) =
n−1∑
i=0

NRS(i) (2)

Apparently, unlike the IC-optimal schedule which may not
exist for many DAGs, a schedule that maximizes AREA
exists for any DAG.

We provide the following simple example for illustrative
purposes. Given a DAG G with 8 nodes as depicted in
Fig. 1, where a number i inside a node represents Task i
(Ti for short), Table 1 shows the scheduling steps when G
is scheduled in order {T0, T1, T2, T3, T4, T5, T6, T7}. It can
be easily computed that the AREA is 12.

D. Problem Statement

Based on these models, the scheduling problem we are
going to address is to sort all of the tasks of a given DAG into
a suitable order to produce as many ready tasks as possible
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Figure 1. A DAG example with 8 nodes

The Task Scheduled Current Number of
and Completed Ready Tasks

scheduling step 0 T0 3
scheduling step 1 T1 2
scheduling step 2 T2 1
scheduling step 3 T3 2
scheduling step 4 T4 2
scheduling step 5 T5 1
scheduling step 6 T6 1
scheduling step 7 T7 0

Table I
DETAILS OF SCHEDULING STEPS FOR SCHEDULE

{T0, T1, T2, T3, T4, T5, T6, T7}

while the batch execution continues, so as to minimize the
batch-makespan.

III. RELATED WORK

The DAG execution model presented in Section II can be
formalized by the Internet-Computing (IC) Pebble Games
which uses pebbles to model the execution of a DAG. The
placement and/or removal of various types of pebbles are
used to represent the transition of task status (for example,
ready and completed). Such games have been studied in [18],
[19], [17], [20] for executing DAGs on the Internet. These
studies were extended to the ICO algorithm proposed in [9]
to obtain optimal schedules for DAGs with some specific
structures. Simulation experiments carried out in [14] indi-
cate that ICO significantly improves the execution time of a
large class of DAGs over three simple, intuitively compelling
scheduling heuristics. Malewicz et al. [9] extended the ICO
algorithm to a practical heuristic applied in the Condor
Project [11], and the usefulness of its implementation was
assessed in [12], [21].

In order to improve the applicability of ICO, a series of
papers [22], [23], [24], [25], [26], [27] have been published.
However, there are still many DAGs that do not admit an
IC-Optimal schedule. This fact spawned the development of
AREA-oriented Scheduling (AO-scheduling). The concept
of AREA-Maximization is first proposed in [15], and then

extended by a series of works [28], [16], [29], [30], [31].
Work presented in [28], [29], [30] focuses only on Series-
Parallel DAGs (SP-DAG, for short), a specific topology of
DAG for which the AREA-Optimization has been proved
to be achievable in polynomial time. In contrast, our work is
not limited to any specific DAG. In [31], the AREA-MAX
scheduling problem is proved to be NP-complete and two
heuristics, one based on Sidney decomposition and the other
based on Linear Programming, were proposed for solving
the problem. However, AREA is the only metric considered
in [31]. In our work, we evaluate heuristics in terms of
not only AREA but also batched-makespan. It is worth
mentioning that, for a DAG application, batched-makespan
is the ultimate performance metric while AREA is not.
Moreover, as we will show latter, a better result of AREA
does not always lead to a better batched-makespan.

We consider the work presented in [16] as the closest
related work, where the AO-scheduling heuristic (AREA-
Oriented, named AO, hereafter) is proposed. The AO heuris-
tic is applicable for general DAGs and has been evaluated
by AREA and makespan in [16]. We implement the AO
heuristic described in [16] and use it as the competitor to
our heuristic in the evaluation.

IV. THE PRIORITY-BASED (PB) HEURISTIC

In this section, we firstly describe the details of our
proposed heuristic, PB, and then provide a case study in
which PB has a better makespan than AO but worse AREA.
We try to explain the reason behind this result.

A. Proposed Heuristic

The key idea of the PB heuristic is to award each DAG
node a numerical priority to describe its ability to produce
ready tasks. A node, which can enable more ready tasks
instantly or potentially (expressed by the priority) by its
completion, is considered stronger and should be executed
preferentially. This principle determines the prioritized se-
quence of task execution, i.e., the result schedule. In contrast
to the ICO/AO heuristic, which prioritizes DAG nodes in
a decomposition manner, the PB heuristic calculates the
priority of nodes according to their inter-dependencies, for
example, in-degrees (the number of parent tasks). This
approach has the following advantages:

• The risk of overlooking the optimal schedule can be
reduced by considering the schedule globally instead
of locally as a decomposition-based approach (such as
ICO and AO) does;

• The heuristic can be applied to DAGs with any topo-
logical structure;

• The heuristic is easy to implement as it manipulates
simple numerical values instead of complex topological
structures.

598



Input: A DAG application G.
Output: A schedule for G.

1: Compute the initial DQ, LQ, EQ and IQ for each node in G.
2: Add the entry node into the Ready List L.
3: while L is not empty repeat
4: Schedule the node v in L with the highest priority P , the

comparison of task priority is jointly decided by DQ, LQ
and EQ following the decision tree shown in Figure 3.

5: Remove v from L.
6: Remove v from G.
7: for each child x of v in G do
8: Decrease the in-degree of x.
9: UpdatePriority(x).

10: endfor
11: Add new ready tasks into L.
12: endwhile

where UpdatePriority is a recursive procedure defined as follows:
UpdatePriority(currentNode)
if the in-degree of currentNode is NOT equal to 0

Update the IQ of currentNode.
for each parent p of currentNode do

Update the EQ and DQ of p.
UpdatePriority(p).

endfor
endif

Figure 2. The PB Heuristic

Four concepts are defined to make up a priority to capture
the capability of a node to produce the ready tasks. For each
node:

Direct Quotient (DQ) depicts the direct contribution a
node can make to producing ready tasks. This is defined as
the number of tasks which become ready immediately after
the completion of the current node. Apparently, to achieve
an optimal schedule, every scheduled node must have the
highest DQ.

Level Quotient (LQ) depicts a node’s topological po-
sition in the DAG. This is defined as the maximum length
from a node to the exit node. It is assumed that the exit node
is at level 0. Then, a node with a maximum length l to the
exit node is placed onto level l. Apparently, the entry node
is located at the highest level. Given a collection of ready
tasks, it is preferable that the node on the highest level is
run first unless there is another node with higher DQ.

Export Quotient (EQ) and Import Quotient (IQ) are
recursively defined. EQ is a value only used for two tasks
which have the same DQ and LQ to distinguish the priority
of tasks. IQ is not used to compare task priority, but to
help calculate the value of EQ for each task. This can be
illustrated by the following definition. Given a node v:

IQv =

{
0 : v ∈ Ssole ∪ Sready

(EQv + 1)/IDv : otherwise
(3)

EQv =

{
0 : v ∈ Ssole∑

u∈Succ(v)

IQu : otherwise (4)

Figure 3. The decision tree of comparing task priority

Figure 4. An example of computing the initial < DQ,EQ, IQ >

Figure 5. Updating < DQ,EQ, IQ > after node 2 is scheduled

where IDv means the in-degree of node v, Succ(v) denotes
the set of child tasks of v, Sready is the set of ready
nodes and Ssole is the set of sole nodes. A sole node is a
node which can only be executed exclusively, for instance,
the entry node and the exit node of a DAG. Therefore,
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Figure 6. An SP-DAG example with 75 nodes

EQexit node = 0.
Based on the definitions of DQ, LQ, EQ and IQ, the

pseudocode of the PB heuristic is presented in Figure 2. It
should be noted that LQ does not change as the scheduling
heuristic is executed, but DQ, EQ and IQ do. As an
example, Figures 4 and 5 illustrate how DQ, EQ and IQ
vary as the scheduling goes on.

Given the DAG G on the left-hand side of Figure 4, the
initial values of DQ, EQ and IQ for each node can easily
be calculated from their definition (results in the right half
of Figure 4). Every pair of numbers in the position of the
counterpart node is in the form of < DQ,EQ, IQ >. When
node 0 has been completed, nodes 1 and 2 become ready.
Therefore, the IQ value of nodes 1 and 2 turns to zero,
while their DQ and EQ do not change. Subsequently, node
2 is selected because it has a higher DQ than node 1. When
node 2 has been completed, DQ and EQ of node 1 are
accordingly updated as shown in Figure 5.

B. Case Study

An example DAG with 75 tasks is used for illustration
purposes. Figure 6 shows the DAG structure with all arcs
pointing downwards. This DAG is an SP-DAG, for which the
AO heuristic can guarantee an AREA-maximized schedule.

Figure 7. Makespan Comparison of PB and AO on the example DAG

For this DAG, the resulting schedule of AO is {1, 21, 18,
19, 20, 26, 34, 46, 55, 35, 62, 2, 3, 24, 27, 4, 5, 41, 17, 29,
30, 31, 32, 33, 45, 53, 61*, 54*, 65, 36, 37, 38, 39, 47, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25, 28*, 42, 52, 69, 70,
66, 67, 68, 56, 57, 40, 71, 73, 48, 49, 50, 58, 59, 60, 63,
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Figure 8. A sequence of six CBBBs (all arcs point downwards)

51, 64, 43, 44, 72, 74, 22, 23, 75} (here, ‘*’ is used to mark
the nodes we are going to discuss later) with an AREA of
1490. In contrast, the resulting schedule of PB is {1, 21, 34,
20, 18, 19, 26, 46, 17, 32, 33, 30, 29, 31, 45, 53, 55, 35,
62, 2, 3, 24, 36, 39, 38, 37, 47, 12, 25, 14, 15, 16, 8, 11,
6, 10, 9, 13, 7, 28*, 42, 52, 5, 27, 4, 41, 61*, 54*, 65, 56,
40, 68, 57, 66, 67, 71, 73, 69, 70, 58, 59, 60, 48, 49, 50,
64, 72, 74, 51, 22, 44, 63, 43, 23, 75} with an AREA of
1365, which is 125 down compared to AO.

To study the performance of AO and PB in the batch
execution mode, we choose the number of resources ar-
riving at each batch (i.e., batch size) from an exponential
distribution with rate parameters λ = 1/2, 1/4, 1/8, 1/16,
1/32, 1/64, 1/128, 1/256, which means the mean of the
batch size (denoted by μ) will be 2, 4, 8, 16, 32, 64, 128,
256 respectively. We assume that each allocated task can
finish before the next batch comes. For each case of λ, we
evaluate PB and AO fifty times and collect the batched-
makespan on average. The result is shown in Figure 7, where
T (AO)/T (PB) means the time ratio between the average
makespan of AO to the makespan of PB. In almost all cases
of μ (the only exception is when μ = 2), PB outperforms
AO.

To understand the reason why PB obtains an averagely
better makespan than AO, we specify the number of re-
sources arriving at each batch (i.e., the batch size) and
observe nodes that are allocated to resources at each batch.
We tried to understand this by observing several times what
happens if different patterns of batch size were used. We
found that, in this specific example, a key difference that
results in different batch-makespans of AO and PB is the
executing sequence of node 61, 54 and 28, which are marked
using a ‘*’ in the provided scheduling details. The question
is, when node 61, 54 and 28 are all ready for allocating to
resources, which one should go first? The scheduling results
indicate that AO will let 61 and 54 go before 28, while PB
will do the opposite. Actually, one can easily see that node
28 is critical to the makespan. Completing node 28 at an
earlier batch will usually result in a better batch-makespan.
AO often executes node 28 one batch later than PB (because
AO executes node 61 and 54 first), and consequently obtains
a makespan worse than PB.

Essentially, in order to obtain an AREA-maximized
schedule, the AO has to let node 28 appear late in its
schedule. This is because node 28 is the node which has the

most parents in the DAG and executing any of its parents
contributes nothing to maximize the AREA. In contrast,
PB is not driven by AREA-maximization. PB considers
LQ (Level Quotient) and gives node 28 a good priority as
this node has a relatively high LQ. As AO is kind of a
decomposition-based approach, it is not easy to recognize
the importance of nodes like node 28 in this example.

V. EXPERIMENTAL EVALUATION

A. Settings

We compare three heuristics, PB, AO and FIFO in our
experiments where the batch mode described in Section II
is adopted. The FIFO scheduler organizes a given DAG’s
current ready tasks in a FIFO queue. When a batch of
resources arrive, FIFO serves a free resource by dequeuing
the task in the front of the queue. The nodes that are newly
rendered ready for execution are enqueued in random order.
We consider FIFO as a competitor to PB since FIFO is a
basic scheduling approach also used by real systems such
as Condor [11].

We randomly generate DAGs from two populations. One
is SP-DAG, the other is CBBBC-DAG which is composed
from a repertoire of Connected Bipartite Building Block
DAGs (CBBBs, for short) [16]. As shown in Figure 8, the
various structures of CBBB exemplify a variety of “real”
computations, such as Fast Fourier Transform, accumulation
tree, search tree etc. The way we used to randomly generate
an n-node SP-DAG is the same as that used in [16]. We
firstly specify the value of n and generate a random binary
tree T . We then randomly designate each internal node of T
either a series-composition node or a parallel-composition
node with a random size m (m ≤ n). We view T as the
composition tree of an SP-DAG, and the designation of
internal node proceeds until the size of T approaches n.
The DAG shown in Figure 6 is an example of our random n-
node SP-DAG. We randomly generate an n-node CBBBC-
DAG also in a manner similar to that used in [16]. We firstly
randomly choose an m-node (m ≤ n) instance of one of the
six structures of CBBBs shown in Figure 8, and use it as the
current DAG. While the size of the current DAG is smaller
than n, we continue choosing randomly an m-node CBBB
instance (note that m is also random) and merge it into the
current DAG. Figure 9 illustrates an instance of composing
CBBBC-DAG. Note that in [16] CBBBC-DAGs are named
LEGO R©-DAG. It is worth mentioning that, generating a
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Figure 9. Composing six CBBBs into a CBBBC-DAG: (left) the CBBBs that compose the DAG; (right) the resulting CBBBC-DAG (all arcs point
downwards)

random n-node DAG means the generated DAG has roughly
n nodes, because the random processes we use make it hard
to specify the number of nodes exactly.

For each generated DAG, we craft three schedules by
using PB, AO and FIFO, respectively. We compare the three
schedules using two metrics. One is the batched-makespan
and the other is the AREA. We obtained the batched-
makespan using a probabilistic model of batch mode and
the execution time of each allocated task. We choose the
number of resources available at each batch from exponential
distributions as specified in Section IV-B, which means our
chosen value of batch size can be 2, 4, 8, 16, 32, 64, 128 and
256, respectively. We choose the intervals between neighbor
batches from exponential distribution with rate parameter
γ = 1/10, which means resource batches arrive every 10
time units on average. The execution time of an allocated
task is randomly chosen from normal distributions. We have
studied two distributions. The first distribution has a mean of
5 with standard deviation of 1 and the second distribution has
a mean of 20 with standard deviation of 2. As the mean of
batch arrival interval is 10, obviously, the former distribution
means that an allocated task will be likely to finish before the
next batch comes, while the latter means it will be unlikely.

B. Experimental Results and Discussion

1) AREA Comparison: In this experiment, for each type
of DAG we used, we generate random DAGs of sizes 100,
200, 300, 400, 500, 600, 700, 800, 900 and 1000. We run
PB, AO and FIFO to each generated DAG and compute their
AREA results. Note that as FIFO has a random step during
its scheduling, we repeat FIFO one hundred times and take
the average AREA.

The AREA comparison results for CBBBC-DAG and SP-
DAG are shown in Figures 10 and 11, respectively.

The results for SP-DAG verify that AO can always provide
an AREA-max schedule for SP-DAGs. For SP-DAGs, PB
also significantly outperforms FIFO in the metric of AREA.

Figure 10. AREA results for CBBBC-DAGs

Figure 11. AREA results for SP-DAGs

It can be observed that the amount of advantage in AREA
of AO and PB over FIFO rises as the DAG size increases.

For CBBBC-DAGs, PB and AO provide similar AREA
to each other in most of the DAG sizes considered. In some
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Figure 12. Ratio results for SP-DAGs

Figure 13. Ratio results for CBBBC-DAGs

of the cases, PB has an AREA slightly better than AO.
FIFO still performs the worst in AREA.

2) Makespan Comparison: In this experiment, for each
type of DAG we used, we generate random DAGs of sizes
100, 500 and 1000, which stand for small, medium and large
DAGs, respectively. We have considered 96 different exper-
imental settings for each heuristic analyzed. Each setting

is characterized by choosing from one of the two types of
DAG considered, the three specified sizes of the DAG, the
two distributions of task execution time, and the eight rates
of the batch size. For each setting, we execute each DAG one
hundred times and collect the averaged batched-makespan.

The performance of heuristic PB, as compared with its
competitors, is illustrated via the ratios T (AO)÷T (PB) and
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T (FIFO)÷T (PB), where T (PB), T (AO) and T (FIFO)
are the batched-makespans. Note that values of the ratio
equal to or greater than 1.0 favor heuristic PB. The experi-
mental results are shown in Figures 12 and 13, respectively.
In each plot the X-axis indicates batch size, the Y-axis
indicates the ratios for AO and FIFO.

Our first observation is that PB obtains a better average
batched-makespan than AO and FIFO in all experimental
settings. This result corroborates the observation from the
case study presented in Section IV-B. Recall that in our
AREA comparison experiments, AO always provides an
AREA-max schedule for an SP-DAG. This result indicates
that it is partially true that a schedule having a higher AREA
will have a better batched-makespan than another schedule.
In the comparison of PB vs FIFO and AO vs FIFO, this
statement is true, while for PB vs AO, it is not.

The observed advantage in the makespan of PB over
AO and FIFO depends on four factors: the class of the
DAGs used, the size of the DAG, the batch size, and
the distribution of task execution time. First, PB has a
more significant advantage over AO for CBBBC-DAGs than
for SP-DAGs. This may correlate to the AREAs of the
heuristics’ schedules. Second, the advantage of PB increases
as the size of the DAG grows. For the SP-DAG with 100
nodes and 500 nodes, PB shows an improvement to AO
in the range of only 0 − 5%. For the SP-DAG with 1000
nodes, the improvement of PB over AO is up to 7%. This
implies PB may perform significantly better for large-size
DAG applications. Third, for a fixed-size DAG, there are
always extremes of the batch size where the makespan
will not depend on the scheduling heuristic. Between these
extremes, there is a range of values of batch size where the
scheduling heuristic has a strong influence on makespan.
Finally, recall that some distributions of task execution
time used in our experiments (when task execution time
follows the distribution of N(5, 1)) may result in that an
allocated task is likely to complete before the next batch
of resources arrives, while other distributions (when task
execution time follows the distribution of N(20, 2)) may
result in the opposite. It can be observed that in the latter
case, the advantage of PB over AO will be weakened.

VI. CONCLUSION

Just-in-time scheduling is a promising paradigm for
scheduling complex applications with dependencies in
highly dynamic distributed computing environments. This
paper presents a novel just-in-time scheduling heuristic,
PB, aiming at maximizing the parallelism of ready tasks
during the execution of DAG application so as to minimize
the makespan. Based on numerical priority, PB is easy to
implement and is applicable to any DAG with arbitrary
structure which indicates PB is compatible with any poten-
tial DAG applications. The simulated evaluation suggests
that PB outperforms the existing just-in-time scheduling

approaches under most experimental settings. This indicates
that PB can become a competitive scheduling solution for
the increasingly popular Internet Computing systems. Future
work may evaluate the performance of PB in a wider variety
of DAG topologies, and in real computing systems rather
than simulation.
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