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Abstract—PPMLR-MHD is a new magnetohydrodynamics
(MHD) model used to simulate the interactions of the solar
wind with the magnetosphere, which has been proved to be the
key element of the space weather cause-and-effect chain process
from the Sun to Earth. Compared to existing MHD methods,
PPMLR-MHD achieves the advantage of high order spatial
accuracy and low numerical dissipation. However, the accuracy
comes at a cost. On one hand, this method requires more
intensive computation. On the other hand, more boundary data
is subject to be transferred during the process of simulation. In
this work, we present a parallel hybrid solution of the PPMLR-
MHD model implemented using the computing capabilities of
both CPUs and GPUs. We demonstrate that our optimized
implementation alleviates the data transfer overhead by using
GPU Direct technology and can scale up to 151 processes
and achieve significant performance gains by distributing the
workload among the CPUs and GPUs on Titan at Oak Ridge
National Laboratory. The performance results show that our
implementation is fast enough to carry out highly accurate
MHD simulations in real time.

Keywords-CUDA; Space Weather Forecast; PPMLR-MHD;
CUDA-aware MPI

I. INTRODUCTION

The magnetosphere, which is the outermost of the
geospace, is formed when the solar wind interacts with
the Earth’s internal magnetic field [1]. Understanding the
formation and development of the magnetosphere is cru-
cial because it is the key element of the space weather
cause-and-effect chain process from the Sun to the Earth.
Similar to the weather on Earth, space weather is about
the time varying conditions taking place in the space from
the solar atmosphere to the geospace. It is driven by the
solar wind which carries solar energy and comes through
interplanetary space from the near surface of the Sun and
the Sun’s atmosphere. Due to the effect of the Earth’s
magnetic field, the magnetosphere forms a shape similar to
a bullet, where the sunny side is roughly like a hemisphere
with a radius of 15RE(Earth radii), while the nightside
forms a cylinder shape with a radius of 20-25RE . The
tail region stretches well beyond 200RE while its exact
length is not well known. It is known that the geospace,

including the magnetosphere and ionosphere, has the nature
of nonlinearity, multiple-component, and time-dependence,
which together pose a big challenge to investigate it using
only traditional analytical approaches. Therefore, numerical
models have been developed to explore the properties of the
solar wind-magnetosphere-ionosphere coupling. It has been
demonstrated that this kind of study is a natural match for
MHD numerical simulations[1].

Over the years, different global MHD models have been
developed to study the cause-and-effect of the space weather:
1) Lax-Wendroff model [2], 2) FV-TVD model [3], 3)
OpenGGCM model [4], 4) GUMICS-3 model [5], 5) LFM
model [6], 6) BATS-R-US model [7], and 7) PPMLR-MHD
model [1]. The PPMLR-MHD model is a new global MHD
model, which achieves high order spatial accuracy and low
numerical dissipation compared to other existing models.
By applying the piecewise parabolic method, the PPMLR-
MHD algorithm has an accuracy of a third order in space,
which enables the numerical model to present physical
solutions even using relatively larger grid spacing. However,
the parabolic interpolation is more complex than other
interpolations, i.e. the linear interpolation, and therefore the
computation amount will cost more time. Besides, this in-
terpolation advancement also requires more communication
data transfer. These problem together pose big challenge to
develop a highly efficient fast implementation.

The development of the General-Purpose GPU technology
in recent years has made big progress in the field of high
performance computing. Due to the massive parallelism
nature of GPUs, researchers are now able to solve large
scale problems at a much faster speed while using less
power. As of now NVIDIA has released its 4th-gen CUDA
devices capable of running thousands of parallel threads si-
multaneously. However, GPU programming is very different
from that of CPU as it has a very specific architecture, one
needs to carefully design the architecture of the software to
maximize the performance. Meanwhile, since GPU has its
own dedicated memory, concerns also need to be addressed
in minimizing the overhead of data transfer.
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In this work, we present a GPU implementation of the
PPMLR-MHD model. Due to the computation and data
transfer intensive nature of this model, special attention
has been paid to alleviate the overhead during simulation.
We discuss the parallel problem partition, followed by
the adaptation design scheme for taking advantage of the
latest NVIDIA GPUs. We also demonstrate the techniques
adopted to alleviate data transfer overhead using GPU direct
techniques. We scale our implementation to hundreds of
processes and solve the MHD simulation problem in a very
efficient manner to meet the real time requirements for space
weather forecast.

II. THE PPMLR-MHD METHOD

The global numerical model for Earth’s space environ-
ment, especially for the magnetosphere is based on the
magnetohydrodynamic (MHD) description of plasma. The
conservational form of the 3-Dimensional MHD equations
is listed as follows:
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ρ is the density, p is the plasma pressure, v is the flow
velocity, B,Bd,B

′
are the magnetic field, the Earth’s dipole

field, and the difference between the two fields respectively,
µ0 = 4π × 10−7H · m−1 is the permeability of vacuum
and γ = 5/3 is the adiabatic index. In order to improve
the accuracy in the calculation of the magnetic field, B

′
is

evaluated instead of B during the simulations, for the Earth’s
dipole field could be very large when closer to Earth. But it
is noted that B

′
does not have to be small compared with

Bd.
A so-called piecewise parabolic method with a Lagrangian

remap (PPMLR)-MHD algorithm, developed by Hu etc. [1],
is applied to solve these equations. It is an extension of
the Lagrangian version of the Piecewise Parabolic Method
(PPMLR) developed by Collela & Woodward [8] to MHD.
In this PPMLR-MHD algorithm, all variables (ρ, v, B

′
and

p) are defined at the zone centers as volume averages, and
their spatial distributions can be obtained by a parabolic

interpolation which is piecewise continuous in each zone.
When a characteristic method is used to calculate the local
values of the variables at the zone edges, they are updated
first in the Lagrangian coordinates to the next time step, and
then the results are remapped onto the fixed Eulerian grids
by solving the corresponding advection equations.

For the closure of the field-aligned current, an ionosphere
shell, setting at r = 1.017RE (110 km altitude) is integrated
in the simulation model under the electrostatic assumptions,
which is connected with the magnetospheric inner boundary,
setting at r = 3RE by dipole field lines between them. An
electrostatic potential equation is solved in the ionosphere,
and the solved potential is mapped to the magnetospheric
inner boundary as a boundary condition for magnetospheric
flows.

More numerical details of the simulation model can be
found in [1], and a number of studies of the solar wind-
magnetosphere-ionosphere interactions have been success-
fully carried out based on this model, and have been re-
viewed in [9].

III. THE HYBRID IMPLEMENTATION

A. Task Partitioning

The numerical domain of the PPMLR-MHD model is over
a stretched Cartesian coordinate which takes the Earth as the
origin and lets the x, y, and z axes point to the Sun, dusk,
and the northward directions, respectively. The size of this
domain extends from 30 RE to -100 RE along the Sun-Earth
line and from -100 RE to 100 RE in y and z directions. It is
discretized into 156× 150× 150 grid points: the grid is rect-
angular and nonuniform with the highest spatial resolution
of 0.4 RE near Earth. To accommodate the large simulation
volume and long simulation time, we parallelize the model
to be scalable from several to hundreds of processes , and
partion the domain in all three directions. For the purpose
of load balance, each subdomain usually contains the same
number of grid points. Since the subdomain that contains
the Earth must stay in a single numerical grid, the number
of processes in the y and z direction must be odd (1, 3, 5,
etc.). In addition, one more process is required to solve the
ionospheric potential equation. It is worthy to point out that
the 3-Dimensional MHD equations on every grid in each
subdomain is divided into three 1-Dimensional equations,
which are independent in the other two directions when
solving these one dimensional equations. As 156 is divisible
by 3, 4 and 6, we employ the process configuration of 3 ×
1 × 1, 3 × 3 × 3, 4 × 3 × 3, 6 × 3 × 3, 4 × 5 × 5, 6 × 5
× 5, plus one more process, the final number of processes
are 4, 28, 37, 55, 101, 151, respectively.

B. Optimisation Analysis and Design for GPU

GPU is different in hardware architecture compared to
CPU in that it focuses more on the part of parallel compu-
tation in large scale. To maximize the computational power



of the GPU, attentions have to be paid at the design phase of
the GPU code implementation. This section first describes
the general optimisation methods in GPU programming and
then discusses the high performance design considerations
adopted in our PPMLR-MHD implementation. In this work
we employ NVIDIA’s CUDA as our GPU programming tool,
therefore the optimisation terminologies demonstrated are
limited to CUDA.

1) Overview of Optimisation Methods: In essence, GPU
is a massively parallel device which is capable of running
tens of thousands of tasks simultaneously. Similar to CPU,
the basic GPU execution unit is termed as GPU thread.
To achieve high efficiency on GPU, it is required that
the GPU threads launched are well past the number of
executable threads (tens of thousands) so that hanging and
ready threads can be switched back and forth dynamically to
hide load/store instruction latency. The general optimisation
methods include (but not limited): a) increasing the occu-
pancy ([10], [11]), which is defined as the ratio between the
active executing threads and the maximal executable threads
on GPU streaming multiprocessor (SMX), b) employing
coalesced memory access pattern (adjacent threads access
adjacent memory addresses in short) for global memory
read/write, c) shared memory tuning for reusable data access,
d) atomic optimisation [12] for superposition that involves
small scale memory conflict (no greater than 16 threads per
memory address), e) warp shuffle optimisation for reduction,
f) streaming for increasing multiprocess GPU resources
utilization.

2) High Efficiency Design: Our goal is to achieve high ef-
ficiency, high performance while maintaining high accuracy.
In an effort to achieve this goal, we concentrate our effort
on the following four aspects in designing the implemen-
tation: a) Adopt non-uniform spacing strategy in choosing
numerical grids to reduce unnecessary computation. In our
PPMLR-MHD model, a uniform mesh is laid out in the near-
Earth domain within 10RE , and the grid spacing outside
increases according to a geometrical series of common ratio
of 1.05 along each axis. b) Reorganize the data so that it’s
GPU memory efficient. The memory-bound nature of the
PPMLR-MHD method makes it very important to efficiently
access the data as the whole simulation process consists of
tens of thousands of time steps. In each step, the boundary
input is obtained from neighbouring MPI processes and
employed only once to solve the equations described in
section II. As a result, GPU’s shared memory is no longer
needed for optimisation which makes global memory access
with coalesced pattern very important. In addition, each
solving process contains only basic arithmetic, no reduction
or memory conflict is involved, therefore warp-shuffle and
atomic optimisation are not helpful in our case. c) Employ
streaming strategy to make the most of GPU resources. As
kernels in different GPU streams can make use of the GPU
parallelly, we make every grid execute in a specific stream.

d) Make use of CUDA-aware MPI to efficiently transfer
data between MPI ranks. In traditional MPI programming,
the data computed on GPU has to be transferred back
into CPU’s host memory and then sent to responding MPI
processes via MPI message. This is a big overhead as
unnecessary data transfer is totally a waste of time. In our
implementation, each grid needs to obtain boundary data
from neighbouring processes in each step and there are more
than thousands of steps performed, which makes the data
transfer even more severe. To address this problem, we take
advantage of the CUDA-aware MPI. Besides the capability
of transferring data pointers pointed to host memory, the
CUDA-aware MPI also takes care of GPU’s device memory,
which significantly reduces the unnecessary data movement
by directly move data between GPUs by taking advantage
of network adapter’s RDMA capability. Figure 1 illustrates
the data movement difference between traditional MPI and
CUDA-aware MPI. The long solid arrow in the upper part
of the figure shows the data flow of the CUDA-aware MPI,
the rest of the arrows shows the data flow of the traditional
MPI.

Figure 1. Comparison between traditional MPI and CUDA-aware MPI.
The CUDA-aware MPI directly transfers data via RDMA while avoiding
unnecessary data movement compared to the traditional MPI.

IV. PERFORMANCE AND SCALABILITY STUDY

This section discusses the performance and scalability of
the GPU PPMLR-MHD implementation. To begin with, we
study the scalability of the simulation, which gives a general
performance picture of our MHD method. We then discuss
more specific topics including single process performance
and the transfer time of each process in different execution
configurations.

A. Testing environment

We test our implementation on the Titan Supercomputer
at the Oak Ridge National Laboraty (ORNL), the hardware
and software configuration of each computing node is shown
in Table I, each node is equipped with two 10-core CPUs
as well as one NVIDIA GPU.

In the case of the PPMLR-MHD simulation, the input
scale depends on the resolution of the numerical grids, which
is predetermined in the design phase of this method. In other
words, the input scale is fixed. Therefore, we focus on the
strong scalability of the PPMLR-MHD simulation. We test



Table I
COMPUTE NODE CONFIGURATION

CPU AMD Opteron™ 6274 (Interlagos)

GPU NVIDIA Tesla K20x

Host Max Memory Bandwidth 51.2 GB/s

GPU Max Memory Bandwidth 250 GB/s

Network 40 Gb/s Infiniband

Memory 32 GB

OS Cray Node Linux (CNL)

CUDA Version 7.5

our implementation with 4, 28, 37, 55, 101, 151 processes,
respectively, and then look into detailed performance results
on both computation and data transfer. The reason we choose
these irregular numbers is that the PPMLR task partition
scheme has its own constraint: the number of ranks in the
y and z direction must be odd and the same as each other,
plus one more MPI rank is used for calculating the boundary
update information. To perform the simulation, we start with
a somewhat arbitrarily prescribed initial state. In the domain
of x 6 15RE , B’ (defined in section II) is produced by the
image of Earth’s dipole located at (x, y, z) = (30, 0, 0)RE ,
and the initial distribution of plasma density and temperature
is spherically symmetric. Finally, on the right of x = 15RE ,
a uniform solar wind and a uniform interplanetary magnetic
field (IMF) are assumed. The simulation will continue until
a steady-state magnetosphere is reached.

B. Scalability and Accuracy study

The accuracy and utility of space weather forecasts de-
pend heavily on a thorough knowledge of the Sun-Earth
system. The PPMLR-MHD model is designed to have high
order spatial accuracy and low numerical dissipation. To fur-
ther improve the accuracy in the calculation of the magnetic
field, we have subtracted the Earth’s dipole field from the
total, and only the deviation field B’ is evaluated during the
calculations. For the simulation, a given numerical accuracy
can be achieved by using a corresponding numerical grids
partition. In this work, we choose a relatively middle nu-
merical grids (156 × 150 × 150) which is most frequently
used in our daily working environment.

Since the overall problem for a given accuracy can be
considered as fixed for a given accuracy, we discuss the
strong scalability of the problem and omit the study of
weak scalability. The strong scalability of the PPMLR-MHD
method is determined by the size of the numerical grids. In
our experiment configuration, the numerical grids is chosen
to be 156×150×150. To facilitate implementation, we add
extra constraint to our task partition strategy: the number of
MPI ranks in the y and z axis must be the same and they
are required to be odd numbers. PPMLR-MHD employs
an iterative method to solve the MHD equations, in each
iteration of the simulation, each grid (computed by a single

MPI rank) needs to exchange its boundary data from all
of its neighbours, the total amount of data required to be
exchanged (TDE) is proportional to the partition choice
applied. The amount of data exchanged in z direction can be
represented as c× nx × ny × (nz − 1) where c represents a
certain constants and nx, ny, nz is the number of MPI ranks
in the x, y, z dimensions, respectively, x and y direction
can be calculated in the same way, there fore, TDE can be
calculated as:

TDE ∝ nx × ny × (nz − 1)

+ nx × (ny − 1)× nz
+ (nx − 1)× ny × nz

(1)

From equation 1, the total number of MPI ranks has
positive relation to the total amount of exchanged data, in-
volving more GPUs also brings more data transfer overhead.
Besides, GPU requires problem to be big enough in order to
take advantage of its massive parallel power. A compromise
has to be made between the computation resources and the
data exchange overhead. To demonstrate, we simulate our
implementation for 100 iterations since the total amount of
execution time required for several execution configuration
is too long. Figure 2 shows the simulation results.

Figure 2. Execution time of simulations for 100 iterations in different
scale configuration.

As illustrated in the figure, in every chosen execution
configuration, our GPU PPMLR-MHD implementation out-
performs the CPU counterpart (2.5 to 3.5 times faster). The
best performance comes from the execution configuration of
101 MPI ranks, this result meets our expectation, because
more processes bring not only more computational resources
but also more data exchange overhead, the execution config-
uration of 101 processes is the balance point between these
two performance related factors.



C. GPU performance study
The computing capability of GPU plays a key role for

us to achieve real time simulation. This section studies the
performance contribution of GPU. To begin with, we com-
pare our GPU implementation with a CPU counterpart which
is highly optimised for spatial-temporal locality memory
access. To accurately measure the computation performance,
we randomly choose several single steps and record the
computation time from each MPI rank, we then average
the sum of all records and use the final result to perform
comparison. Since the computing workload for each step is
predetermined and thus fixed, each step is supposed to take
approximately the same amount of time. Our results give
a direct comparions of the code performance on GPU and
CPU.

Although parallelization is well considered in the design
process of the PPMLR-MHD implementation, the memory-
intensive nature of the algorithm makes it more memory
bandwidth limited when considering the expected perfor-
mance. In theory, the PPMLR-MHD GPU implementation’s
maximum achievable speedup (MAS) over the CPU coun-
terpart can be expressed as:

MAS =
GPU Memory Bandwidth

Host Memory Bandwidth

From the hardware configuration listed in Table I, the
maximum expected speedup should be MAS = 250 GB/s
/ 52 GB/s ≈ 4.88 in our testing environment. Figure 3
illustrates the execution time of a single step in different
scale configurations.

Figure 3. Average execution time of each step in different scale configu-
rations. The number in the x axis stands for the number of processes used
in launching MPI executables.

As can be seen in the figure, the employment of GPU
has significantly improves the performance of the PPMLR
simulation. The GPU version has achieved up to 3.57x
speedups (compared to the CPU counterpart) in the con-
figuration of 4 MPI ranks. This result is very close to the

MAS theoretical peak of 4.88 (73.2 % of the GPU bandwidth
has been employed). As the number of MPI ranks increases,
the effect of GPU acceleration is less significant, this is due
to the fact that the increasing of parallel processes results
in the decreasing of the amount of workload in each MPI
rank. When the workload is below a certain amount, GPU
is underutilize thus unable to achieve peak performance.

D. Data transfer time study

Heterogeneous computing devices such as GPU have their
own dedicated memory. Data that are used as input to
execute are required to reside on GPU’s device memory,
as the host memory is not accessible from GPU streaming
multiprocessors. For many traditional MPI-based scientific
applications such as PPMLR-MHD, this causes a major
problem in using multiple GPUs since the computed results
must be transferred back and forth from GPU memory to
CPU’s host memory in order to update boundary data on
the numerical grids. Arrows in the lower part of Figure 1
demonstrates the data flow from one GPU to another using
traditional MPI. As can be seen, except for the necessary
RDMA operation, there are 6 more memory copy operations
involved in a single data transfer between two MPI ranks.
Obviously, the redundant 6 memory copy operations per MPI
rank pair causes a bandwidth overhead that is non-ignorable
in achieving high performance.

To reduce the data transfer overhead, we employ the
CUDA-aware MPI. Through this technology, the GPU’s
device memory can be directly sent to/received from the
MPI api, combined with Remote Direct Memory Access
(RDMA) technology, buffers can be directly sent from GPU
memory to a network adapter without staging through host
memory, as shown in the upper part of Figure 1. Therefore,
compared to a CPU counterpart using traditional MPI imple-
mentation, our PPMLR-MHD GPU version is supposed to
take approximately the same amount of time in transferring
data. We predict that

CPU data transfer time ≈ GPU data transfer time

To check our prediction, we randomly choose a single
simulation step from both PPMLR-MHD GPU implementa-
tion and the CPU counterpart, we record the total amount of
time taken for sending as well as receiving data for all MPI
ranks involved, we then average them and use the result
as the comparison input. Since the amount of data being
transferred is exactly the same for every single step, the
choice of the experiment design is supposed to demonstrate
the accurate data transfer overhead difference between the
CPU and GPU implementation.

Figure 4 shows the comparison of the data transfer time
of the PPMLR GPU implementation versus that of the
CPU counterpart in different execution configurations. As
presented in the figure, the PPMLR GPU implementation



Figure 4. Average data transfer time of each step in different scale
configurations. The number in the x axis represents the number of processes
used in launching MPI executables.

takes slightly less time in transferring data compared to the
CPU counterpart. We attribute this result to the employment
of the CUDA-aware MPI as well as GPU’s high speed
memory bus. CUDA-aware MPI helps our implementation
to take advantage of the RDMA in transferring data among
MPI ranks, as the CPU version also uses this technology,
we expect the two implementations spend approximately
the same amount of time in transferring data. The reason
PPMLR GPU takes less time is due to the fact that GPU
has higher speed bus, thus data from GPU’s device memory
reaches network adaptor quicker than that from host mem-
ory.

V. CONCLUSION

In this work, we present a GPU accelerated implementa-
tion of the PPMLR-MHD model for space weather forecast.
We significantly improve the code performance by taking
advantage of the GPU technology as well as CUDA-aware
MPI. By making careful choices in the design phase of
the implementation, we are able to make the most of
GPU’s powerful compute capability and achieve near peak
performance. The final implementation is scaled to up to
151 processes and the real time performance requirement is
met.
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