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Abstract—Graph processing is increasingly used in a variety
of domains, from engineering to logistics and from scientific
computing to online gaming. To process graphs efficiently, GPU-
enabled graph-processing systems such as TOTEM and Medusa
exploit the GPU or the combined CPU+GPU capabilities of a
single machine. Unlike scalable distributed CPU-based systems
such as Pregel and GraphX, existing GPU-enabled systems are
restricted to the resources of a single machine, including the
limited amount of GPU memory, and thus cannot analyze the
increasingly large-scale graphs we see in practice. To address this
problem, we design and implement three families of distributed
heterogeneous graph-processing systems that can use both the
CPUs and GPUs of multiple machines. We further focus on graph
partitioning, for which we compare existing graph-partitioning
policies and a new policy specifically targeted at heterogeneity.
We implement all our distributed heterogeneous systems based
on the programming model of the single-machine TOTEM, to
which we add (1) a new communication layer for CPUs and
GPUs across multiple machines to support distributed graphs,
and (2) a workload partitioning method that uses offline profiling
to distribute the work on the CPUs and the GPUs.

We conduct a comprehensive real-world performance evalua-
tion for all three families. To ensure representative results, we
select 3 typical algorithms and 5 datasets with different charac-
teristics. Our results include algorithm run time, performance
breakdown, scalability, graph partitioning time, and comparison
with other graph-processing systems. They demonstrate the
feasibility of distributed heterogeneous graph processing and
show evidence of the high performance that can be achieved
by combining CPUs and GPUs in a distributed environment.

I. I NTRODUCTION

Increasingly large graphs are being generated every day, not
only by big companies such as Facebook [1] and LinkedIn [2],
but also by Small and Medium Enterprises (SMEs) [3] such
as Wikimedia for online encyclopedia [4], Friendster for
social networks [5] and XFire for online gaming [6]. To
process these graphs, many graph-processing systems, using a
variety of hardware platforms (e.g., multiple CPUs, GPUs, or
combinations thereof) have been designed and implemented.
With CPUs and GPUs becoming increasingly more powerful
and affordable, SMEs who could previously invest only in
CPU-based commodity clusters can now afford to buy a het-
erogeneous environment. However, current graph-processing
systems cannot operate on both distributed and heterogeneous
settings. This raises the important research question ofHow
to design a distributed and heterogeneous graph processing
system?In this work, we explore systematically this question,

through the design and experimental evaluation of three fam-
ilies of distributed heterogeneous graph-processing systems.

Typical distributed CPU-basedgraph-processing systems
such as Pregel [7], GraphX [8], and PGX.D [9] can handle
large graphs by using multiple machines, but choose to ignore
the additional computational power of accelerators because of
the increased complexity of the programming environment.
GPU-enabled systems, on the other hand, can accelerate
graph processing considerably [10], but choose to ignore the
distributed environment because of the added complexity of
(multi-layered) partitioning. For example, Medusa [11] and
Gunrock [12] can utilize multiple GPUs on asinglemachine
and TOTEM [13] is asingle-machineheterogeneous graph-
processing system that can use one CPU and multiple GPUs.
MapGraph [14], [15] can use GPUs from multiple machines.

In this work, we combine the scalability of distributed
CPU-based graph-processing systems with the computational
power and energy efficiency of GPU-enabled graph-processing
systems. Specifically, we design and implement distributed
heterogeneous graph-processing systems that can useboth the
CPUs and the GPUs of multiple machines. Our study bridges
the gap between existing distributed CPU-based systems and
GPU-enabled systems for large-scale graph processing.

We explore the design space of these distributed heteroge-
neous systems with a focus on partitioning. Graph partitioning
is mandatory for systems with multiple processing units [16],
[17]. Well balanced partitions can improve the performance
of graph-processing systems, but the way to build and balance
them depends heavily on the system characteristics. In the
presence of heterogeneity in the platform, balance is difficult
to determine and achieve [18], [19].

In this work, we propose three different graph-partitioning
architectures: Distributed-Parallel (DP), Parallel-Distributed
(PD), and Combined (C). For the DP and PD architectures,
we select and combine existing graph-partitioning policies that
have promising characteristics for the respective phases;for
C systems, we design a new policy to construct balanced
partitions for multiple CPUs and GPUs.

To understand the performance differences between these
systems and policies in the context of real-life graph pro-
cessing applications, we implement our distributed CPU+GPU
systems on top of the popular system TOTEM, from which
we adopt the programming model, the data structures, and
several optimization techniques. To enable the inter-machine
communication necessary for a distributed system, we enhance



the communication layer of TOTEM (a single-machine system
in which data is transferred only between the CPU and the
local GPUs) to use MPI [20] and GPUDirect [21]. We further
address other technical issues, such as separately building
partitions on working machines and aggregating results. Fi-
nally, because TOTEM doesn’t provide a method to compute
the workload partitioning between the CPU and the GPU,
we propose a new method that leads to balanced partitions
among processing units. Our method is based on the approach
proposed by Shen et al. [18], which uses an offline profiling
method to compute the relative capability of the CPU and
the GPU. We extend this method to determine a balanced
partitioning of the input datasets on the CPU and the GPU.

We comprehensively evaluate the performance of three fam-
ilies of distributed heterogeneous graph-processing systems
with different graph-partitioning policies. In our experiments,
we show how our systems can process large-scale graphs faster
than single-machine GPU-enabled systems and distributed
CPU-based systems. Moreover, we show that the systems we
design can analyze large-scale graphs that cannot be handled
by single-machines systems.

Our contribution is four-fold:

1. We explore the design space of distributed heteroge-
neous graph-processing systems (Section III). Specifi-
cally, we explore three families of such systems using
different graph-partitioning architectures.

2. We design and select graph-partitioning policies for the
three families of systems (Section III).

3. For each of the three families of systems, we implement
the first working system (Section III).

4. We conduct comprehensive experiments to evaluate the
performance of our distributed heterogeneous graph-
processing systems (Section IV).

II. EXTENDED BSP-BASED PROGRAMMING MODEL FOR

GRAPH-PROCESSING SYSTEMS

Through comprehensive experiments, we have already
evaluated the performance of existing GPU-enabled graph-
processing systems [22]. Our past results indicate that TOTEM
is, among the systems we have tested, the most reliable
one. Furthermore, TOTEM has clear and comprehensive data
structures for representing graphs and partitions, and several
optimization techniques for improving performance. In this
section, we introduce the programming model and the most
important features of TOTEM (as shown in Figure 1).

TOTEM is a vertex-centric system following the Bulk Syn-
chronous Parallel (BSP) programming model [23]. In the BSP
model, iterative graph algorithms are executed in multiple,
consecutive supersteps. Each superstep coordinates processing
data in parallel, across physical processing units (P ). Graph
vertices are partitioned across processing units. To avoid
processing all vertices during each superstep, vertices can
be activated and only the active vertices are processed. Each
superstep includes three phases: acomputation phaseduring
which all active vertices in each partition execute the same
operations of the graph algorithm; acommunication phase

Fig. 1. The BSP-based programming model and features of a single-machine
heterogeneous graph-processing system.

during which vertices send messages viacut edges, that is,
edges whose vertices belong to partitions managed by different
processing units, to other partitions; and asynchronization
phase, which guarantees that all messages are transferred.

To use memory efficiently, TOTEM uses the Compressed
Sparse Rows (CSR) [24] data format to represent graphs and
their partitions. The CSR format includes two arrays, the
vertex arrayV and the edge arrayE. Each element inV stores,
for a vertex, the head of its list of neighbours, as an index in
E, andE stores for each vertex index a list of its neighbours.
Input graphs are split into multiple partitions, which are further
assigned to the CPU and the GPU(s).

A message aggregation technique is implemented in
TOTEM to reduce the number of messages sent via cut edges
between partitions. The messages sent from vertices in a
partition to the same remote vertex are temporarily buffered.
All messages for the same remote vertex are combined into
one message before sending. To allow for this aggregation,
each partition maintains two sets of buffers: the outbox buffers
and the inbox buffers. Each outbox buffer stores messages to
a remote partition, and each inbox buffer collects messages
from a remote partition. Thus, for each partition, the system
has |P | − 1 outbox and|P | − 1 inbox buffers (|P | is the
number of partitions). This message aggregation techniquecan
significantly reduce communication [13].

For heterogeneous CPU+GPU systems, a crucial operation
is partitioning the workload between CPUs and GPUs. For
many graph processing algorithms, the computation workload
can be heavily related to the number of edges of the input
graph [9], [13], [25]. Thus, partitioning the workload is
equivalent to determining the fraction of the edges to be puton
the CPU(s), which both in TOTEM and in our system is denote
by α, with the remainder to be put on the GPU(s). Existing
studies have not proposed a method to select this value. In
Section III-E, we describe our method to calculate the value
of α. This method is based on existing work on heterogeneous
CPU+GPU systems [18], [19], which we extended and adapted
to graph-processing workloads.



III. T HE DESIGN OFDISTRIBUTED HETEROGENEOUS

GRAPH-PROCESSSINGSYSTEMS

In this section we discuss the design of our three families
of distributed heterogeneous systems for graph processing.
We further present the partitioning policies we have selected
and/or designed for these systems, and we discuss the most
challenging aspects of the implementation.

A. Three families of distributed heterogeneous systems

To extend single-machine graph-processing systems to a
distributed architecture, graph partitioning is a key aspect
for both functionality and performance. In this section, we
focus on the architecture of graph partitioning in distributed
heterogeneous systems.

Balanced partitions often lead to good system performance.
To achieve balanced partitions in distributed heterogeneous
systems, the graph partitioner (see Figure 1) must consider
three main aspects: inter-machine workload distribution,intra-
machine workload distribution (i.e., between the CPU and
the GPU), and communication minimization. To explore these
different aspects, we design three families of distributedhet-
erogeneous graph-processing systems, with the architectures
depicted in Figure 2. We describe these architectures further.

Distributed-Parallel (DP) systems: the partitioner takes
two phases to partition the input graph on the processing units.
First, in thedistributed phase, the partitioner assigns vertices
to different computing machines, similar to the graph parti-
tioning approach used by many distributed graph-processing
systems such as Pregel [7], Giraph [26], or GPS [27]. Next, in
the parallel phase, each machine further splits the subgraph
it received across its local CPUs and GPUs, similar to the
actions taken in TOTEM.

Parallel-Distributed (PD) systems: in contrast to DP sys-
tems, PD systems reverse the sequence of the distributed phase
and the parallel phase: the graph is first divided into two
subgraphs, one to be processed by the CPUs and the other to
be processed by the GPUs, and then each subgraph is further
distributed across CPUs and GPUs.

Combined (C) systems: unlike DP and PD systems, the
combined systems use a single-phase partitioning, thecom-
bined phase. The partitioner directly assigns vertices to pro-
cessing units, considering both the CPUs and the GPUs of
the entire system. To still achieve balanced partitions, the
heterogeneity of processing units is the main challenge that
must be tackled. We describe our approach to this challenge
in Section III-D. We note that our work is the first to consider
a combined partitioning approach for heterogeneous systems.

For all three families of distributed heterogeneous systems,
the graph partitioner operates on a single master machine.
The partitioned data (vertices, edges, etc.) are then sent to
the working machines. Besides being out of the scope of this
work, a distributed partitioner is also non-trivial to implement,
so we leave its design and implementation for future work.

TABLE I
FOUR CLASSES OF GRAPH-PARTITIONING POLICIES.

Class Examples

Computation-focused IO [9], HIGH [13], LOW [13]

Communication-focused METIS [28], LDG [29]

Computation-communication MW [17], MI [17]

Unfocused hash [7], random [29], chunking [30]

B. Classification of partitioning policies

Graph-partitioning has been studied for many years and
many policies, with different goals, have been proposed [16].
For example, the main target of the state-of-the-art graph
partitionerMETIS [28] is to reduce the number of edge cuts
between partitions, which leads to less communication. The
total-degree balancedpolicy (IO) used in the PGX.D graph-
processing system [9] aims to balance the total degrees of
all partitions, allowing each computing unit to have the same
workload. Based on their goals and focuses, we identify four
classes of graph-partitioning policies, and summarize them in
Table I. We discuss each of the four classes below.

The computation-focusedpolicies focus on achieving bal-
anced computation workloads across the processing units,
with no consideration for the edge cuts between partitions.
Policies in this class are based on the intuition that the
computation workload of graph-processing algorithms can
occur incrementally, and mainly along the edges of graphs [9],
[13], [25]. Many computation-focused policies, such as theIO
policy used by the PGX.D system, are designed to balance
the in-degree and/or out-degree of partitions. Considering the
utilization of the cores of processing units, in particularfor
GPUs, the vertex-degree centric policies have been used in
heterogeneous CPU+GPU systems. For example, the HIGH
and LOW policies used by TOTEM fall into this class. For
both of these policies, the vertices of a graph are first sorted
by their out-degrees, and then they are split up into two parts.
For the HIGH (LOW) policy, the part with higher (lower) out-
degrees is assigned to the CPU and the remainder to the GPU.

The communication-focusedpolicies are proposed mainly
to minimize the communication between partitions. Many
traditional heuristics adopt theoretical methods to achieve
minimum communication, such as METIS and its family of
partitioning policies [31]. Emergingstreaming partitioning
policies, which treat vertices as a stream and assign them one-
by-one instead of in bulk, also include many policies to reduce
the communication. For example, the LDG policy [29] places
a vertex to a partition that already has most of the new vertex’s
neighbours. Some of the communication-focused policies also
make an effort, albeit minimal, to balance computation work-
load, for example the LDG policy through a penalty function
to avoid that too many vertices accumulate to one partition
and thus lead to highly imbalanced computation.

The computation-communication policies considerboth
the computation and the communication workloads. For ex-
ample, theMin-Workload(MW) policy [17] combines the two
workloads, by greedily assigning vertices to partitions that
incur minimum combined workload. TheMin-Increased(MI)
policy [17] places vertices with the least increase of workload.



Fig. 2. Three architectural families of distributed heterogeneous graph-processing systems: DP (left), PD (middle), andC (right) systems.

The unfocused class includes policies designed for
simplicity—either to reduce the implementation effort, or
because partitioning is not believed to deliver a balanced
workload. For example, thehash policy is commonly used
by Pregel-like systems [7], [26]. Therandom (R)policy is
another lightweight unfocused policy that randomly places
vertices to different partitions. Non-random policies, such as
chunking [30], take subsets of equal length from the input
graph file and place them round-robin in different partitions.

C. Selection of partitioning policies

As discussed in Section III-A, our three families of dis-
tributed heterogeneous graph-processing systems use one or
two phases for partitioning graphs: a distributed and a parallel
phase, or a combined phase. For each phase, any graph-
partitioning policy could in principle be selected and used.
However, because of policy complexity and the architecture
of the graph-processing systems, some policies may perform
poorly in specific partitioning phases. In this section we
discuss the selection of suitable policies for each family of
systems; we will evaluate these choices in Section IV.

a) The distributed phase:For the distributed phase, we
need to address the load-balancing in the distributed system.
Because of message aggregation, our systems already re-
duce inter-machine communication. Moreover, the partitioning
policies in both communication-focused and computation-
communication-focused classes are very expensive—for ex-
ample, METIS (communication-focused) takes more than 8.5
hours to partition a large graph (1.4 billion edges) with a
typical machine that could be used by an SME (3.6 GHz CPU
and 16 GB memory) [32]. Therefore, we select the partition-
ing policies for the distributed phase from the computation-
focused class, as they will provide fast partitioning and good
balancing of the computation workload, leading to reasonable
load balancing.

To understand how to balance the workload, we observe
that the computation can be divided into two parts: one for
processing incoming messages, and another one for applying
updates and creating outgoing messages. The partitioning pol-
icy should aim to balance the substantial part of the workload,
requiring a decision to be made between balancing the in-
degree or the out-degree of the partitions. Because of local
message aggregation, the number of incoming messages for a

partition is at most(|P |−1)×|Vp|, with Vp the set of vertices of
partitionp). Because|Vp| << |Ep|, with Ep the set of edges of
partitionp, this in-message processing part of the workload is
significantly smaller than the updates and out-going message
preparation part, which requires computation for each edge.
With this knowledge, our policy for the distributed phase must
focus on balancing the out-degree. We select theout-degree
balancedpolicy (O), which is one of the partitioning policies
proved successful by PGX.D [9]. By the O policy, vertices
are assigned to the first|P | − 1 partitions until the sum of
vertex out-degrees in each partition reaches|E|/|P |. The last
partition takes all remaining vertices.

b) The parallel phase:For the parallel phase, we need
to address the heterogeneity of the CPU(s) and the GPU(s).
We cannot use here a degree balanced policy (such as O or
IO from PGX.D), because the GPU can process much faster
than the CPU when they have similar computation workload.
TOTEM has proposed for the parallel phase two policies—
HIGH and LOW—to handle heterogeneity. Given the results
from both [13] and [33], which indicate that HIGH and LOW
can both be successful for different algorithms and datasets,
we select both the HIGH and LOW policies for independent
use in the parallel phase.

c) The combined phase:There is no policy that addresses
the heterogeneity of the CPU and the GPU in distributed
environments. Thus, we design a new policy in Section III-D.

d) The random policy:Last, we also select the random
policy from the unfocused class for the distributed and the
combined phases. The random policy is lightweight and easy
to implement. We aim to use it as a control policy for the O
policy in the distributed phase, and for the newly designed
policy in the combined phase. We do not use the random
policy in the parallel phase, because previous studies on the
performance of TOTEM [13], [33] have shown that in most
cases, the random policy is the worst performing one.

D. The design of a profiling-based greedy policy

In this section, we design aprofiling-based greedy(PG)
policy for the combined phase of combined systems. The PG
policy belongs to the computation-focused class.

Requirements. Combined systems need to directly place
vertices on CPUs and GPUs in a single combined phase (see
Section III-A). To balance the workload, the partitioning policy



of combined systems needs to address the heterogeneity of
CPUs and GPUs.

None of the existing partitioning policies is able to deal
with this type of heterogeneity. For existing computation-
focused policies, many of them are proposed to distribute
graphs for CPU-based systems on homogeneous clusters, but
these policies do not focus on GPUs. Other computation-focus
policies, such as the HIGH and LOW policies used in TOTEM,
are designed without considering distributed environments.

General idea of the new PG policy. To balance the
assignment of vertices across both CPUs and GPUs, the
policy needs to assess the relative computation abilities of
the GPU and the CPU. We use the ratio of the GPU and
CPU capabilities,r, to estimate a balanced workload—i.e.,
a workload ratio ofr : 1 for the GPU versus the CPU
constitutes a balanced workload. These capabilities can be
obtained from an offline profiling process as introduced in
Section II and discussed in more detail in Section III-E. Our
policy is inspired by streaming partitioning policies: we treat
the vertex list as a stream, and we place the vertices from
this stream, one-by-one, in the partition currently havingthe
smallest computation workload. The PG policy simplifies the
process of graph partitioning by considering only one vertex at
a time, and achieves balanced partitions for CPUs and GPUs.

Technical details. We define the computation workload on
the CPU as the sum of the vertex out-degrees of all vertices in
the partition placed on the CPU. The computation workload
on the GPU is the similar sum computed for vertices placed
on the GPU, but divided byr to account for the computation
ratio of the GPUs to CPUs. In the PG policy, we maintain an
array, indexed by partition, of the computation workload of
all partitions. For each next vertex, we search for the partition
with the smallest workload, and place it there. We update the
computation workload of this partition by adding to it the out-
degree of the added vertex. If the partition is for a GPU and
the required memory is too close to the GPU memory capacity,
the partition is removed from the computation workload array
and will not be further considered for the remainder of the
partitioning process. When all GPU partitions are full, all
remaining vertices go to the CPUs.

Limitations . The computation ratio of the GPUs to CPUs
must be known for the PG partitioning policy to work. The
profiling process to calculate this ratio is time consuming,
requiring many experiments (see Section III-E). The more
experiments, the more accurate the computed ratio is. Because
the partition quality of this policy strongly relies on the
accuracy of this ratio, when hardware infrastructure changes,
the profiling process should be re-executed for better accuracy.

Comparison with other policies. The complexity of the
PG policy is low, because it only needs to maintain the
computation workload array for all partitions and to search
for the partition with least workload for each assignment. DP
and PD systems use two-phase partitioning, combining two
policies, which means they access each vertex at least twice,
to decide its final partition. Moreover, although O and Random
have low complexity, HIGH and LOW need time-consuming

sorting of vertices. We expect PG to be faster than PD and
DP. We further explore the partitioning time in Section IV-F.

E. Implementation details

In this section, we describe the non-trivial elements of
implementing the three families of distributed heterogeneous
systems, and of their partitioning policies. We begin from the
open-source code of TOTEM, which already implements the
general single-machine model introduced in Section II. To
this code, we add a profiling component to determiner, the
ability to operate as adistributedsystem with any of the three
architectures, and the partitioning policies.

Profiling the relative computation ability of the CPU and
of the GPU. Previous studies have shown that heterogeneous
systems can outperform CPU-only or GPU-only systems in
many application domains, including graph processing, but
the performance gain is very sensitive to a good workload
partitioning [13], [18]. Determining a good workload parti-
tioning is equivalent, in the case of our systems, to computing
the rightα, i.e., the right workload fraction to be placed on
the CPU (Section II). This fraction depends on the relative
ability of the CPU and GPU to process a given workload, i.e.,
how much slower is the CPU compared to the GPU. Previous
studies have already shown that using hardware performance
models is unfeasible [34], and using the theoretical bounds
of the hardware platforms does not give accurate results [18],
[19]. Therefore, we propose a profiling method to understand
the computation heterogeneity between these processing units.
In our offline profiling method, we let the CPU and the GPU
compute the same workload, and calculate the ratio of the
CPU run time to the GPU run time. Due to the irregular,
data-dependent nature of graph processing, we repeat the
experiment for multiple runs and compute an average (see
Section IV-B for details) to obtain an accurate execution profile
describingr.

Ideally, the most accurate values ofr are computed using the
graphs and algorithms that are to be used at runtime. However,
such a profiling method would be too expensive to use in
practice, and would cancel out the partitioning speed of our
selected partitioning policies. Therefore, we choose to trade-
off accuracy for applicability, and implement our profiling
method using a 4-step micro-benchmarking strategy.

Step1.We select a representative graph processing algo-
rithm. Specifically, we use PageRank because it is stable in its
performance (e.g., by contrast, BFS shows high performance
variability depending on the root of the search).

Step2.We use five synthetic datasets: Scale-20 to Scale-24,
created by the Graph500 generator [35].

Step3.We randomly partition each graph and set 10% to
50% (with a step of 10%) total edges on the CPU and the
remaining (90% to 50%) on the GPU. Then, we reverse the
workload of the CPU and the GPU for each partitioning.
Thus, we can obtain 10 pairs of CPU and GPU run times for
processing the same workloads. We calculate the computation
ratio r as the CPU run time over the GPU run time. We repeat



TABLE II
GRAPH-PARTITIONING POLICIES FOR PARTITIONING PHASES.

Phase Policies

Distributed phase Out-degree balanced (O), Random (R)

Parallel phase HIGH (H), LOW (L)

Combined phase Profilling-based Greedy (PG), Random (R)

the process with 5 random seeds for partitioning, and derive
a mean value ofr for each workload.

Step4.We observe the correlation betweenr and the dif-
ferent graph sizes (because there is no single value ofr
for all graph sizes), and we determine how to selectr for
different graphs (Section IV-B). We then calculate the fraction
α asα = max{αl, 1/(r + 1)}, whereαl is derived from the
limitation to ensure that the GPU is not out of memory. As we
know the data structures for representing partitions on GPUs,
αl can be estimated using the vertex and edge counts of the
partition.

Communication in the distributed system. To connect
the CPUs and GPUs on multiple machines, we extend the
communication part of the TOTEM system. We use MPI [20]
and, where available, the Nvidia GPUDirect [21] technologyto
communicate between processing units in our distributed het-
erogeneous systems. GPUDirect eliminates the copy process
between the CPU and the GPU(s), which means messages can
be directly transferred between each pair of processing units
with low overhead. The usage of GPUDirect improves the
performance of delivering messages and simplifies the coding
effort. We use MPI barriers to ensure that all messages are
synchronously delivered.

Implemented Policies.Based on the selection and design
of partitioning policies, we summarize in Table II the policies
we consider and implement for the partitioning phases of the
three families of systems.

Other distributed systems aspects.We deploy the graph
partitioner on a master machine. For each family of distributed
heterogeneous systems, we implement all the partitioning
policies or policy combinations we have selected or created
in Sections III-C and III-D, respectively. After partitioning
the input graph, the master sends all data to the working
machines, partition by partition. Working machines simulta-
neously reconstruct (build) their partitions on each processing
unit. We use the master to control the process of executing
the graph algorithm. For each iteration in the execution of the
graph algorithm, the master collects information from working
machines, checks if all partitions have finished their execution,
and determines if execution should be stopped. The master is
also responsible for aggregating updates from all partitions to
the original graph.

IV. EXPERIMENTAL RESULTS

In this section, we present the experiments conducted to
evaluate the performance of our three families of distributed
heterogeneous systems. We introduce our experimental setup
in Section IV-A, and summarize it in Table III. Our exper-
iments include an evaluation of the profiling method (Sec-
tion IV-B) and a thorough evaluation of our three families of

TABLE III
EXPERIMENTAL SETUP OF THE EXPERIMENTS INSECTION IV.

Section Algorithms Datasets Metric Machines

IV-B All Scale-20 to Scale-25 Algorithm run time 1, 4

IV-C All G1 to G5 Algorithm run time 4

IV-D PageRank G4 Breakdown 4

IV-E All G4, G5 Scalability 1-10

IV-F - Scale-20 to Scale-25 Partitioning time 1-10

IV-G All G1 to G5 Algorithm run time 1, 4

TABLE IV
SUMMARY OF DATASETS USED IN THE EXPERIMENTS.

Graph |V | |E| d D̄

G1 WikiTalk (D) 2,388,953 5,018,445 0.1 2

G2 DotaLeague (U) 61,171 101,740,632 2,719.0 1,663

G3 Datagenp10m (D) 9,749,927 687,174,631 0.7 70

G4 Scale-25 (U) 17,062,472 1,047,207,019 0.4 61

G5 Friendster (U) 65,608,366 3,612,134,270 0.1 55

|V | and |E| are the vertex count and edge count of the graphs,d is the link
density (×10

−5), and D̄ is the average vertex out-degree. (D) and (U) stand
for the original directivity of the graph. For each originalundirected graph, we
transform it into a directed graph (see Section IV-A).

distributed heterogeneous systems, using algorithm run time
(Section IV-C), a breakdown of algorithm run time (Sec-
tion IV-D), and scalability (Section IV-E). We further analyze
the partitioning time for different policies (Section IV-F), and
provide a performance comparison between our systems and
other graph-processing systems (Section IV-G).

A. Experimental setup

Hardware: We conduct our experiments on the DAS4
cluster [36]. All machines we used in our experiments are
equipped with an Nvidia GeForce GTX 480 GPU (1.5 GB
onboard memory) and an Intel Xeon E5620 2.4 GHz CPU
(24 GB memory). The machines are connected by 24 Gbit/s
InfiniBand. For the scalability test, we vary the number of
working machines from 1 to 10. Our systems need one extra
machine as the master.

Algorithms : Based on our literature survey on graph pro-
cessing [37], we select 3 popular graph-processing algorithms.
These are Breadth First Search (BFS), PageRank, and Weakly
Connected Component (WCC). We use the same implemen-
tation as in our previous study [22]. For BFS on each graph,
we use the same source vertex. For PageRank, we set the
maximum number of iterations to 10 as the only termination
condition. WCC does not have any specific configuration.

Datasets: We select 5 graphs with various characteristics,
as seen in Table IV. We include two real-world graph from
SNAP [38] (i.e., WikiTalk and Friendster), and one from
the Game Trace Archive [39] (i.e., DotaLeague). We also
use two synthetic graphs, Scale-25 and Datagenp10m, from
Graph500 [35] and the LDBC generators [40], respectively.
For undirected graphs (G2, G4, and G5), we use two directed
edges to represent an undirected edge, as required by the
CSR format. The WCC algorithm decides two vertices are
connected if there is an edge between them. Thus, for the
WCC algorithm on directed graphs (G1 and G3), for each pair
of vertices that are connected with only a single directed edge,
we create a reverse. The new graphs areG1WCCandG3WCC,
with edge counts 9,313,364 and 1,374,349,262, respectively.

Notation for system-policy configuration: We selected dif-
ferent policies for different phases of three families of systems
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Fig. 3. The relationship between the computation ratio and the edge count.

(Table II). We use the notation of “System-Policy/Policies” to
denote the system-policy configuration. For example, C-PG
stands for the combined system using the PG policy, and DP-
OH indicates the DP system using the O and H policies. The
DP and PD systems needα as an input parameter, and C-PG
needs the computation ratior. C-R does not need any input
parameter.

Further configuration and settings: We use CUDA 5.5 as
the GPU compiler, Intel TBB 4.1 [41] for sorting vertices by
their out-degrees, and Open Mpi 1.8.2 for sending messages.
We repeat each experiment 10 times and report the mean value.
We do not show error bars because the results from different
runs are stable, with the largest variance under 5%.

B. Calculatingr andα

In this section we discuss the computation ratior for our
machines, and we derive the computation workload fractionα
for CPUs for our graphs.

Key findings:

• The computation ratior varies with the number of
processed edges.

• The values ofα obtained from PageRank can help BFS
and WCC achieve good performance.

Following our micro-benchmarking strategy (Section III-E),
we obtain different values forr, all ranging between 8.0 to
25.0. Figure 3 shows howr relates to the numberEm of
millions of processed edges. Using regression for the smallest
graphs and approximatingr as being constant for the other
ranges, we find the following trends forr:

r =







9.3 + 0.2× Em, 0 < Em ≤ 50
19.5, 50 < Em ≤ 125
23.7, 125 < Em ≤ 350

When using multiple machines, each machine will have a value
of r that corresponds to the number of edges it has to process.
In our experiments, the edges are evenly distributed, because
we use identical machines and a load-balancing driven policy.
Thus, we can use the same value ofr for all machines. Because
of the GPU memory limitation, the maximum value ofEm

per working machine is about 350. All these values are likely
to change for different machine configurations (i.e., different
GPUs and CPUs).

We calculateα for each experiment in the following sections
with different machine counts and graphs. For example,α for
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Fig. 4. The algorithm run time for BFS (left) and WCC (right) fordifferent
values ofα (vertical axes have a logarithmic scale).

graphs G1 to G5 on 4 working machines is 0.09, 0.06, 0.04,
0.04, and 0.85, respectively.

Our micro-benchmarking strategy uses PageRank for de-
termining α (Section III-E). We preserve the same values
for α for all 3 algorithms. To determine how suitableα is
for the other algorithms, we run BFS and WCC on the G4
graph on 4 working machines using the DP-RH and PD-
HR configurations with different values ofα. We compare
the algorithm run time of using these values with the one
obtained using the calculated value of 0.04. Figure 4 shows
these results (the horizontal line represents the algorithm run
time forα = 0.04 of DP-RH, which is very similar to PD-HR).
For both BFS and WCC, the calculatedα leads to the best
performance, with the only exception when using the value of
0.01 of PD-HR.

C. Overview of the performance of three families of systems

In this section, we analyze algorithm run time, defined as
the time for actually executing the graph algorithm; algorithm
run time does not include the time spent on operations like
initialization and result aggregation, and includes no system
overhead [22].

Key findings:
• There is no overall winner, but C-R is in general the worst

performing architecture.
• Our new PG policy for combined systems shows good

performance.
Figure 5 shows the algorithm for all combinations of

algorithms, systems, and datasets. The results are similarfor
all algorithms: no system-policy configuration outperforms the
others in all cases. C-PG is typically in Top 3. C-R performs
the worst because it has no consideration for the heterogeneity
of the CPU and the GPU. When we fix the policy used for
the distributed phase, and change the policy for the parallel
phase, we can compare the influence of the HIGH and LOW
policies. In almost all cases, the performance of the HIGH
policy is better. We also notice that for G5, the performance
of different system-policy configurations is very similar.This
happens becauseα = 0.85, and therefore the CPU dominates
the overall algorithm run time. For G4, we need to setα to 0.35
for DP-OH and PD-HO to ensure that all partitions assigned
to GPUs do not break the GPU memory limitation. We further
analyze this setting ofα for DP-OH in Section IV-D.

D. Breakdown of algorithm run time

We further break down the algorithm run time into CPU-
and GPU-computation time, and communication time, and
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Fig. 5. The algorithm run time of BFS (left), PageRank (middle), and WCC (right) on 5 datasets for all system-policy configurations (vertical axes have a
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100

101

102

103

104

105

106

M1 M2 M3 M4

T
im

e 
[m

s]

Working Machine

CPU time
GPU time

Communication time

100

101

102

103

104

105

106

M1 M2 M3 M4

T
im

e 
[m

s]

Working Machine

CPU time
GPU time

Communication time

Fig. 6. The breakdown of the algorithm run time of C-PG (left) and DP-OH
(right, α = 0.35) when running PageRank on graph G4 on each of the four
working machines (vertical axes have a logarithmic scale).

discuss their impact on performance.
Key findings:
• The computation time is the dominant part of the algo-

rithm run time.
• C-PG can achieve a balanced intra- and inter-machine

computation workload.
• The O policy may lead to poor performance and needs

to be tuned.
The breakdown of the algorithm run time per machine of

PageRank on G4 is presented in Figure 6 for the C-PG and DP-
OH configurations. The communication time is significantly
shorter than the computation time (i.e., the maximum of the
CPU time and the GPU time), which is empirical evidence for
our discussion on message aggregation in Section III-C. ForC-
PG, the computation times of the working machines are close
to each other, and within each machine, the difference between
the CPU time and the GPU time is also small. However, for
DP-OH, the computation workload is not balanced across the
CPU and the GPU, because DP-OH needs to setα to 0.35 in
order to hold all partitions on GPUs. Although the edge counts
on the GPUs are balanced by DP-OH, the fourth GPU partition
has 200 times more vertices than the first GPU partition. This
imbalance of the vertex counts is caused by the behavior of the
O policy and the input graph G4. In G4, high-degree vertices
have small vertex IDs and are assigned to the first machine
(and then to the first GPU) by the O policy. The O policy
needs tuning to avoid such imbalance.

E. Scalability

In this section, we discuss the scalability of our systems
using a number of working machines from 1 to 10.

Key finding:
• Our three families of systems show good scalability.
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Fig. 7. The scalability of running PageRank for G4 (left) andG5 (right)
(vertical axes have a logarithmic scale). We failed to run G5 on 1 machine
due to resources limitation.

From Section IV-C, we select the best performing system-
policy configurations. These are C-PG for the Combined
systems, DP-RH for the Distributed-Parallel systems, and PD-
HR for the Parallel-Distributed systems. We also select C-R
for comparison. Figure 7 depicts the algorithm run time of
PageRank for the G4 and G5 graphs (the results we obtained
for BFS and WCC are similar, and therefore not included).
For G4, using up to 4 machines leads to excellent scalability.
The values ofα for 1, 2, and 4 machines are 0.8, 0.5, and
0.04, respectively, meaning that increasingly more workload
is placed on the GPUs, and is therefore accelerated. However,
when using more than 4 machines, the performance gain is not
significant, simply because G4 is not large enough to stress
larger clusters. For the graph G5, such a scalability limitation
is not visible when using up to 10 machines. Even for 10
machines, the algorithm run time is still heavily dominatedby
the execution on the CPUs.

F. Partitioning time

In this section, we analyze the time spent on partitioning
graphs for different system-policy configurations.

Key findings:

• C-PG has shorter partitioning time than DP-RH and PD-
HR. Its partitioning time increases with partition count.

• The size of graphs can significantly influence the parti-
tioning time, especially for DP and PD systems.

We run two sets of experiments, one for partitioning Scale-
25 with increasing partition count (i.e., using an increasing
number machines), see Figure 8 (left), and one for partitioning
6 Graph500 graphs (Scale-20 to Scale-25) into 8 partitions
on 4 machines (4 CPU and 4 GPU partitions), see Figure 8
(right). Since the results of different configurations of DPand
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Fig. 9. The algorithm run time of PageRank on 5 datasets with different
graph processing systems (the vertical axis has a logarithmicscale, missing
bars are explained in the text).

PD systems are similar, we only present the results of DP-
RH and PD-HR. The time for partitioning Scale-25 of C-
PG increases linearly with the partition count, as for each
vertex the operation of searching for the partition with the
smallest workload has to be performed. As the time required
for this operation increases with the partition count, moretime
is consumed by C-PG. However, compared with the time-
consuming sorting operation in the HIGH and LOW policies
used in DP and PD systems, the partitioning time of C-PG is
much shorter. Moreover, the gap will increase as the graphs
grow larger, see Figure 8 (right).

G. Comparison with other graph-processing systems

In this section, we compare the performance of our systems
with other graph-processing systems, including GPU-enabled
systems (Medusa [11], MapGraph [14], and TOTEM [13]),
and a distributed CPU-based system (Giraph [26]).

Key finding:

• Our system can process all 5 datasets and achieves good
performance compared with the other systems.

We select C-PG, and we deploy both our system and Giraph
on 4 working machines. The other three systems work on one
machine (altough MapGraph claims to be usable on GPUs
of multiple machines, the latest publicly available version
tested in this section can only work on a single machine).
For TOTEM, we setα for each graph according to the rules
introduced in [13]. We use the HIGH policy in TOTEM, as it
outperforms the LOW policy for our selected datasets.

We run the PageRank algorithm on each system for graphs
G1 to G5 and show the algorithm run time in Figure 9. Al-
though Medusa and MapGraph can process the smallest graph
G1 much faster, they both fail to run already on the medium-
sized graph G2 due to the limited GPU memory. TOTEM fails

to run on the graph G5 during the graph partitioning step.
In contrast, our system can process all graphs. On the graph
G4, our system using 4 machines is about 6 times as fast as
the single-machine TOTEM. This super-linear speed-up is due
to getting much more acceleration from the GPUs. Finally,
our system outperforms Giraph significantly (by a factor of
more than 50). The reasons include the acceleration of using
GPUs and the reduced communication workload in our system.
Giraph fails to run for G5 with 4 machines, but successfully
executes with 20 machines, with an algorithm run time closes
to that of C-PG with 4 machines. Similar results are observed
when running BFS and WCC.

In our previous work [22], we found that TOTEM takes
around 7,000 ms to finish PageRank on G4 with 8 GPUs
(and no CPUs) in a single machine. In contrast, as shown in
Figure 7, C-PG takes only about 5,300 ms for the same job on
a distributed system with 8 machines with one CPU and one
GPU each. We attribute this performance gain to two reasons:
(1) the CPUs play an important role in the performance of our
distributed systems, and (2) the inter-machine communication
is not really a bottleneck.

V. RELATED WORK

There are three directions of research that contribute to
the success of our work: designing graph-processing systems,
graph partitioning, and workload partitioning for heteroge-
neous systems. In this section we place our work in the context
of each of these research directions.

Graph-processing systems. There are tens of graph pro-
cessing systems developed in the past 10 years, each one
designed with specific requirements in mind. Among these
requirements, support for large-scale graph and efficient use of
existing hardware infrastructure are often the most important
ones. For example, Pregel [7], Giraph [26], or PGX.D [9]
are distributed CPU-based systems that offer a simple, high-
level programming model and focus on processing very large
graphs with reasonable performance and very good scalability.
Other systems, like TOTEM [13], Medusa [11], Gunrock [12],
focus on offering users efficient ways to accelerate their graph
processing using GPUs on a single machine. Despite their high
performance, these systems cannot handle large-scale graphs
efficiently. In this work, we combine the advantages of both
worlds: we are the first to design and evaluate three families
of distributed heterogeneous graph-processing systems.

Graph partitioning . Many graph-partitioning policies and
methods have been proposed in various research areas. In our
previous work [16], we have summarized the characteristicsof
existing partitioning policies and classified them into different
classes from different perspectives: edge-cut [7] and vertex-
cut [42] , static [9] and dynamic [27], and traditional heuris-
tics [31] and streaming policies [29]. In this work, we combine
existing policies for parallel and distributed systems to address
the 2-layer systems we have designed (DP and PD systems).
We further propose a novel partitioning policy, inspired by
the streaming policies, to tackle both the heterogeneity and
the scale of GPU-enabled distributed systems.



Heterogeneous systems. A lot of work has been recently
dedicated to the efficient use of heterogeneous, CPU+GPU
systems [43]–[45]. Most of this work focuses on workload
partitioning - static or dynamic - between the different pro-
cessing units in the system. In this work, we draw inspiration
from static workload partitioning, which uses an estimation
of the relative compute capabilities of the processing units -
CPUs and GPUs - to compute an efficient partitioning before
runtime. We adapt and extend the state-of-the-art profiling-
based approach from [18] to a method that determines the
right fraction of edges per processing unit. This fraction is an
important parameter for our graph partitioner.

VI. CONCLUSION AND ONGOING WORK

In this work, we bridge the gap between large-scale sys-
tems and accelerated systems for graph processing by de-
signing three families of distributed heterogeneous systems.
Each family focuses on a different partitioning architecture—
Distributed-Parallel, Parallel-Distributed, or Combined. We
combine promising policies for the DP and PD systems, and
propose a new policy for the C sytems. To tackle heterogeneity
while partitioning, we adapt and extend a profiling-based
method to compute the workload fractions for the CPU(s) and
the GPU(s).

For the implementation of systems, we address several
technical challenges, such as implementing communicationof
CPUs and GPUs on multiple machines and building partitions
independently on each processing unit.

To evaluate performance, we conduct experiments for all
three families of systems, using different partitioning policies.
Our results demonstrate the feasibility of distributed hetero-
geneous systems for graph processing. Performance-wise, the
systems are competitive with the state-of-the-art.

For the future, we plan to work on three main aspects:
extending our systems to cover more heterogeneous hardware
infrastructures, designing a distributed graph partitioner with
many partitioning policies, and exploring CPU and GPU
optimization techniques and their impact on the performance.
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