Lawrence Berkeley National Laboratory
LBL Publications

Title
Usage Pattern-Driven Dynamic Data Layout Reorganization:

Permalink
https://escholarship.org/uc/item/7da7t3zq

Authors

Tang, Houjun
Byna, Suren
Harenberg, Steven

Publication Date
2016-05-16

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7dq7t3zq
https://escholarship.org/uc/item/7dq7t3zq#author
https://escholarship.org
http://www.cdlib.org/

Usage Pattern-Driven Dynamic Data Layout
Reorganization

Houjun Tang '3, Surendra Byna 2, Steven Harenberg '*, Xiaocheng Zou -, Wenzhao Zhang '3,
Kesheng Wu 2, Bin Dong 2, Oliver Riibel 2, Kristofer Bouchard 2, Scott Klasky ®, Nagiza F. Samatova **

! North Carolina State University, 2 Lawrence Berkeley Laboratory, ® Oak Ridge National Laboratory

* Corresponding author: samatova@csc.ncsu.edu

Abstract—As scientific simulations and experiments move
toward extremely large scales and generate massive amounts
of data, the data access performance of analytic applications
becomes crucial. A mismatch often happens between write
and read patterns of data accesses, typically resulting in poor
read performance. Data layout reorganization has been used
to improve the locality of data accesses. However, current data
reorganizations are static and focus on generating a single (or
set of) optimized layouts that rely on prior knowledge of exact
future access patterns. We propose a framework that dynamically
recognizes the data usage patterns, replicates the data of interest
in multiple reorganized layouts that would benefit common read
patterns, and makes runtime decisions on selecting a favorable
layout for a given read pattern. This framework supports reading
individual elements and chunks of a multi-dimensional array of
variables. Our pattern-driven layout selection strategy achieves
multi-fold speedups compared to reading from the original
dataset.

I. INTRODUCTION

Large-scale scientific simulations and experiments produce
massive volumes of data. This data is typically stored on a
parallel file system in an organization (layout) that is optimal
for writing and remains fixed afterwards. However, scientific
data is often written once and read many times and the
organization of the written data may not be efficient for the
read patterns used in data analysis operations. For example,
scientific simulations such as S3D combustion [5] and GTS
core plasma fusion [24] write the data of all variables by time
steps, yet analysis and visualization applications often read
a subset of variables within a specific region over a number
of time steps. Such mismatches between a write layout and
a read pattern lead to poor read performance due to a large
number of seek and read operations to hard disk-based file
systems. This issue is exacerbated by the advancement towards
exascale computing, leading to ever-increasing dataset sizes
and thus presenting challenges to data management and I/O
optimization for efficient data access.

To address this data layout mismatch issue, many layout
reorganization methods have been proposed to increase the
number of contiguous I/O accesses. For instance, space-
Jilling curves, such as Hilbert-curve and Z-curve, are used
to reorganize the original data [23]; array transposition is
applied to create multiple full replicas [15] of data; and
merging of multiple non-contiguous data blocks to a single
contiguous chunk to create partial replicas [27], [13]. Each

of these techniques has its own characteristics. Space-filling
curves bring performance benefits to sub-region accesses by
reorganizing the dataset and they require no additional storage
when only the original data is reorganized. Array transposition
leads to better performance for accesses that have significantly
larger sizes along one dimension. However, transpositions may
require multiple replicas of the data. Specialized merging
with partial replication results in better performance, as the
previously non-contiguous data accesses become contiguous.

Despite various advantages of reorganization, none of the
strategies alone can provide near-optimal read performance
for heterogeneous patterns of analytic applications. To support
multiple read patterns, there is a need for managing different
layout strategies. These organizations shall facilitate com-
monly used spatial selections defined by multi-dimensional
bounding boxes as well as by element (point) selections. As
storage space for managing multiple full replicas is expensive,
support for managing partial replicas considering the storage
budget is necessary. Transparent redirection of accesses to
the data with preferable layout that may match fully or
partially are required as well. To the best of our knowledge, a
framework supporting these requirements is absent in scientific
data management.

In this paper, we present the dynamic data reorganization
framework that performs dynamic data access pattern tracing
and identification functions, efficient storage of partial replicas
to support multiple read patterns, and redirection of read
accesses to a favorable layout at runtime. Ultimately, the layout
decision making (Section III-B) and layout reorganization
(Section III-D) methods of our framework will be integrated
as services into our recently proposed Scientific Data Services
(SDS) [26], [8]. Our data reorganization framework shows a
broader applicability compared to existing methods, enabled
by the following contributions.

Dynamic pattern identification. Our framework automati-
cally traces read accesses and identifies the data usage patterns
during an applications’ runtime. The current implementation
supports the HDF5 [22] library in tracing bounding box selec-
tions, known as hyperslabs in HDF5, and element selections.

Flexible multi-layout management with storage budgets.
Instead of using only one layout reorganization technique, we
provide more flexibility by supporting multiple layout reorga-
nization techniques among those shown in Figure 1. Based on
the user-specified storage constraint and current usage patterns,

—_— olilals o [1]][2]3
e L 31516 11 4 | s)|le’] 7
el EREECEL 8 [, 2]|[0] 17
12473 laalys MBIRARS 'Ekm 14]15
(a) (b) (c)
i | o 9 215 ol1]2]3
Eps| 7 X | ey 4516 |4
satsh | yopH1 g | 8| ¢ |07
18| 1 5 ® | fes<% 12| %14 %

(d) (e) (f)

Fig. 1. Data reorganization techniques that our framework supports. The
numbers in each cell are the starting offsets of original data, and the arrow
lines are the order of the reorganized offsets: (a) (original) row-major layout,
(b) column-major (transposition) layout, (c) blocked (chunking) layout, used
as a pre-processing step before applying (d) and (e), (d) z-curve, (e) Hilbert-
curve, (f) custom merging of a subset (data at offsets 5,9,13,7,11, 15).

our framework evaluates the costs of reorganization and the
benefits with accessing the reorganized data to select the most
suitable technique.

Runtime decision making with partial match and redi-
rection. By allowing partial matches between read patterns
and the reorganized replicas, we extend the usability of exist-
ing layouts compared to the exact match strategy from previ-
ous work [13]. For a more accurate cost estimation, a page-
level (instead of byte-level) cost model is used for estimating
data access cost during the decision making process. Further,
we enabled automatic read redirection to the model-selected
layout for improved performance.

The remainder of this paper is organized as follows: We
briefly discuss the related work in Section II. In Section
III, we present a high-level overview of the proposed data
reorganization framework and describe the functionality of
different components. We demonstrate the application of the
framework in Section IV using read patterns from multiple
real applications and conclude our discussion in Section V.

II. RELATED WORK

The linearization and organization of the extreme-scale
datasets on parallel file systems are crucial to the scientific
application’s performance. SciDB [2] addresses sub-volume
access patterns by applying array slicing, joining operations,
and array division into regular/irregular chunks for multi-
dimensional scientific data. EDO [23] optimizes sub-plane and
sub-volume access patterns for spatial locality through Hilbert
space-filling curves reordering and sub-chunking. However,
SciDB and EDO both reorganize the original data layout
and provide average performance for sub-region accesses. In
contrast, we present a framework that maintains replicas with
layout optimized for the common access patterns in scientific
data explorations.

Chunking is another layout optimization technique that
splits the dataset into multiple chunks and improves perfor-
mance when operating on a subset of the data [12]. However,

current approaches [20], [17], such as those supported by
HDF5, are not flexible enough to meet the need for the
dynamic patterns discussed in this work. The chunking is
applied with fixed chunk dimensions and cannot be modified
afterward, limiting its applicability for non-regular spatial
patterns. OpenMSI [19] adopted chunking, compression, and
data replication to improve the data access efficiency for MSI
datasets. While it focuses on a specific domain and pre-
generates all the reorganized replicas, our framework covers
broader types of data usage patterns and dynamically adapts
to the change of patterns.

MLOC [11] proposed a parallel layout optimization frame-
work to achieve better performance for queries on scientific
datasets with heterogeneous access patterns. Though multiple
layouts are discussed, it focuses on one layout at a time and
does not provide either runtime decision making or layout
management. In contrast, our work supports multiple layouts
chosen based on the users’ specification as well as runtime
decision making.

Given additional storage, creating multiple partial replicas,
each optimized for a specific kind of access pattern, can greatly
improve the read performance and meet the need of heteroge-
neous access patterns of scientific applications. PDLA [27]
explored data replication for patterns with high regularity
and selected from three layouts: 1-DH, 1-DV, and 2-D on
the parallel file system. Earlier we introduced RADAR [13],
which maintains partial replicas and selects the most optimized
one for current access pattern during run-time. However, both
approaches are limited to regular spatial patterns, with no
optimizations for patterns induced by element selection.

The Scientific Data Services (SDS) system proposes to
apply data management optimizations transparently without
placing burden on scientific application developers [26], [8],
[9]. One of the services SDS proposes is to reorganize and to
replicate data on parallel file systems. SDS has a client-server
architecture. The server would analyze the access patterns
of I/O read calls, identify the data layouts that benefit the
read patterns, perform data reorganizations, and manage the
metadata of the reorganized datasets. SDS requires to traces
the accessed files, variables, and the offsets (data locations)
of the application’s reads and pass them to access pattern
analyzers for identifying read patterns. The analyzed results
can then be stored as metadata and managed by SDS Metadata
Manager, which is implemented using Berkeley DB. With the
identification of the data usage patterns, the layout reorganizer
will create replicas with optimized layout for the patterns.
These replicas will be used for future accesses that have
same or similar patterns. While SDS has capabilities and a
framework to perform reorganizations and to redirect data
accesses to suitable layout, several components are yet to be
developed. For instance, components for capturing data ac-
cesses, for analyzing and detecting read patterns dynamically,
and for estimating costs and benefits are still missing in SDS.
The methods developed in this study, i.e., trace capturing and
analyzing, layout decision making, and layout reorganization
methods, are planned to be integrated into SDS to provide a
broader applicability than its current implementations.

User's
Directive

request

Pattern
and Layout
Knowledge
Base

| Pattern
History

Data
Reorganization
Manager

Trace
Analyzer

Pattern Parallel
- - File System
ayou
Decision e —
_ —
" Redirection

Fig. 2. At runtime, the framework traces and detects patterns of I/O and
decides on optimal data layouts. The layout management, i.e., replica creation
according to the optimal layouts is performed offline. When optimal layouts
are available, redirection of file read calls to the replicated data is performed
at runtime using binary instrumentation. The right side of the figure shows
the components of the dynamic reorganization framework.

III. DYNAMIC DATA REORGANIZATION

We present an overview of the proposed dynamic data
reorganization framework in Figure 2. The main components
of the framework are Trace Analyzer, Layout Decision Maker,
Pattern and Layout Knowledge Base, and Data Reorganization
Manager. The Trace Analyzer uses a binary instrumentation
method to trace I/O read calls and to identify data access
patterns. Our current implementation supports the HDF5 li-
brary to trace hyperslab (a subset of a multi-dimensional array)
definitions that access bounding box and element selections.
We have developed in this work a cost model (Section III-B)
to predict the number of disk drive page accesses by a
read access pattern. The Layout Decision Maker analyzes
the cost of accessing data using the available layouts of
the requested data and selects a layout that would give the
best access performance. The supported layout reorganization
techniques, as shown in Figure 1, are designed as plugins
so new layouts can be easily added for more specialized
optimization. The Data Reorganization Manager uses the
suggestions of improved layouts to reorganize and replicate
data with optimized layouts. An advanced user can initiate
a request to the Data Reorganization Manager to reorganize
data. When multiple replicas of the data in different layouts are
available, the Layout Decision Maker dynamically redirects
the read calls to the selected replica for obtaining the best
performance. The metadata related to the available layouts
and data access pattern history are managed in the Layout and
Pattern Knowledge Base. We discuss each of these components
in detail in the following subsections.

A. Trace Analysis and Pattern Detection

The first step to understand the data usage of applications is
tracing the I/O read calls and identifying patterns. Motivated
by existing work [27], [13], [21], we characterize data usage

patterns in accessing a particular dataset, by focusing on three
major aspects: (1) variables within a dataset being accessed,
(2) accessed region (one or more sub-planes or whole plane,
one or more sub-volume or whole volume, scattered points)
of variables, and (3) the size of the requests.

The runtime pattern detection operation is performed first
by extracting the relative information from HDFS5 read calls
issued by the running application. Similar to our previous
work [21], this operation is performed within each MPI
process and we keep the related information in an auxiliary
data structure. We then analyze the data selection information
to identify patterns. For HDF5 and other I/O libraries such
as NetCDF and ADIOS, element (point) and bounding box
selections are the two typical types of data selection provided
to users that result in different patterns. We use a compact
representation for the identified patterns, as shown in Sec-
tion III-C.

To identify different patterns induced by element and hyper-
slab selection, our framework first checks the selection type
and then records the data selection information during runtime.
This information is then used for selecting a high performant
layout (Section III-B) and if necessary for creating an addi-
tional replica in offline layout management (Section III-D).

1) Bounding Box Selection: Many analysis applications
read data from a variable that is bounded by spatial locations
defined by multi-dimensional array coordinates. As catego-
rized by Lofstead et al. [16], in a 2D array, this bounding
box region is referred as sub-plane or a whole plane and
in a 3D dataset, the region is called sub-cube. In HDFS5,
the bounding box selections are called hyperslabs. A HDF5
hyperslab selection can be regarded as a complex bounding
box selection. It allows users to select multiple bounding boxes
with arbitrary regions using set operations (e.g. intersection,
union, etc.). Such flexibility simplifies users effort to read their
interested data regions in one read function call. Dealing with
complex definitions of hyperslab challenges the existing work
(such as [23], [27], [13]), which deals with one bounding
box selection at a time. One such example is when accessing
a labeled dataset, where the data is partitioned into chunks
and each chunk has a different label. The data of one label
is scattered in a file and is determined by an auxiliary index
(See Section IV-E for more details).

2) Element Selection: Element selection is commonly used
when a query library is involved, where the coordinates of
typically scattered elements are given and the corresponding
data need to be read from file. The coordinates can often be
obtained fast with indexing techniques such as FastBit [25] and
ISABELA-QA [14]. However, reading the data often results in
extremely low I/O throughput due to the large number of non-
contiguous reads with small request sizes. The capability to
optimize for such patterns would bring huge read performance
improvements and thus motivates us to explore the methods
for such optimization.

To optimize data reads, we only assume the coordinates of
the data selected as input, specifically, we do not require that
the high level criteria on which the selection was based (e.g.,
range query) is known. As a result, our optimization is generic
and can benefit the existing indexing techniques directly.

Type Eligibility
‘ Re(;ue;t Request Replica
: Replica .: or or Request Yes
Fig. 3. The eligibility for a replica to be a candidate is determined by how

much overlap it has with the read request. A replica is not eligible with no
or partial overlap region while eligible in other cases.

For example, in the analysis and visualization of the VPIC
dataset [3], only the particles with high energy are of interest.
And thus a small subset of elements would be repeatedly
accessed in a sequence of queries with value constraints such
as Energy > 1.3, Energy > 1.5, Energy > 1.8, etc. By
clustering those scattered elements with an intrinsic correlation
into a contiguous chunk of data in file, and storing their
original offsets, a large amount of time can be saved when
future accesses include these elements. More details about the
“clustering” part will be elaborated in Section III-D.

B. Layout Decision Making

The layout decision maker uses the pattern information
recorded in the detection process and attempts to find the
best matching replicas. The layout decision making process
consists of two main steps:

1) Step 1: Candidate Selection: The layouts that cannot
satisfy the request are first pruned to avoid the potentially
large overhead of iterating through all layouts and loading
their metadata. To be I/O efficient, a storage-lightweight
catalog containing the start and end offsets for each existing
layouts is maintained and used for the first round of coarse-
grained pruning. The coarse-grained pruning prevents loading
all metadata files. Another round of fine-grained pruning is
performed, which loads the rest of metadata (the exact regions
of data that a replica contains) of the remaining layouts and
compared them with the requested data regions. A candidate
set of potential replicas is generated using the following rules
shown in Figure 3.

Note that we consider replicas that partially overlap with the
requested data as not eligible. This is because the overlapping
regions cannot be estimated accurately without loading the
metadata of a replica. Accessing the metadata, especially for
element selections (mappings to the original dataset), results
in non-negligible I/O time as the size of metadata grows
linearly with the data. Though it is best when the data of a
replica is exactly the same as a request, we found performance
improvements using the replica in two cases: 1) when the
request region is larger than the replica, splitting the read
request to read the entire replica and the rest is still beneficial
especially when the overlapping region is relatively large (see
Section IV-B); and 2) when the replica contains more data
than the request, using the replica results in more contiguous
accesses than using the original dataset and is expected to

TABLE 1
PARAMETERS IN THE COST ANALYSIS MODEL.

Symbol Meaning

Ny, Number of I/O client processes accessing OST ¢
Niy ccessd withn 08T 1o

Ni Number of non-contiguous chunks need to be

chk accessed within OST 14

Average cost of reading contiguous blocks of

Trg data per page

Cost of reading non-contiguous chunks on one

Tenk
chk storage node

provide better read performance before a specific replica for
that pattern is created.

2) Step 2: Layout Ranking Via Cost Model: The candidate
replicas are ranked and the final decision is made via our
page-level cost model. Inspired by the previous research work
from [27], [13], we adopt a similar model with adjustments
that better estimate the costs. As opposed to byte-level cost
model, we chose to use a page-level cost model as it more
accurately reflects the file read cost, especially in cases of
element selection. The estimated read time 7. for replicas with
different layouts is defined as follows (parameters defined in
Table I):

T, = max{(N}, - T,y + Nops. - Topi)NZ, | Vie O} (1)

where O is the set of Object Storage Targets (OSTs). Based on
the request and the layout, we “flatten” the requested region
into linear space and calculate N, and N’,, within the data
stored on each OST. This cost model estimates the total time
needed when reading data across multiple OSTs, and assumes
each OST offers the same I/O rate as well the network and
storage latency. T}, T;;) are measured beforehand and vary
in different systems. The network and storage latency are
considered as constants when comparing between the cost
of different layouts, and are not included in the model. We
compare the cost for all eligible replicas and the one with
smallest 7} is selected.

3) I/0 Redirection in HDF5: Once the layout decision is
made, our framework automatically directs the read to the
chosen replica. The replica’s metadata such as the file and
variable’s path and name and the mapping of the layout to the
original dataset is stored as part of the metadata, and becomes
effective for the actual read. We have modified the related
HDFS5 read functions with our data selection procedure. When
no replica is available, the normal HDF5 read process is used.
If any replica is selected by our framework, the normal HDF5
read is skipped and the corresponding data in the replica is
read instead.

C. Pattern and Layout Knowledge Base

To prepare the information needed for layout reorganization,
our framework performs historic usage pattern analytics each

time new patterns are discovered during runtime. It is an offline
incremental analysis process that extracts and analyzes data
usage patterns. It is based on the previous results from runtime
pattern analysis (Section III-A) with two more aspects added:
(1) when and how many processes are issuing read requests
together, (2) total size and I/O throughput. These are obtained
after a read call completes. Based on the above aspects,
our framework adopts a data usage patterns representation
as {variable name/path, selection type and spatial region,
process IDs, start/end time, total size, /O rate} Each
read request results in one such record and is inserted into
the pattern history and the most important aspect is the spatial
region.

A pre-processing step is performed to generate global
patterns by merging the local patterns of each MPI process.
The global pattern provides necessary information for the later
data placement among OSTs (Section III-D3). Analysis of
these patterns produces new information such as the “hot” data
regions and pattern frequency for a dataset. This information,
together with the metadata from existing layouts (replicas),
is maintained in the “Knowledge Base”. The layout metadata
includes the replica’s original file and reorganization infor-
mation. Our framework automatically loads information from
the knowledge base when the application starts. For offline
layout management, the knowledge base supplies information
to layout manager for layout creation and deletion.

D. Data Layout Reorganization

Layout management includes three tasks crucial to read
performance: replica creation (when and how to create a new
layout), replica eviction (which to remove when exceeding
a user’s storage budget), and replica placement (how the
data is distributed among OSTs). This management occurs in
an offline fashion, when the application terminates, to avoid
runtime I/O contention. We assume that the data resides in
parallel file systems such as Lustre, and the replicas with
their metadata are stored in a special directory under the same
directory with the original dataset.

1) Replica Creation: The layout manager makes the deci-
sion of when and how to create a new layout given the in-
formation from the knowledge base. This knowledge base can
initialized with two options: (1) our framework can “learn” and
decide what and how to perform layout optimizations, which
takes effect after a few runs; or (2) users can instrument our
framework with the patterns from their knowledge, allowing
performance improvements at the first use. Three common
replica creation scenarios are considered with the correspond-
ing strategy that our framework automatically selects:

1) The original dataset can be reorganized and limited
additional storage space is allowed: “Concatenation”
is used to create partial replicas when existing replicas
cover none of a trivial portion of the request (e.g.,
Section IV-B).

2) The original dataset cannot be modified, but unlimited
storage space is allowed: “Concatenation” is used to
create as many as possible replicas (e.g., Section IV-E).

3) The original dataset can be reorganized but no addi-
tional storage is allowed: Transposition or space-filling
curves are used (e.g., D2 scenario 1 of Section IV-C).

The use of transposition and space-filling curves is thor-
oughly discussed in existing research [15], [23]. We pro-
vide more information on concatenation, which was explored
in [27], [13], but only for single bounding box selection with
high regularity of spatial patterns (kd-strided). To complement
their work, our method adds support for both hyperslab
selection with non-regular spatial patterns as well as element
selection. We describe concatenation as follows: with a data
selection that contains multiple chunks of non-contiguous
data, the data between the chunks are removed and all the
chunks are concatenated into one big contiguous chunk. By
storing this big chunk as a partial replica, when the same
(or overlapping subset) data selection occurs, the big chunk
can be read all at once and thus brings read performance
improvements.

2) Replica Eviction: Storage efficiency is achieved through
the analysis of overlapping regions between new patterns and
existing ones, and the deletion of old, less frequently used
replicas. When the additional storage reaches the user-defined
budget, the replicas are ranked according to a combination
of their recent usage, size, and effectiveness (performance im-
provement time g/ timeneq); older and less effective replicas
are dropped to make space for new ones. As with maintaining
layouts, each replica is associated with one “metadata” file
containing the mapping to the original file. A separate “range”
file is maintained for each dataset and stores the start and
end offset of each replica for fast pruning as discussed in
Section III-B.

3) OST-Aware Replica Placement: Even when the right
layout organization technique is selected, read performance
can still be far from ideal when treating the parallel file
system (PFS) as a black box. Popular PFSs, such as Lustre
and PVES, use striping for data distribution among multiple
storage devices. In Lustre file system, Object Storage Targets
(OSTs) are for storing data. The data distribution on Lustre

Process

(a) (b)

Fig. 4. Two bad cases where each OST is accessed by multiple processes.
(a) Each process access data from all OSTs. (b) Each process access data

from a subset of OSTs.
Process

LYYy

Fig. 5. Two ideal cases where each OST is only accessed by minimal number
of processes. (a) The number of processes equals to that of OSTs. (b) The
number of processes is larger than that of OSTs.

is decided by the stripe count (how many OSTs to use) and
the stripe size (size of data to write to one OST before
moving to the next). Even with manual adjustment, such
simple striping strategy can not provide efficient read accesses.
IO contention [10] is yet another important factor that affect
overall read performance. Processes reading contiguous data
with size comparable to stripe_count * stripe_size would lead
to the scenario where one OST is accessed by many processes,
yielding contention (see Figure 4) that significantly degrades
the overall read performance.

To avoid OST contention, the best practice is to make each
OST be contacted by as few processes as possible—a guiding
principle in our framework. Our framework analyzes the usage
patterns (Section III-C) and rearranges the data so that future
accesses that are the same, or similar, will have low read
contention, as shown in Figure 5.

IV. RESULTS
A. Overview of Evaluation

To demonstrate the effectiveness of our framework, we
evaluated the read performance of kernels extracted from
five different scientific applications or datasets from various
science domains. We ran all our experiments on a Cray
XC30 supercomputer named “Edison” at the National Energy
Research Scientific Computing Center (NERSC). The data was
stored on a Lustre file system equipped with 36 Object Storage
Servers (OSSs) and 144 Object Storage Targets (OSTs). All
available OSTs were used for storing data and each experiment
was repeated multiple times to obtain consistent performance
results. To avoid effects of caching, multiple copies of the data
were created to guarantee that the same file is not accessed
by any two consecutive experiments.

I/O kernels from five different real scientific applications
were used in our experiments. These include: (1) querying a
188 billion particle plasma physics data produced by Vector
Particle-In-Cell (VPIC) simulation of magnetic reconnection
phenomenon [3] to demonstrate the support for element selec-
tion and partial match (Section IV-B); (2) accessing climate
model and observation data, used for detecting atmospheric
rivers (AR) [4], to demonstrate the ability of applying histor-
ical optimization strategies on new datasets (Section IV-C);
(3)accessing Electrocorticography (ECoG) data [1] to demon-
strate the support for non-regular patters with an ability to per-
form optimizations for different data regions (Section IV-E);
(4) accessing data from Mass Spectrometry images [19] to
show that our framework is able to support and manage
different layout reorganization techniques at the same time
(Section IV-D); and (5) accessing block-structured adaptive
mesh (AMR) data [6] to show that our framework supports
AMR data in addition to uniform grid data and point-based
data (Section IV-F). These kernels represent the read accesses
of several scientific data analysis applications. All datasets
used HDFS5 file format [22].

For each experiment, we compare the I/O time between
accessing the data in its default layout (row-major), with
unmodified HDFS5, and that of the reorganized layout selected
by our framework. In the climate and mass-spectrometry

imaging accesses, we further compare the performance with
two scenarios: with and without the availability of addi-
tional storage. In the case of no additional storage available,
our framework selects one from transposition, Z-curve, and
Hilbert-curve based on the pattern. This new layout replaces
the original data file.

We demonstrate replica creation only in the AR detection
experiment, and omit this process in the other experiments.
Our framework initially creates replicas in an aggressive way,
as the allowed storage space is sufficient. That is, data is
replicated with the selected layout even if it is accessed once.
When the total available storage becomes low with the increase
of replicas, only the more frequently accessed data regions
are reorganized and replicated. The oldest and less frequently
accessed replicas are replaced. This entire process yields a
shorter initial “training time”, while maintaining good read
performance for the true frequent patterns in the long run.

B. VPIC: Plasma Physics Particle Data

The VPIC dataset is generated from the first principles 3D
electromagnetic relativistic kinetic particle-in-cell code [3], to
simulate collisionless magnetic reconnection phenomenon of
two trillion particles. It contains properties of particles that
include the location (X, Y, Z), kinetic energy (Energy),
and individual components of particle velocity (U,, U,, and
U.). We used a subset of the trillion particle dataset based on
the condition of Energy > 1.1. Four variables are retrieved:
“Energy,” “X,” “Y,” and “Z,” using 4096 MPI processes. Each
variable contains about 188 billion elements with a size of 700
GB and each stored as a 1D-array.

In our experiments, we use the queries similar to those of
a previous analysis of this data [3] for visualizing the highly
energetic particles. The corresponding queries are selecting
variables with value constraints such as Energy > 1.7 and
Energy > 1.6. We split the experiments by running queries
on the plasma physics data in two groups: A and B, as
shown in Table II. Group A (Al to A4) represents the best
cases where the created replica exactly matches the request
(sufficient storage space). While for group B (Bl to B3),
only a partially matched replica exists, which simulates when
storage space can only afford replicas that cover part of the
requests. In such cases, our framework automatically selects
the replica with the largest overlapping region during runtime.

Table II compares the read time of accessing the original
dataset and the read time of accessing the replicas that
use “concatenation”. The framework overhead is included in
the “Optimized time”, since the time to load the metadata

Process 0

Process 1

Process 2

BOOO

Process 3

ﬁ“‘@“ﬁ EEEEN —ﬁ“‘%“

Fig. 6. An example of the typical accesses for the plasma physics dataset:
each box corresponds to one element, each process reads a number of elements
with their locations scattered throughout the dataset.

TABLE I
DATA SELECTIONS USED IN THE EXPERIMENTS FOR THE PLASMA PHYSICS DATASET.

Test High-level Total Replica overlap ~ Original ~ Optimized = Overhead Speedup
case representation data accessed percentage time (s) time (s) time (s)

Al Energy >1.7 588 MB 100% 15.9 1.5 0.7 10.6

A2 Energy >1.6 1151 MB 100% 27.4 2.8 1.9 9.8

A3 Energy >1.5 2378 MB 100% 115.2 5.1 3.1 28.1

A4 Energy >1.4 5441 MB 100% 677.7 7.5 4.2 90.3

Bl Energy >1.4 5441 MB 44% 677.7 387.5 5.7 1.7

B2 Energy >1.5 2378 MB 48% 115.2 64.6 3.6 1.8

B3 Energy >1.5 2378 MB 25% 115.2 89.7 2.0 1.3

(mapping from reorganized layout to original layout) is non-
negligible. We can see a substantial performance improvement
when accessing the replicas for various queries. The speedup
increases with the total data accessed in Group A, with the
highest speedup being 90X in A4. The reason for this speedup
is that with more elements selected, more seek and read
operations are involved, causing contention in the parallel
file system and resulting in low I/O throughput (less than
10MB/s). In contrast, the reorganized replicas are read in large
contiguous chunks, resulting in faster performance. For Group
B, the speedup increases with the “overlap percentage”, as
more data is read contiguously with high throughput.

C. Atmospheric Rivers Detection

Extreme precipitation events on the western coast of North
America are often traced to an extreme weather phenomenon,
known as atmospheric rivers (ARs). We focus only on the
I/O phase of the detection process [4], which is as follows:
each MPI process reads the integrated water vapor (IWV)
variable pertaining to one time step. Each time step typically
represents the daily average of IWV. For each MPI process, a
typical data read pattern consists of obtaining data related to
an ocean basin. For instance, with the climate dataset for the
entire globe, studying the AR events in the US western coast
requires reading data corresponding to a rectangular region in
a mesh (with a bounding box selection of the 2D dataset), as
shown in Figure 7.

In this experiment, we analyze the performance of I/O
kernel of the AR detection on two datasets. The two datasets
D1 and D2 each have 4096 time steps and contain 1536 x 2304
double values per time step. This resolution represents a 0.25°
climate model or observation output. With the same interested
region, the data selections are identical. We used 4096 MPI
processes and 4 different read requests, (1 through ()4, that
read 2D sub-planes with 5%, 10%, 15%, 20% of the total
dataset size. In the first half of runs with Q1 to Q4 and dataset

Process 1

Process 0

Process n

Timestep 0

Timestep 1

Timestep n

Fig. 7. An example of AR detection code’s read accesses in a file. A subset
of the rectangular region would result in multiple same-sized blocks with gaps
in between when data is stored in row-major layout.

D1, our framework has no prior knowledge and no replica is
available; it only reads from original datasets. The differences
in time between the first 4 bars in Figure 8 are the overhead
of our framework. The overhead is negligible, in the range of
4 — 5%, shown as labels above the bars. After each of the
first 4 queries, with sufficient storage space, our framework
automatically creates replicas with reorganized layouts of the
previously accessed data. The user can also choose to apply
such optimizations to another dataset. In our test, we chose
to apply on a dataset D2, and the performance for accessing
with D2 with reorganized replicas are shown as the last 4 bars
of Figure 8. From the second half of the results, we can see
that even with this small-sized dataset, our framework is still
able provide speedups of 1.5X to 1.7X with concatenation,
and 1.1X to 1.2X with Z-curve.

D. Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) enables researchers to
directly probe endogenous molecules within the architecture of
the biological matrix. The data for each position is represented
as a profile of intensity over a corresponding range of mass-
to-charge (m/z) values. There are three types of frequently
used patterns when accessing an MSI dataset [19]: (1) m/z
slice selection ([:, 3, Zmin 2maaz]]); (2) spectra selection ([min
Tmazs Ymin Ymazs :1); and (3) 3D sub-volume selection
([Timin Tmazs> Ymin Ymazs Zmin Zmaz))-

MSI dataset can be described as a three-dimensional cube

OOriginal B Original+overhead ®Z-curve BConcatenation

4% 3%

3%

=z
15 % 49
£ 4% % .
I 4%

1 5% 5%

== 4%
I
0 & = = =
Q1D1 Q2D1 Q3D1 Q4D1 Q1D2 Q2D2 Q3D2 Q4D2
Request

Fig. 8. Q1D1 to Q4D1 compares the time of reading from the orig-
inal dataset D1 with (“Original+overhead”) and without (“Original”) our
framework. Q1D2 to Q4D2 are combined results of two sceneries: (1) no
additional storage allowed and our framework selects a “Z-curve” layout and
replaces the original dataset with it, (2) sufficient additional space and our
framework selects “Concatenation” and creates corresponding partial replicas.
The percentage number labels are the framework’s runtime overhead.

Hilbert-curve ® Concatenation

OOriginal

B Transposition

Time (s)

B1 B2
Request

Fig. 9. Group A compares the time to read from the original dataset, a reorga-
nized layout with “Transposition”, a reorganized layout with “Concatenation”,
where 25 consecutive m/ z slices per process are read; Group B compares the
time to read from original dataset with the time to read from partial replicas
reorganized with “Concatenation”, where each process reads 3 x 3 spectra;
Group C' compares the time to read from original layout, a reorganized layout
with “Hilbert-curve”, and a reorganized layout with “Concatenation”, where
each process reading 20 X 20 x 10000 sub-volumes. The percentage number
labels are the framework’s runtime overhead.

of (z,y,m/z). Each spectrum describes the distribution of
masses (m/z) at a given image location (z,y). For the
experiments, we used a dataset with size 394 x 518 x 133092.
With this relatively small dataset, in order to avoid noise in
I/O operations, only 144 MPI processes were used so that
each process reads a non-trivial amount of data. We simulate
the process of exploring the MSI dataset with 6 executions,
including each of the above mentioned common patterns. For
each type of pattern (referred as “Group”), we vary the location
of the selected region and the results are shown in Figure 9.
For Group A and C, the read accesses include much more
non-contiguous chunks when reading from the original row-
major layout as the data selection is not aligned with the data
linearizion. A new layout that uses transposition or a Hilbert-
curve better matches the read pattern and thus offers more
contiguous accesses and speedups ranging from 1.5X to 8X.
The concatenation further improves the read performance as a
result of OST-aware replica placement, which is not supported
for transposition (Transposition and Hilbert-curves are applied
to the entire dataset, and can only use the parallel file system’s
striping parameters for data placement). For Group B, the read
accesses match the row-major layout and are near-optimized,
leaving the only option for performance improvement on data
placement, which brings close to a 1.4X speedup. Each group
has two tests with same data selection but at different locations
(e.g. Al and A2 are different only with the start location).

E. Electrocorticography (ECoG) Data

An ECoG experiment [1] records the electrical activity from
the cerebral cortex when the patient is reading different words
at different times. We used a 1GB dataset containing a 2D-
array of 541241344 x 256 64-bit double-precision floating
point numbers. Associated with the data are metadata such
as of indices and labels to locate the target data regions.
The pattern of the ECoG benchmark is non-regular (strided
with variant strips) with queries from users such as “select
all data labeled with K EE1.” Due to the small size, we used
24 processes from 6 compute nodes for the parallel reads.

Process 0

Process 1

Process 2

BOGEO

Process 3

Fig. 10. ECoG dataset: data having the same label are stored in a row-major
file with same-size blocks but variant-sized gaps in between.

OOriginal @ Concatenation

7

6

5
OV
(o)

4%

E 3 4%

2 5% 5%

5%
1 6%
0
5% 10% 15% 20% 25% 30%
Request Size Percentage
Fig. 11. Read time comparison with different query selections accessing

the ECoG dataset. With non-regular data selection, our framework selects
“Concatenation” to reorganize and create partial replicas. The percentage
number labels are the framework’s runtime overhead.

Note that data labeled with a certain type such as “KEE1”
are scattered blocks stored in the file, as it is recorded at
different times (e.g. Figure 10); their location is determined
by the metadata “Event_ElIndx” associated with the dataset.

In our experiment, we simulate the data read behavior of
the ECoG dataset by selecting and reading data of multiple
labels. The 6 different experiments shown in Figure 11 are
selected with different sets of query labels, while varying
the total request sizes ranging from 5% to 30% of the total
data size. Our framework selects the “concatenation strategy”.
As the data associated with the different labels has different
distributions in the file, and has different impact to the overall
performance, it is expected that the time to read from the
original layout does not grow linearly with the read size. While
using concatenated dataset for reorganization, it is guaranteed
that each of the requests is reading a contiguous chunk, thus
the time grows close to linearly. The speedups of using our
framework range from 2X to 6X, as concatenation makes
the previously non-contiguous data accessed from the original
layout one contiguous chunk in the replica.

F. Adaptive Mesh Refinement (AMR) Data

To evaluate the benefit of our framework in accessing adap-
tive mesh refinement (AMR) data in addition to the uniform
grid data, we have developed an AMR file read benchmark that
allows user to specify a multi-dimensional region, and read
the corresponding data of all levels. We used a 17'B dataset
with HDF format. It has 3 levels and a refinement ratio of 4
generated with Chombo, which is a popular block-structured
AMR infrastructure used by many applications [18], [7]. The
experiments are run with 4096 MPI processes, and the selected
data is distributed evenly.

Figure 13 shows the performance improvements brought
by the optimizations of our framework. As discussed in

Process 0 Process n

[Level 0
Level 1
B Level 2

Memory

Storage

Timestep 0 Timestep n

Fig. 12. An example of accesses of the AMR read benchmark: each process
reads a rectangular subset of data on all three levels from one timestep.

OOriginal @ Concatenation

120

100
__ 80
=
i3
g o0
R

0

3% 6% 10% 18% 25% 30%

Request Size (% of total dataset size)

Fig. 13. Read time comparison with different queries accessing the AMR
dataset. Our framework selects “Concatenation” to reorganize and create
partial replicas due to the non-regular data selection. The percentage number
labels are the framework’s runtime overhead.

the previous ECoG experiment, the different distribution of
accessed data in the file causes the non-linear growth of time
with increasing read sizes. Concatenation is the reorganization
strategy that our framework select, and the requested data from
each layer in the AMR data are concatenated to provide more
contiguous accesses. We have observed 1.8X to 4X speedups
in the test cases with varying sizes of data.

G. Validation of the Cost Model

To Validate the correctness and effectiveness of the runtime
decision making process (Section III-A), we have designed
a series of queries with different patterns. We prepared
three synthetic datasets with one, two, and three dimensional
structure. For the 1D dataset, only concatenated datasets are
supported, while transposition, and space-filling curves are
supported for 2D and 3D datasets. The data selection type
of the patterns (all are non-contiguous accesses) that we use
are subset, sub-plane, sub-volume, and element selection.

For layout decision making, the model only needs to provide
information to choose between candidates. As experiments
are performed in a shared environment, the I/O performance
can be affected by many different factors, such as other
users accessing the parallel file system and the network.
Thus, instead of comparing the absolute performance, we only
compare the ranks of different layouts computed by the cost
model; this is sufficient for runtime uses.

We varied the data selection types and layout candidates as
shown in Table III. SELO selects a subset of the 1D array;

SELT1 selects a subset along y dimension; SEL2 and SEL3
select a 2D sub-plane; SFE L4 selects a 2D sub-plane with a
significantly larger size along y dimension; SE L5 selects a 3D
sub-volume with a significantly larger size along y dimension;
SELG and SELT select a 3D sub-volume with comparable
dimension size of all dimensions. The concatenated replicas
always yields the best performance as they provide the most
contiguous read accesses. To simulate the cases that no extra
storage is allowed, we intentionally include it only once in the
candidate layout. We can see that the proper decision is made
among multiple layouts with different kinds of patterns.

H. Overhead

The storage overhead for bounding box selections is about
the same size as the created partial replicas (the associated
metadata are in a compact representation of near-constant
size). While for element selection, the total storage overhead is
about 1.3 times replica’s size (assuming 32-bit data elements,
and 16-bit integers together with compression used for meta-
data). Since space-filling curves approaches operate directly
on original data, only metadata is needed with near-constant
size.

The runtime overhead comes from the three parts in our
framework. We labeled the overhead numbers above each of
the bars in all the plots. From our measurement, the total
overhead of trace analysis and I/O redirection is relatively
small, less than 3% in all test cases. While depending on the
data selection type as well as the number of available replicas,
the overhead for metadata loading and decision making varied
by a great deal. For bounding box selection, it ranges from
3% to 6%, while for element selection, due to the read for
the much larger metadata information, it may take 10% or
more depending on the number of candidate replicas after
the first round of pruning as mentioned in the first Step of
Section III-B. Note that even after considering the overheads of
metadata loading, we observe substantial overall performance
improvements as the resulting read from replica is much more
contiguous than from original dataset.

V. CONCLUSION

We proposed a framework that selects the most suitable lay-
out among the common layout reorganization techniques based
on detected data usage patterns. It is capable of performing
storage-efficient optimizations for heterogeneous patterns from
both bounding box and element data selections. On datasets of
scientific applications from various domains, our framework
yields 1.3X to 90X time speedup in the plasma physics
queries, 1.1X to 1.7X speedup in the AR detection, 1.4X
to 8X in MSI, 2X to 6X in ECoG, and 1.8X to 4X in AMR
experiments.

Apart from the optimization techniques supported by our
framework, we are exploring other aspects to further improve
read performance. Compression is a typical process that results
in reduced size of data accesses, and is a topic of our future
work. We are currently working on integrating this framework
into the SDS framework for broader applicability of dynamic
data reorganization.

TABLE III
COST MODEL VALIDATION

Selection SELO SELI SEL2 SEL3 SEL4 SEL5 SEL6 SEL7
Dimension 1 2 2 2 3 3 3 3
Candidate RO, RI. R2T2 R3,T3, "% rs sy Re Ty XD
Layout Co T1 H2,72 H3,C3 ¥ T5z, H5 T6z, H6 S
T4z Cc7
Selected Co Sl Z2 C3 T4y T5z Ho6 C7
Measured Best CO S1 72 C3 T4y TS5z H6 C7

R: Original row-major. Tu:

Acknowledgements.: This work is supported in part by
the U.S. Department of Energy, Office of Science, Advanced

Transposition with u as first dimension. Z: Z-curve H: Hilbert-curve. C: Concatenation.

Conference for High Performance Computing, Networking, Storage and
Analysis, page 31. ACM, 2011.

.. . [15] J. Liu, S. Byna, B. Dong, K. Wu, and Y. Chen. Model-driven data layout
Scientific Computing Research under contracts DE-ACO02- selection for improving read performance. In Parallel & Distributed
05CH11231 at Lawrence Berkeley National Laboratory and Processing Symposium Workshops (IPDPSW), 2014 IEEE International,
DE-AC05-000R22725 at Oak Ridge National Laboratory, and pages 1708-1716. IEEE, 2014. i

. [16] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
by the U.S. National Science Foundation (Expeditions in Com- M. Wolf, and Q. Liu. Six degrees of scientific data: reading patterns for

puting and EAGER program). This research used resources extreme scale science 1/O. In HPDC, pages 49-60. ACM, 2011.

from the National Energy Research Scientific Computing [17] B. Nam and A. Sussman. Improving access to multi-dimensional self-

. . . e describing scientific datasets. In Cluster Computing and the Grid, 2003.

Center and Oak Rldge LeaderShlp Computmg FaCIhty' Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium
on, pages 172-179. IEEE, 2003.

[18] K. S. Perumalla, R. M. Fujimoto, P. J. Thakare, et al. Performance

REFERENCES prediction of large-scale parallel discrete event models of physical

. systems. In Simulation Conference, 2005 Proceedings of the Winter,

[1] K. E. Bouchard and E. F. Chang. Control of spoken vowel acoustics and pages 9—pp. IEEE, 2005.
the influence of phonetic context in human speech sensorimotor cortex. [19] O. Riibel, A. Greiner, S. Cholia, K. Louie, E. W. Bethel, T. R. Northen,
The Journal of Neuroscience, 34(38):12662-12677, 2014. and B. P. Bowen. OpenMSIL: A high-performance web-based platform

[2] P.G. Browp. Overview of SciDB: large scale array storage, processing for mass spectrometry imaging. Analytical chemistry, 85(21), 2013.
and analysis. In Proceedings of the 2010 ACM SIGMOD International 20] S. Sarawagi and M. Stonebraker. Efficient organization of large mul-
Conference on Management of data, pages 963-968. ACM, 2010. tidimensional arrays. In Data Engineering, 1994. Proceedings. 10th

[3] S. Byna, J. Chou, O. Riibel, H. Karimabadi, et al. Parallel I/O, analysis, International Conference, pages 328-336. IEEE, 1994.
and visualization of a trillion particle simulation. In SC, page 59. TEEE |21} H. Tang, X. Zou, J. Jenkins, D. A. Boyuka II, S. Ranshous, D. Kimpe,
Computer Society Press, 2012. i o i S. Klasky, and N. F. Samatova. Improving read performance with online

[4] S. Byna, M. F. Wehner, K. J. Wu, et al. Detecting atmospheric rivers in access pattern analysis and prefetching. In Euro-Par, pages 246-257.
large climate datasets. In Proceedings of the 2nd international workshop Springer, 2014.
on Petascal data analytics: challenges and opportunities, pages 7-14. [22] The HDF Group. Hierarchical Data Format, version 5, 1997-2015.
ACM, 2011. o http://www.hdfgroup.org/HDF5/.

[5] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. Hawkes, [23] Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, R. Grout, N. Podhorszki,
Klasky, et al. Terascale direct numerical simulations of turbulent Q. Liu, Y. Wang, and W. Yu. EDO: improving read performance for
combustion using S3D. Computational Science & Discovery, 2009. scientific applications through elastic data organization. In CLUSTER,

[6] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, pages 93-102. IEEE, 2011.
and B. Van Straalen. Chombo software package for AMR applications- [24] W. Wang, Z. Lin, W. Tang, W. Lee, S. Ethier, J. Lewandowski,
design document, 2000. G. Rewoldt, T. Hahm, and J. Manickam. Gyro-kinetic simulation of

[71 S. L. Cornford, D. F. Martin, D. T. Graves, D. F. Ranken, et al. global turbulent transport properties in tokamak experiments. Physics
Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Plasmas, 13:092505, 2006.
of Computational Physics, 232(1):529-549, 2013. [25] K. Wu. FastBit: an efficient indexing technology for accelerating data-

[8] B. Dong, S. Byna, and K. Wu. SDS: a framework for scientific data intensive science. In Journal of Physics, volume 16, page 556. IOP
services. In Proceedings of the 8th Parallel Data Storage Workshop, Publishing, 2005.
pages 27-32. ACM, 2013. [26] K. Wu, S. Byna, D. Rotem, and A. Shoshani. Scientific data services:

[9] B. Dong, S. Byna, and K. Wu. Spatially clustered join on heterogeneous a high-performance 1/O system with array semantics. In Proceedings
scientific data sets. In 2015 IEEE International Conference on Big Data, of the first annual workshop on High performance computing meets
pages 371-380, Oct 2015. databases, pages 9—12. ACM, 2011.

[10] B. Dong, X. Li, L. Xiao, and L. Ruan. Towards minimizing disk I/O [27] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur. Pattern-direct and
contention: A partitioned file assignment approach‘ Future Generation]ayout-awa[e rep]ication scheme for pa[allel 1/0 systems. In IPDPS,
Computer Systems, 37:178 — 190, 2014. Special Section: Innovative pages 345-356. IEEE, 2013.

Methods and Algorithms for Advanced Data-Intensive Computing.

[11] Z. Gong, T. Rogers, J. Jenkins, H. Kolla, S. Ethier, J. Chen, R. Ross,
S. Klasky, and N. F. Samatova. MLOC: Multi-level layout optimization
framework for compressed scientific data exploration with heteroge-
neous access patterns. In /CPP, pages 239-248. IEEE, 2012.

[12] M. Howison. Tuning HDFS for lustre file systems. In Workshop
on Interfaces and Abstractions for Scientific Data Storage (IASDS10),,
Heraklion, Crete, Greece, September 24, 2010, 2012.

[13] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Samatova.
Radar: Runtime asymmetric data-access driven scientific data replica-
tion. In Supercomputing, pages 296-313. Springer, 2014.

[14] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, et al.

ISABELA-QA: query-driven analytics with ISABELA-compressed
extreme-scale scientific data. In Proceedings of 2011 International

