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Abstract—Graph processing is increasingly used in a variety through the design and experimental evaluation of three fam
of domains, from engineering to logistics and from scientific jlies of distributed heterogeneous graph-processingesyst
computing to online gaming. To process graphs efficiently, GPU- Typical distributed CPU-basedyraph-processing systems

enabled graph-processing systems such as TOTEM and Medusa
exploit the GPU or the combined CPU+GPU capabilities of a such as Pregel [7], GraphX [8], and PGX.D [9] can handle

single machine. Unlike scalable distributed CPU-based systemslarge graphs by using multiple machines, but choose to &gnor
such as Pregel and GraphX, existing GPU-enabled systems arethe additional computational power of accelerators bexafis

restricted to the resources of a single machine, including the the increased complexity of the programming environment.
limited amount of GPU memory, and thus cannot analyze the GPU-enabled systems, on the other hand, can accelerate

increasingly large-scale graphs we see in practice. To address this . ; .
problem, we design and implement three families of distributed graph processing considerably [10], but choose to ignoge th

heterogeneous graph_processing Systems that can use botheth distributed environment because of the added Complexity Of
CPUs and GPUs of multiple machines. We further focus on graph (multi-layered) partitioning. For example, Medusa [11]dan

partitioning, for which we compare existing graph-partitioning ~ Gunrock [12] can utilize multiple GPUs onsingle machine
policies and a new policy specifically targeted at heterogeneity. and TOTEM [13] is asingle-machineneterogeneous graph-

We implement all our distributed heterogeneous systems based . .
on the programming model of the single-machine TOTEM, to Processing system that can use one CPU and multiple GPUs.

which we add (1) a new communication layer for CPUs and MapGraph [14], [15] can use GPUs from multiple machines.
GPUs across multiple machines to support distributed graphs, In this work, we combine the scalability of distributed
and (2) a workload partitioning method that uses offline profiling CPU-based graph-processing systems with the computationa
to distribute the work on the CPUs and the GPUs. power and energy efficiency of GPU-enabled graph-procgssin

_ We conduct a comprehensive real-world performance evalua- o 1o - Specifically, we design and implement distributed
tion for all three families. To ensure representative results, we .

select 3 typical algorithms and 5 datasets with different charac- N€terogeneous graph-processing systems that caotiséhe
teristics. Our results include algorithm run time, performance CPUs and the GPUs of multiple machines. Our study bridges
breakdown, scalability, graph partitioning time, and comparison the gap between existing distributed CPU-based systems and
with other graph-processing systems. They demonstrate the GpU-enabled systems for large-scale graph processing.

feasibility of distributed heterogeneous graph processing and . g )
show evidence of the high performance that can be achieved We explore the design space of these distributed heteroge

by combining CPUs and GPUs in a distributed environment. ~ N€0US systems with a focus on partitioning. Graph partitign
is mandatory for systems with multiple processing unitg,[16

[17]. Well balanced partitions can improve the performance
|. INTRODUCTION of graph-processing systems, but the way to build and balanc
them depends heavily on the system characteristics. In the
Increasingly large graphs are being generated every day, peesence of heterogeneity in the platform, balance is diffic
only by big companies such as Facebook [1] and LinkedIn [2]y determine and achieve [18], [19].
but also by Small and Medium Enterprises (SMEs) [3] such In this work, we propose three different graph-partiti@nin
as Wikimedia for online encyclopedia [4], Friendster foarchitectures: Distributed-Parallel (DP), Paralleltbimited
social networks [5] and XFire for online gaming [6]. To(PD), and Combined (C). For the DP and PD architectures,
process these graphs, many graph-processing systemg,ausiwe select and combine existing graph-partitioning podicheat
variety of hardware platforms (e.g., multiple CPUs, GPUs, dvave promising characteristics for the respective phases;
combinations thereof) have been designed and implement€dsystems, we design a new policy to construct balanced
With CPUs and GPUs becoming increasingly more powerfphirtitions for multiple CPUs and GPUs.
and affordable, SMEs who could previously invest only in To understand the performance differences between these
CPU-based commodity clusters can now afford to buy a helystems and policies in the context of real-life graph pro-
erogeneous environment. However, current graph-protgsscessing applications, we implement our distributed CPU4GP
systems cannot operate on both distributed and heterogenesystems on top of the popular system TOTEM, from which
settings. This raises the important research questioHm¥ we adopt the programming model, the data structures, and
to design a distributed and heterogeneous graph processisgyeral optimization techniques. To enable the inter-m&ch
system?n this work, we explore systematically this questiongommunication necessary for a distributed system, we axghan



the communication layer of TOTEM (a single-machine system @
in which data is transferred only between the CPU and the
[0'4 Graph Partitioner

local GPUs) to use MPI [20] and GPUDirect [21]. We further

address other technical issues, such as separately lguildin p— @
partitions on working machines and aggregating results. Fi Computation

nally, because TOTEM doesn’t provide a method to compute Message|aggregation Messagel Aggregation
the workload partitioning between the CPU and the GPU, Messages Messages
we propose a new method that leads to balanced partitions Ne ~

[ Communication |

among processing units. Our method is based on the approach
proposed by Shen et al. [18], which uses an offline profiling

Synchronization |

method to compute the relative capability of the CPU and
the GPU. We extend this method to determine a balanced @ BSP Model
partitioning of the input datasets on the CPU and the GPU. e

We comprehensively evaluate the performance of three fam- i

||I§S O_f distributed hete_r(_)ge_neous_g_raph-processmg_emst Fig. 1. The BSP-based programming model and features of a simgthine
with different graph-partitioning policies. In our exp@ents, heterogeneous graph-processing system.

we show how our systems can process large-scale graphs faste

than single-machine GPU-enabled systems and distribui&ﬂing which vertices send messages wig edges that is,

CPp-based systems. Moreover, we show that the systems es whose vertices belong to partitions managed by eliffer
design can analyze large-scale graphs that cannot be kian IFf)cessing units, to other partitions; andsgnchronization

by single-machines systems. phase which guarantees that all messages are transferred.

Our contribution is four-fold:
1 W | the desi f distributed het To use memory efficiently, TOTEM uses the Compressed
- Ve exp oreh € design spa(t:e 0 SIS nt' u eIII eserogfbarse Rows (CSR) [24] data format to represent graphs and
NEOoUS grapn-processing systems (Section 11l). PECHeir partitions. The CSR format includes two arrays, the
c_ally, we explore thr.ee-fam|l|es. of such systems USING rtex arrayV” and the edge arrakf. Each element iV stores
5 (\j/:/ffe(rjent_ graph(;parl'utl(:nlng ﬁrch|t§t9tures. licies f tr%‘or a vertex, the head of its list of neighbours, as an index in
- YVe design and select graph-partiioning poficies for ﬁ, and E stores for each vertex index a list of its neighbours.
three families of systems (Section Il1).

3. For each of the three families of systems, we implemelg Sl:;r?;ﬁpgstﬁ;e Cs:gl'ljlztr(])dn:ﬁletlgia?sr;ltlons, which avether

the first working system (Section IlI).

4. We conduct comprehensive experiments to evaluate thd® Message aggregation technique is implemented in
HOTEM to reduce the number of messages sent via cut edges

performance of our distributed heterogeneous grap ” ) X
processing systems (Section IV). betvygen partitions. The messages sent from \{ertlces in a
partition to the same remote vertex are temporarily budfere
Il. EXTENDED BSP-BASED PROGRAMMING MODEL FOR  All messages for the same remote vertex are combined into
GRAPH-PROCESSING SYSTEMS one message before sending. To allow for this aggregation,

Through Comprehensive experimentS, we have a|reag?0h partition maintains two sets of buffers: the outboXdraf
evaluated the performance of existing GPU-enabled grapgHld the inbox buffers. Each outbox buffer stores messages to
processing systems [22]. Our past results indicate thatElNDT @ remote partition, and each inbox buffer collects messages
is, among the systems we have tested, the most reliaflem a remote partition. Thus, for each partition, the syste
one. Furthermore, TOTEM has clear and comprehensive digs || — 1 outbox and|P| — 1 inbox buffers (P| is the
structures for representing graphs and partitions, andrakv number of partitions). This message aggregation techrigoe
optimization techniques for improving performance. Insthisignificantly reduce communication [13].
section, we introduce the programming model and the mostFor heterogeneous CPU+GPU systems, a crucial operation
important features of TOTEM (as shown in Figure 1). is partitioning the workload between CPUs and GPUs. For

TOTEM is a vertex-centric system following the Bulk Synmany graph processing algorithms, the computation wockloa
chronous Parallel (BSP) programming model [23]. In the BSgan be heavily related to the number of edges of the input
model, iterative graph algorithms are executed in multiplgraph [9], [13], [25]. Thus, partitioning the workload is
consecutive supersteps. Each superstep coordinatesgirage equivalent to determining the fraction of the edges to beoput
data in parallel, across physical processing unity. Graph the CPU(s), which both in TOTEM and in our system is denote
vertices are partitioned across processing units. To avdigd «, with the remainder to be put on the GPU(s). Existing
processing all vertices during each superstep, vertices dudies have not proposed a method to select this value. In
be activated and only the active vertices are processedh E&ection IlI-E, we describe our method to calculate the value
superstep includes three phasesomputation phaseluring of . This method is based on existing work on heterogeneous
which all active vertices in each partition execute the san@PU+GPU systems [18], [19], which we extended and adapted
operations of the graph algorithm; @mmunication phase to graph-processing workloads.



TABLE |

I1l. THE DESIGN OFDISTRIBUTED HETEROGENEOUS FOUR CLASSES OF GRAPHPARTITIONING POLICIES
GRAPH-PROCESSSINGSYSTEMS Class Examples
Computation-focused 10 [9], HIGH [13], LOW [13]
In this section we discuss the design of our three families Communication-focused METIS [28], LDG [29]
of distributed heterogeneous systems for graph processing | Computation-communicatio MW [17], MI [17]
We further present the partitioning policies we have seféct Unfocused hash [7], random [29], chunking [30

and/or designed for these systems, and we discuss the

: ; : Iﬁ'é).sbIas:siﬁcation of partitioning policies
challenging aspects of the implementation.

Graph-partitioning has been studied for many years and
many policies, with different goals, have been proposed. [16
A. Three families of distributed heterogeneous Systems For examp|e, the main target of the state-of-the-art graph
To extend single-machine graph-processing systems td;artitionerMETlS[ZS] is to reduce the number of edge cuts
L . o &ween partitions, which leads to less communication. The
distributed architecture, graph partitioning is a key aspe

for both functionality and performance. In this section, Wtemal-degree balancegolicy (10) used in the PGX.D graph-

focus on the architecture of graph partitioning in disttéau processing system [9] aims to balance the total degrees of
heterogeneous systems all partitions, allowing each computing unit to have the sam

workload. Based on their goals and focuses, we identify four

Balanced partitions often lead to good system performance, sses of graph-partitioning policies, and summarizentire
To achieve balanced partitions in distributed heterogesieor,,1e | \We discuss each of the four classes below.

systems, the graph partitioner (see Figure 1) must COnSiOIeICI'he computation-focusedpolicies focus on achieving bal-

three main aspects: inter-machine workload distributioma- apced computation workloads across the processing units,

tmhacglgleJ worl(;load d|str_|butt.|on (|-.e.., _bettyveeq_ the lCPUtha ith no consideration for the edge cuts between partitions.
& ). and communication minimization. To explore €¥olicies in this class are based on the intuition that the

different aspects,hwe deSign threetfamilies'tcr)]ftc:]istribmgd tcomputation workload of graph-processing algorithms can
€rogeneous grapn-processing systems, wi e architsc ccur incrementally, and mainly along the edges of graphs [9

depi'cte.d in Figure 2. We describe these archi't('ecturesefurth[lg,]' [25]. Many computation-focused policies, such asite
Distributed-Parallel (DP) systems the partitioner takes policy used by the PGX.D system, are designed to balance
two phases to partition the input graph on the processing.uni, in-degree and/or out-degree of partitions. Considettie
First., in thedistributgd phas,e_the par_titi.oner assigns Verticesgtilization of the cores of processing units, in particular
to different computing machines, similar to the graph parfgpys, the vertex-degree centric policies have been used in
tioning approach used by many distributed graph-procgssifeierogeneous CPU+GPU systems. For example, the HIGH
systems such as Pregel [7], Giraph [26], or GPS [27]. Next, kxq | Ow policies used by TOTEM fall into this class. For
the parallel phase each machine further splits the subgrapfoth of these policies, the vertices of a graph are first dorte
it rgcewed across its local CPUs and GPUs, similar to tfpﬁ/ their out-degrees, and then they are split up into twospart
actions taken in TOTEM. For the HIGH (LOW) policy, the part with higher (lower) out-
Parallel-Distributed (PD) systems in contrast to DP sys- degrees is assigned to the CPU and the remainder to the GPU.
tems, PD systems reverse the sequence of the distributeé phaThe communication-focusedpolicies are proposed mainly
and the parallel phase: the graph is first divided into twg minimize the communication between partitions. Many
subgraphs, one to be processed by the CPUs and the othefdgitional heuristics adopt theoretical methods to achieve
be processed by the GPUs, and then each subgraph is furtigfimum communication, such as METIS and its family of
distributed across CPUs and GPUs. partitioning policies [31]. Emergingstreaming partitioning
Combined (C) systems unlike DP and PD systems, thepolicies which treat vertices as a stream and assign them one-
combined systems use a single-phase partitioning,ctiie- by-one instead of in bulk, also include many policies to iu
bined phaseThe partitioner directly assigns vertices to prothe communication. For example, the LDG policy [29] places
cessing units, considering both the CPUs and the GPUs gfertex to a partition that already has most of the new visrtex
the entire system. To still achieve balanced partitions, timeighbours. Some of the communication-focused policies al
heterogeneity of processing units is the main challenge thaake an effort, albeit minimal, to balance computation work
must be tackled. We describe our approach to this challerigad, for example the LDG policy through a penalty function
in Section 111-D. We note that our work is the first to consideto avoid that too many vertices accumulate to one partition
a combined partitioning approach for heterogeneous systemind thus lead to highly imbalanced computation.
For all three families of distributed heterogeneous system The computation-communication policies consideroth
the graph partitioner operates on a single master machittee computation and the communication workloads. For ex-
The partitioned data (vertices, edges, etc.) are then sentample, theMin-Workload(MW) policy [17] combines the two
the working machines. Besides being out of the scope of thi®rkloads, by greedily assigning vertices to partitionatth
work, a distributed partitioner is also non-trivial to inephent, incur minimum combined workload. Thdin-Increased(MI)
so we leave its design and implementation for future work.policy [17] places vertices with the least increase of woakl.
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The unfocused class includes policies designed fompartition is at most|P|—1)x|V,|, with V, the set of vertices of
simplicity—either to reduce the implementation effort, opartitionp). BecauseV,| << |E,|, with E, the set of edges of
because partitioning is not believed to deliver a balancgartition p, this in-message processing part of the workload is
workload. For example, théash policy is commonly used significantly smaller than the updates and out-going messag
by Pregel-like systems [7], [26]. Theandom (R)policy is preparation part, which requires computation for each edge
another lightweight unfocused policy that randomly placedith this knowledge, our policy for the distributed phasesinu
vertices to different partitions. Non-random policiesclsias focus on balancing the out-degree. We selectdbedegree
chunking [30], take subsets of equal length from the inptalancedpolicy (O), which is one of the partitioning policies
graph file and place them round-robin in different partiion proved successful by PGX.D [9]. By the O policy, vertices

are assigned to the firgP| — 1 partitions until the sum of
C. Selection of partitioning policies vertex out-degrees in each partition reacj@g|P|. The last

As discussed in Section IlI-A, our three families of disPartition takes all remaining vertices.
tributed heterogeneous graph-processing systems userone o °) The parallel phase:For the parallel phase, we need
two phases for partitioning graphs: a distributed and aljra [0 address the heterogeneity of the CPU(s) and the GPU(s).
phase, or a combined phase. For each phase, any grafff-cannot use here a degree balanced policy (such as O or
partitioning policy could in principle be selected and usedC from PGX.D), because the GPU can process much faster
However, because of policy complexity and the architectufg@n the CPU when they have similar computation workload.
of the graph-processing systems, some policies may perfoffdTEM has proposed for the parallel phase two policies—
poorly in specific partitioning phases. In this section wfl!GH and LOW—to handle heterogeneity. Given the results
discuss the selection of suitable policies for each famfly &om both [13] and [33], which indicate that HIGH and LOW
systems:; we will evaluate these choices in Section IV. can both be successful for different algorithms and dagaset

a) The distributed phaseFor the distributed phase, weve gelect both the HIGH and LOW policies for independent
need to address the load-balancing in the distributed systd!S€ in the parallel phase. _ _
Because of message aggregation, our systems already re- €) The combined phas@here is no policy that addresses
duce inter-machine communication. Moreover, the partitig  (h€ heterogeneity of the CPU and the GPU in distributed
policies in both communication-focused and computatio§/Vironments. Thus, we design a new policy in Section 1I-D.
communication-focused classes are very expensive—for ex- d) The random policy’Last, we also select the random
ample, METIS (communication-focused) takes more than gp@llcy_ from the unfocused class for the _d|str|bL_Jted and the
hours to partition a large graph (1.4 billion edges) with gombined phases. The random policy is lightweight and easy
typical machine that could be used by an SME (3.6 GHz CPQ implement. We aim to use it as a control policy for the O
and 16 GB memory) [32]. Therefore, we select the partitiorﬁlo"cy in the distributed phase, and for the newly designed
ing policies for the distributed phase from the computatioolicy in the combined phase. We do not use the random
focused class, as they will provide fast partitioning anddyo POlicy in the parallel phase, because previous studies en th
balancing of the computation workload, leading to reastmaPerformance of TOTEM [13], [33] have shown that in most
load balancing. cases, the random policy is the worst performing one.

To understand how to balance the workload, we obser
that the computation can be divided into two parts: one f
processing incoming messages, and another one for applyingn this section, we design profiling-based greedy{PG)
updates and creating outgoing messages. The partitioming olicy for the combined phase of combined systems. The PG
icy should aim to balance the substantial part of the woukloapolicy belongs to the computation-focused class.
requiring a decision to be made between balancing the in-Requirements Combined systems need to directly place
degree or the out-degree of the partitions. Because of lowaktices on CPUs and GPUs in a single combined phase (see
message aggregation, the number of incoming messages f&eation IlI-A). To balance the workload, the partitioningjipy

e. The design of a profiling-based greedy policy



of combined systems needs to address the heterogeneitysating of vertices. We expect PG to be faster than PD and

CPUs and GPUs. DP. We further explore the partitioning time in Section IV-F
None of the existing partitioning policies is able to deal

with this type of heterogeneity. For existing computationg. |mplementation details

focused policies, many of them are proposed to distribute . _ . .

graphs for CPU-based systems on homogeneous clusters, biff this section, we describe the non-trivial elements of

these policies do not focus on GPUs. Other computationsfocif'Plementing the three families of distributed heterogerse

policies, such as the HIGH and LOW policies used in TOTEI\/’EyStemS’ and of their partitioning policies. We'begin frdma t
are designed without considering distributed environment CPen-source code of TOTEM, which already implements the

General idea of the new PG policy To balance the general single-machine model introduced in Section II. To

assignment of vertices across both CPUs and GPUs, [ code, we add a profiling component to determinéhe
policy needs to assess the relative computation abilities @Ity t0 operate as distributedsystem with any of the three
the GPU and the CPU. We use the ratio of the GPU aftichitectures, and the partitioning policies.
CPU capabilities;, to estimate a balanced workload—i.e., Profiling the relative computation ability of the CPU and
a workload ratio ofr : 1 for the GPU versus the cpu Of the GPU. Previous studies have shown that heterogeneous
constitutes a balanced workload. These capabilities can H$teéms can outperform CPU-only or GPU-only systems in
obtained from an offline profiling process as introduced {f#@ny application domains, including graph processing, but
Section 1l and discussed in more detail in Section III-E. Ojp€ performance gain is very sensitive to a good workload
policy is inspired by streaming partitioning policies: weat Partitioning [13], [18]. Determining a good workload parti
the vertex list as a stream, and we place the vertices frdi@ning is equivalent, in the case of our systems, to compguti
this stream, one-by-one, in the partition currently having the right o, ie., the right yvorklogd fraction to be placed on
smallest computation workload. The PG policy simplifies th&€ CPU (Section II). This fraction depends on the relative
process of graph partitioning by considering only one veate ability of the CPU _and GPU to process a given workload, ie.,
a time, and achieves balanced partitions for CPUs and GPSW much slower is the CPU compared to the GPU. Previous
Technical details We define the computation workload orStudies have already shown that using hardware performance
the CPU as the sum of the vertex out-degrees of all verticesTPdels is unfeasible [34], and using the theoretical bounds
the partition placed on the CPU. The computation worklodf the hardware platforms does not give accurate results [18
on the GPU is the similar sum computed for vertices placé4®l- Therefore, we propose a profiling method to understand
on the GPU, but divided by to account for the computation th€ computation heterogeneity between these processitgy un
ratio of the GPUs to CPUs. In the PG policy, we maintain aft our offline profiling method, we let the CPU and the GPU
array, indexed by partition, of the computation workload diompute the same workload, and calculate the ratio of the
all partitions. For each next vertex, we search for the panti CPU run time to the GPU run time. Due to the irregular,
with the smallest workload, and place it there. We update tf@t@-dependent nature of graph processing, we repeat the
computation workload of this partition by adding to it thetou €XPeriment for multiple runs and compute an average (see
degree of the added vertex. If the partition is for a GPU arfction IV-B for details) to obtain an accurate executiasfife
the required memory is too close to the GPU memory capacif{gscribingr.
the partition is removed from the computation workload yarra ldeally, the most accurate valuesrodre computed using the
and will not be further considered for the remainder of th@raphs and algorithms that are to be used at runtime. However
partitioning process. When all GPU partitions are full, afuch a profiling method would be too expensive to use in
remaining vertices go to the CPUs. practice, and would cancel out the partitioning speed of our
Limitations . The computation ratio of the GPUs to CPU$elected partitioning policies. Therefore, we choose ader
must be known for the PG partitioning policy to work. Theff accuracy for applicability, and implement our profiling
profiling process to calculate this ratio is time consumingpethod using a 4-step micro-benchmarking strategy.
requiring many experiments (see Section Ill-E). The more Stepl.We select a representative graph processing algo-
experiments, the more accurate the computed ratio is. Becatithm. Specifically, we use PageRank because it is stabks in i
the partition quality of this policy strongly relies on theperformance (e.g., by contrast, BFS shows high performance
accuracy of this ratio, when hardware infrastructure cleangvariability depending on the root of the search).
the profiling process should be re-executed for better acgur ~ Step2.We use five synthetic datasets: Scale-20 to Scale-24,
Comparison with other policies The complexity of the created by the Graph500 generator [35].
PG policy is low, because it only needs to maintain the Step3.We randomly partition each graph and set 10% to
computation workload array for all partitions and to search0% (with a step of 10%) total edges on the CPU and the
for the partition with least workload for each assignmer®. Dremaining (90% to 50%) on the GPU. Then, we reverse the
and PD systems use two-phase partitioning, combining twrkload of the CPU and the GPU for each partitioning.
policies, which means they access each vertex at least,twi€hus, we can obtain 10 pairs of CPU and GPU run times for
to decide its final partition. Moreover, although O and Randoprocessing the same workloads. We calculate the computatio
have low complexity, HIGH and LOW need time-consumingatio » as the CPU run time over the GPU run time. We repeat



TABLE Il TABLE Il

GRAPH-PARTITIONING POLICIES FOR PARTITIONING PHASES EXPERIMENTAL SETUP OF THE EXPERIMENTS INSECTION V.
Phase Policies Section | Algorithms Datasets Metric Machines
. IV-B All Scale-20 to Scale-253 Algorithm run time 1,4
Distributed phase| Out-degree balanced (O), Random (R) VG Al o1 Gs Algorthm vun ime .
Parallel phase HIGH (H), LOW (L) IV-D PageRank G4 Breakdown 4
Combined phase| Profilling-based Greedy (PG), Random (R) IV-E Al G4, G5 Scalability 1-10
IV-F - Scale-20 to Scale-25 Partitioning time 1-10
. .. . . V-G All G1 to G5 Algorithm run time 1,4
the process with 5 random seeds for partitioning, and derive TABLE IV
a mean Value Of’ for eaCh WOfklOg.d. . SUMMARY OF DATASETS USED IN THE EXPERIMENTS
Step4.We observe the correlation betweerand the dif- Graph v 7] P 5
ferent graph sizes (because there is no single value of G1 | WikiTalk (D) 2388,953]  5018445| 01 2
for all graph sizes), and we determine how to seledor G2 | DotaLeague (U) 61,171 | 101740632) 27190 | 1,663
. . G3 | DatagenplOm (D) | 9,749,927| 687,174,631 0.7 70
different graphs (Section IV-B). We then calculate the ticre G4 | Scale-25 (U) 17.062472| 1047207018 04| 61
a asa = max{ay, 1/(r + 1)}, whereq, is derived from the G5 | Friendster (U) | 65,608,366] 3,612,134,270 01| 55
imi i i V| and |E| are the vertex count and edge count of the graphis, the link
|Im|tat|0n to ensure that the GPU 1S nOt_OUt Of memory AS we l:lel]sity (‘><10*5), andD is the average vertex out-degree. (D) and (U) stand
know the data structures for representing partitions on &PU for the original directivity of the graph. For each originaidirected graph, we
. . transform it into a directed graph (see Section IV-A).
«; can be estimated using the vertex and edge counts of the
partition. distributed heterogeneous systems, using algorithm me ti

Communication in the distributed SyStem. To connect (Section |V_C)’ a breakdown of a|gorithm run time (Sec-
the CPUs and GPUs on multiple machines, we extend tfign [v-D), and scalability (Section IV-E). We further agak
communication part of the TOTEM system. We use MPI [2Ghe partitioning time for different policies (Section I\;Fand
and, where available, the Nvidia GPUDirect [21] technoltmy provide a performance comparison between our systems and
communicate between processing units in our distributéd hgther graph-processing systems (Section IV-G).
erogeneous systems. GPUDirect eliminates the copy process )
between the CPU and the GPU(s), which means messagesRarfFxperimental setup
be directly transferred between each pair of processings uni Hardware: We conduct our experiments on the DAS4
with low overhead. The usage of GPUDirect improves theuster [36]. All machines we used in our experiments are
performance of delivering messages and simplifies the godiequipped with an Nvidia GeForce GTX 480 GPU (1.5 GB
effort. We use MPI barriers to ensure that all messages amboard memory) and an Intel Xeon E5620 2.4 GHz CPU
synchronously delivered. (24 GB memory). The machines are connected by 24 Gbit/s

Implemented Policies.Based on the selection and desigmnfiniBand. For the scalability test, we vary the number of
of partitioning policies, we summarize in Table Il the pa@i& working machines from 1 to 10. Our systems need one extra
we consider and implement for the partitioning phases of tineachine as the master.
three families of systems. Algorithms: Based on our literature survey on graph pro-

Other distributed systems aspectsWe deploy the graph cessing [37], we select 3 popular graph-processing algost
partitioner on a master machine. For each family of distdbdu These are Breadth First Search (BFS), PageRank, and Weakly
heterogeneous systems, we implement all the partitioni@pnnected Component (WCC). We use the same implemen-
policies or policy combinations we have selected or creatéation as in our previous study [22]. For BFS on each graph,
in Sections IlI-C and IlI-D, respectively. After partitiony we use the same source vertex. For PageRank, we set the
the input graph, the master sends all data to the workingaximum number of iterations to 10 as the only termination
machines, partition by partition. Working machines sirault condition. WCC does not have any specific configuration.
neously reconstruct (build) their partitions on each pssogy Datasets We select 5 graphs with various characteristics,
unit. We use the master to control the process of executing seen in Table IV. We include two real-world graph from
the graph algorithm. For each iteration in the executiorhef t SNAP [38] (i.e., WikiTalk and Friendster), and one from
graph algorithm, the master collects information from viegk the Game Trace Archive [39] (i.e., DotaLeague). We also
machines, checks if all partitions have finished their etieny use two synthetic graphs, Scale-25 and Datag&@m, from
and determines if execution should be stopped. The masteGigph500 [35] and the LDBC generators [40], respectively.
also responsible for aggregating updates from all panstim For undirected graphs (G2, G4, and G5), we use two directed
the original graph. edges to represent an undirected edge, as required by the
CSR format. The WCC algorithm decides two vertices are
connected if there is an edge between them. Thus, for the

In this section, we present the experiments conducted WICC algorithm on directed graphs (G1 and G3), for each pair
evaluate the performance of our three families of distelut of vertices that are connected with only a single directegbed
heterogeneous systems. We introduce our experimentg setie create a reverse. The new graphs@i®/CCandG3WCGC
in Section IV-A, and summarize it in Table Ill. Our experwith edge counts 9,313,364 and 1,374,349,262, respectivel
iments include an evaluation of the profiling method (Sec- Notation for system-policy configuratiort We selected dif-
tion IV-B) and a thorough evaluation of our three families oferent policies for different phases of three families afteyns

IV. EXPERIMENTAL RESULTS
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edge count [million] graphs G1 to G5 on 4 working machines is 0.09, 0.06, 0.04,
Fig. 3. The relationship between the computation ratio ardetige count. 0-04, and 0.85, respectively.
Our micro-benchmarking strategy uses PageRank for de-
(Table I1). We use the notation of “System-Policy/Poli¢i&S  termining o (Section III-E). We preserve the same values
denote the system-policy configuration. For example, C-Rgr , for all 3 algorithms. To determine how suitabie is
stands for the combined system using the PG policy, and Digr the other algorithms, we run BFS and WCC on the G4
OH indicates the DP system using the O and H policies. T@?aph on 4 working machines using the DP-RH and PD-
DP and PD systems needas an input parameter, and C-PQyRr configurations with different values af. We compare
needs the computation ratio C-R does not need any inputthe algorithm run time of using these values with the one
parameter. obtained using the calculated value of 0.04. Figure 4 shows
Further configuration and settings: We use CUDA 5.5 as these results (the horizontal line represents the algoritin
the GPU compiler, Intel TBB 4.1 [41] for sorting vertices bytime for = 0.04 of DP-RH, which is very similar to PD-HR).
their out-degrees, and Open Mpi 1.8.2 for sending messagegr hoth BFS and WCC, the calculatedleads to the best

We repeat each experiment 10 times and report the mean vaj&formance, with the only exception when using the value of
We do not show error bars because the results from differgnp1 of PD-HR.

runs are stable, with the largest variance under 5%. . N
. C. Overview of the performance of three families of systems
B. CaI(-:uIatlng-r anda. _ _ In this section, we analyze algorithm run time, defined as
In t_hls section we d_|scuss the computatlon ratiéor our  the time for actually executing the graph algorithm; altjori
machines, and we derive the computation workload fractionrun time does not include the time spent on operations like

for CPUs for our graphs. initialization and result aggregation, and includes notesys
Key findings: overhead [22].
o The computation ratior varies with the number of Key findings:
processed edges. o There is no overall winner, but C-R is in general the worst
« The values ofx obtained from PageRank can help BFS  performing architecture.
and WCC achieve good performance. « Our new PG policy for combined systems shows good
Following our micro-benchmarking strategy (Section I)I-E performance.

we obtain different values for, all ranging between 8.0 to  Figure 5 shows the algorithm for all combinations of
25.0. Figure 3 shows how relates to the numbeE,, of algorithms, systems, and datasets. The results are sifoilar
millions of processed edges. Using regression for the estallall algorithms: no system-policy configuration outperferthe
graphs and approximating as being constant for the otherothers in all cases. C-PG is typically in Top 3. C-R performs

ranges, we find the following trends for the worst because it has no consideration for the heterdgene
9.3+02x E,,, 0<E,, <50 of the CPU and the GPU. When we fix the policy used for

- 19.5, 50 < Em7< 195 the distributed phase, and change the policy for the péralle
23.7, 125 < Em_< 350 phase, we can compare the influence of the HIGH and LOW

policies. In almost all cases, the performance of the HIGH
When using multiple machines, each machine will have a vallgjicy is better. We also notice that for G5, the performance
of r that corresponds to the number of edges it has to procegsdifferent system-policy configurations is very simil@his
In our experiments, the edges are evenly distributed, Isecawappens because= 0.85, and therefore the CPU dominates
we use identical machines and a load-balancing drivenypolighe gverall algorithm run time. For G4, we need toséb 0.35
Thus, we can use the same value: 6r all machines. Becausefor pP-OH and PD-HO to ensure that all partitions assigned
of the GPU memory limitation, the maximum value &f, to GPUs do not break the GPU memory limitation. We further
per working machine is about 350. All these values are Iike[yha|yze this setting oft for DP-OH in Section IV-D.
to change for different machine configurations (i.e., défe
GPUs and CPUs). D. Breakdown of algorithm run time

We calculatex for each experiment in the following sections We further break down the algorithm run time into CPU-

with different machine counts and graphs. For examplér and GPU-computation time, and communication time, and
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Frig. 7. The scalability of running PageRank for G4 (left) aB8 (right)
L(verti(:al axes have a logarithmic scale). We failed to run @5lomachine
due to resources limitation.

discuss their impact on performance. From Section IV-C, we select the best performing system-
Key findings: policy configurations. These are C-PG for the Combined
» The computation time is the dominant part of the algaystems, DP-RH for the Distributed-Parallel systems, &be P
rithm run time. HR for the Parallel-Distributed systems. We also select C-R
o C-PG can achieve a balanced intra- and inter-machif@ comparison. Figure 7 depicts the algorithm run time of
computation workload. PageRank for the G4 and G5 graphs (the results we obtained
o The O policy may lead to poor performance and needfisr BFS and WCC are similar, and therefore not included).
to be tuned. For G4, using up to 4 machines leads to excellent scalability

The breakdown of the algorithm run time per machine dfhe values ofa for 1, 2, and 4 machines are 0.8, 0.5, and
PageRank on G4 is presented in Figure 6 for the C-PG and BF04, respectively, meaning that increasingly more waélo
OH configurations. The communication time is significantl{s placed on the GPUs, and is therefore accelerated. However
shorter than the computation time (i.e., the maximum of thghen using more than 4 machines, the performance gain is not
CPU time and the GPU time), which is empirical evidence f@ignificant, simply because G4 is not large enough to stress
our discussion on message aggregation in Section I1I-CCForlarger clusters. For the graph G5, such a scalability litiite
PG, the computation times of the working machines are cloenot visible when using up to 10 machines. Even for 10
to each other, and within each machine, the difference tetwenachines, the algorithm run time is still heavily dominabsd
the CPU time and the GPU time is also small. However, féfe execution on the CPUs.

DP-OH, the computation workload is not balanced across the

CPU and the GPU, because DP-OH needs taxset 0.35 in F. Partitioning time

order to hold all partitions on GPUs. Although the edge CBUNt | this section, we analyze the time spent on partitioning
on the GPUs are balance_d by DP-OH, t_he fourth GPU partitigfaphs for different system-policy configurations.

ha; 2|OO t|m?shmore vertices th_an the flastt)GEU l:|§)ar:t|t|_on. TthSKey findings:

imbalance of the vertex counts is caused by the behaviorof t L
O policy and the input graph G4. In G4, high-degree vertices *® C-PG has shorter partitioning time than DP-RH and PD-
have small vertex IDs and are assigned to the first machine HR. Its partitioning time increases with partition count.

(and then to the first GPU) by the O policy. The O policy * 'I.'he' sizg of graphs_ can significantly influence the parti-
needs tuning to avoid such imbalance. tioning time, especially for DP and PD systems.

We run two sets of experiments, one for partitioning Scale-

E. Scalability 25 with increasing partition count (i.e., using an incregsi
In this section, we discuss the scalability of our systemfumber machines), see Figure 8 (left), and one for partitipn
using a number of working machines from 1 to 10. 6 Graph500 graphs (Scale-20 to Scale-25) into 8 partitions
Key finding: on 4 machines (4 CPU and 4 GPU partitions), see Figure 8

o Our three families of systems show good scalability. (right). Since the results of different configurations of Bid
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Fig. 8. The time spent on partitioning the Scale-25 graph dliffterent GPUs and the reduced communication workload in our system.
Bﬁﬂ]ﬁgﬁi 8; Za;:gg;iege{:i)g;;‘.d on partitioning GraphS0@pgrs into 8 - 555 oy fails to run for G5 with 4 machines, but successfully
, executes with 20 machines, with an algorithm run time closes
= | ‘ ‘ to that of C-PG with 4 machines. Similar results are observed
Cren when running BFS and WCC.

= ] In our previous work [22], we found that TOTEM takes
around 7,000 ms to finish PageRank on G4 with 8 GPUs
(and no CPUs) in a single machine. In contrast, as shown in
Figure 7, C-PG takes only about 5,300 ms for the same job on
a distributed system with 8 machines with one CPU and one
GPU each. We attribute this performance gain to two reasons:
61 G2 G G4 G5 (1) the CPUs play an important role in the performance of our

patasets distributed systems, and (2) the inter-machine commuioicat

Fig. 9. The algorithm run time of PageRank on 5 datasets wilierdnt  is not really a bottleneck.
graph processing systems (the vertical axis has a logaritbozite, missing

bars are explained in the text). V. RELATED WORK

PD systems are similar, we only present the results of DP-There are three directions of research that contribute to
RH and PD-HR. The time for partitioning Scale-25 of Cthe success of our work: designing graph-processing sgstem
PG increases linearly with the partition count, as for eafﬁ?aph partitioning, and workload partitioning for hetegeg
vertex the operation of searching for the partition with thgeous systems. In this section we place our work in the contex
smallest workload has to be performed. As the time requirgd each of these research directions.
for this operation increases with the partition count, ntore Graph-processing systemsThere are tens of graph pro-
is consumed by C-PG. However, compared with the timgassing systems developed in the past 10 years, each one
consuming sorting operation in the HIGH and LOW policiegesigned with specific requirements in mind. Among these
used in DP and PD systems, the partitioning time of C-PG fgquirements, support for large-scale graph and efficiseto
much shorter. Moreover, the gap will increase as the grapfi§sting hardware infrastructure are often the most ingurt
grow larger, see Figure 8 (right). ones. For example, Pregel [7], Giraph [26], or PGX.D [9]
are distributed CPU-based systems that offer a simple,- high
. . level programming model and focus on processing very large
_In this section, we compare the perfo_rmam_:e of our SySte@r%phs with reasonable performance and very good scayabili
with other graph-processing systems, including GPU-emziabIOther systems, like TOTEM [13], Medusa [11], Gunrock [12],
systems (Medusa [11], MapGraph [14], and TOTEM [13]},c\,5 on offering users efficient ways to accelerate theipigr
and a d_'Str_'bUted CPU-based system (Giraph [26]). processing using GPUs on a single machine. Despite thdir hig
Key finding: performance, these systems cannot handle large-scalbsgrap
« Our system can process all 5 datasets and achieves gefigiently. In this work, we combine the advantages of both
performance compared with the other systems. worlds: we are the first to design and evaluate three families
We select C-PG, and we deploy both our system and Giraphdistributed heterogeneous graph-processing systems.
on 4 working machines. The other three systems work on oneGraph partitioning . Many graph-partitioning policies and
machine (altough MapGraph claims to be usable on GPU®thods have been proposed in various research areas. In our
of multiple machines, the latest publicly available vensioprevious work [16], we have summarized the characterisfics
tested in this section can only work on a single machingxisting partitioning policies and classified them intdfeliént
For TOTEM, we setn for each graph according to the ruleslasses from different perspectives: edge-cut [7] andexert
introduced in [13]. We use the HIGH policy in TOTEM, as itcut [42] , static [9] and dynamic [27], and traditional heuri
outperforms the LOW policy for our selected datasets. tics [31] and streaming policies [29]. In this work, we comdi
We run the PageRank algorithm on each system for grapddsting policies for parallel and distributed systemsddrass
G1 to G5 and show the algorithm run time in Figure 9. Althe 2-layer systems we have designed (DP and PD systems).
though Medusa and MapGraph can process the smallest grélygh further propose a novel partitioning policy, inspired by
G1 much faster, they both fail to run already on the mediunthe streaming policies, to tackle both the heterogeneity an
sized graph G2 due to the limited GPU memory. TOTEM failthe scale of GPU-enabled distributed systems.

Algorithm run time [ms]

G. Comparison with other graph-processing systems



Heterogeneous systemsA lot of work has been recently [13] A. Gharaibeh, E. Santos-Neto, L. B. Costa, and M. RipeaHfficient
dedicated to the efficient use of heterogeneous, CPU+GPU Large-Scale Graph Processing on Hybrid CPU and GPU Systems,
tems [43]-[45]. Most of this work f n workl TOPG 2013,
systems [43]-[ ] ost of this work tocuses on wo OaﬂA] Z. Fu, M. Personick, and B. Thompson, “MapGraph: A HiglvéleAP|
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cessing units in the system. In this work, we draw inspiratio__ i GRADES 2014. _
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CPUs and GPUs - to compute an efficient partitioning before Ysis. and Experimental Comparison of Streaming Graph-Ramitg
. - Policies: A Technical Report,” Delft University of Techwogly, Tech.
runtime. We adapt and extend the state-of-the-art profiling
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right fraction of edges per processing unit. This fractisramn 8]

Rep. PDS-2015-002, 2015.
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V1. CONCLUSION AND ONGOING WORK [19]

In this work, we bridge the gap between large-scale sys-
tems and accelerated systems for graph processing by ﬂg]-
signing three families of distributed heterogeneous syste [21]
Each family focuses on a different partitioning architeets- [22]
Distributed-Parallel, Parallel-Distributed, or ComhineWe
combine promising policies for the DP and PD systems, arud)
propose a new policy for the C sytems. To tackle heteroggneit
while partitioning, we adapt and extend a profiling-bas
method to compute the workload fractions for the CPU(s) angh;
the GPU(s).

For the implementation of systems, we address seve
technical challenges, such as implementing communication
CPUs and GPUs on multiple machines and building partitiofi8] O Kanyple.  Kumar
independently on each processing unit. . [29] 1. St:’;\nton Ya?]% G. Kliot,- “Streaming Graph Partitioningr fLarge

To evaluate performance, we conduct experiments for all” pistributed Graphs,” iACM SIGKDD 2012.
three families of systems, using different partitionindigies. [30] T. White, Hadoop: The definitive guide O'Reilly Media, Inc., 2012.
Our results demonstrate the feasibility of distributedent (31] dfimynfgdﬁ;gfﬁoﬁi‘gv?ew;ﬁgf’sh Partitioning Softwafetp://glaros.
geneous systems for graph processing. Performance-Wise,[$2] c. Tsourakakis, C. Gkantsidis, B. Radunovic, and M.ndsic, “FEN-
systems are competitive with the state-of-the-art. _ ycl)fllz Streaming graph partitioning for massive scale graghsf/SDM

For ,the future, we plan to work on three main aspect .] S. Séllinen, D. Borges, A. Gharaibeh, and M. RipeanuxplBring
extending our systems to cover more heterogeneous hardware Hybrid Hardware and Data Placement Strategies for the Gra)gh 5
infrastructures, designing a distributed graph partéiowith Challenge,” inSuperComputing2014.
many partitioning policies, and exploring CPU and GPl[?A'] S. Madougou, A. L. Varbanescu, C. de Laat, and R. van Wh@wort,

L0 . . . “An Empirical Evaluation of GPGPU Performance Models,” Euro-
optimization techniques and their impact on the perforreanc  par, 2014.
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