
HAL Id: hal-01355227
https://inria.hal.science/hal-01355227

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Memory-Optimized Data Shuffling Patterns for
Big Data Analytics

Bogdan Nicolae, Carlos Costa, Claudia Misale, Kostas Katrinis, Yoonho Park

To cite this version:
Bogdan Nicolae, Carlos Costa, Claudia Misale, Kostas Katrinis, Yoonho Park. Towards Memory-
Optimized Data Shuffling Patterns for Big Data Analytics. CCGrid’16: 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May 2016, Cartagena, Colombia. pp.409-412,
�10.1109/CCGrid.2016.85�. �hal-01355227�

https://inria.hal.science/hal-01355227
https://hal.archives-ouvertes.fr


Towards Memory-Optimized Data Shuffling

Patterns for Big Data Analytics

Bogdan Nicolae∗, Carlos Costa†, Claudia Misale†, Kostas Katrinis∗, Yoonho Park†

∗IBM Research, Ireland

{bogdan.nicolae, katrinisk}@ie.ibm.com
†IBM T. J. Watson Research Center, USA

{chcost, cmisale, yoonho}@us.ibm.com

Abstract—Big data analytics is an indispensable tool in
transforming science, engineering, medicine, healthcare, fi-
nance and ultimately business itself. With the explosion of
data sizes and need for shorter time-to-solution, in-memory
platforms such as Apache Spark gain increasing popularity.
However, this introduces important challenges, among which
data shuffling is particularly difficult: on one hand it is a
key part of the computation that has a major impact on
the overall performance and scalability so its efficiency is
paramount, while on the other hand it needs to operate with
scarce memory in order to leave as much memory available for
data caching. In this context, efficient scheduling of data trans-
fers such that it addresses both dimensions of the problem
simultaneously is non-trivial. State-of-the-art solutions often
rely on simple approaches that yield sub-optimal performance
and resource usage. This paper contributes a novel shuffle data
transfer strategy that dynamically adapts to the computation
with minimal memory utilization, which we briefly underline
as a series of design principles.

Index Terms—big data analytics, data shuffling, memory-
efficient I/O, elastic buffering

I. INTRODUCTION

Data is the new natural resource. Its ingestion and

processing leads to valuable insight that is transformative

in all aspects of our world [1]. Science employs data-driven

approaches to understanding nature and developing prompt

answers to fundamental scientific and societal questions

across domains and disciplines. In all industries and sectors,

data science has been a fast growing value generator, lever-

aging the abundance and growth of data availability due

to various contemporary factors (e.g. connectivity, mobile,

social media) and coming up with deeper insight solutions

to prompt business cases.

As Big Data Analytics starts becoming essential across

value chains, there is a natural need for shortened time-to-

insight and improved economy of scale. In this regard, data-

oriented programming models that separate the computation

from its parallelization gained rapid popularity beginning

with the MapReduce [2] paradigm. However, as the user

has to worry less about parallelization, the runtime becomes

increasingly complex. One major contribution in this con-

text was the data-locality centered design: the storage layer

is co-located with the compute elements and exposes the

data locations such that the computation can be scheduled

close to the data. Using this approach, data movements

over the network are drastically reduced, which improves

performance and scalability. However, the push for perfor-

mance prompted the need for better integration between

the data flow and the computational flow, in order to avoid

important overheads due to the storage layer. To this end, a

new generation of in-memory big data analytics frameworks

is increasingly gaining popularity over MapReduce, such as

Apache Spark [3]. By making heavy use of in-memory data

caching, Spark minimizes the interactions with the storage

layer, which further reduces I/O bottlenecks due to slow

local disks, extra copies and serialization issues.

Memory, however, is a precious resource: prices have

stopped dropping for the past years yet the number of

cores keeps growing. Thus, memory per core gets smaller

and smaller yet there is no evidence that the bytes/flop

requirements will be dropping. As a consequence, the

“preciousness” of main memory as a system component

is highly likely to be increasing; more so when considering

the in-memory computing trend of big data analytics,

which is necessary to achieve the desired time-to-solution.

Furthermore, it is important to note that many users rely

on utility computing models (e.g. clouds) to run big data

analytics, which use resource consumption as the decisive

factor in pricing. Thus, efficient memory utilization is

important from this perspective as well.

Therefore, modern big data analytics have to recon-

cile several trade-offs: support user-friendly programming

models that deliver high performance and scalability with

minimal memory utilization. One difficult challenge in

this context is data shuffling. It is a fundamental pattern

that facilitates the implementation of a large family of

collaborative data aggregation primitives (e.g. reduce, join,

groupby). With respect to performance and scalability, data

shuffling is challenging because it involves complex all-

to-all communication patterns over the network. In fact it

is the one of the main factors that could potentially limit

the overall effectiveness of exploiting data locality and in-

memory caching. To address this issue, it is important to

use a fast interconnect and an asynchronous I/O model that

overlaps the computation with the data transfers to hide

communication latencies as much as possible. However,

doing so may lead to an explosion of memory utilization

required for buffering, which is in addition to the memory



needed for user data.

In this context, shuffle strategies that minimize the

auxiliary memory utilization are paramount, since mem-

ory is expensive and better used for actual data caching.

This paper contributes a novel data transfer strategy that

is specifically designed to operate efficiently under tight

memory constraints. We summarize our contributions as

follows:

• We formulate the problem of data shuffling under

tight memory constraints and identify the associated

challenges (Section II).

• We underline the design principles for an adaptive,

memory-efficient data transfer strategy that addresses

these challenges (Section IV).

II. PROBLEM DEFINITION AND CHALLENGES

Data shuffling is a fundamental data management primi-

tive. In a broad sense, it refers to a set of n processes, each

of which has a local dataset Di partitioned into n pieces:

Di,1, Di,2...Di,n, each of which in turn is supposed to be

accessed by another process. This can happen either in a

pull mode (i.e., each process i fetches Dj,i, from each other

process j) or in a push mode (i.e., each process i sends Di,j

to each other process j). This pattern naturally appears in a

broad range of data operations: parallel joins, aggregations,

sorts, etc [4], [5].

In big data analytics, data shuffling is a key component

of large-scale data aggregations. One widely-know example

is MapReduce, in which mapper tasks shuffle the data

to reducer tasks [2]. The newer generation of big data

analytics frameworks, out of which the most representative

is Spark [3], offers a rich set of data manipulation primitives

in addition to reduce: groupByKey, repartition, coalesce,

cogroup, join. All these operations rely on data shuffling

and are leveraged by an entire higher level ecosystem of

libraries: machine learning, graph processing, SQL query

processing, etc. For simplification purposes, in this pa-

per we abuse the term “reduce” operation to include the

whole family of operations and primitives that rely on data

shuffling, as applied to any framework used (e.g. Spark).

By extension, the processes that are involved in the data

shuffling and consume the shuffle blocks are referred to as

“reducers”.

At large scale, data shuffling typically involves huge

amounts of data. In this context, it is not feasible to gather

all the shuffle data before it is consumed, both because

the data transfers would take a long time to complete

and because a large amount of memory and local storage

would be needed to cache it. As a consequence, a producer-

consumer model is typically adopted, where the data trans-

fers asynchronously accumulate shuffle blocks that are

consumed by the computation. Even so, since data transfers

are performed concurrently, this creates a complex all-to-

all parallel communication pattern that puts a significant

burden on the networking infrastructure. This in turn can

cause I/O bottlenecks, which can lead to situations where

the computation is blocked waiting for fresh shuffle blocks

to arrive.

Besides the issue of waiting for shuffle blocks, the oppo-

site also creates an important challenge: how to deal with

the accumulation of shuffle blocks. When data transfers are

fast, shuffle blocks may accumulate faster than they can be

consumed, leading to an explosion of memory utilization.

Using local memory for buffering intermediate shuffle data

is not desired, because it is an expensive resource that

otherwise could be used to cache actual user data. For

example, aggressive caching is a key feature that Spark

relies upon to deliver high performance. To mitigate this

problem, each reducer typically uses a limited amount of

memory that can be used to accumulate shuffle blocks from

remote nodes. For example, Spark implements this limit as

an upper bound on the amount of shuffle data that can

be in transit from other remote nodes at any point in time.

This limit is independently applied to each reducer. Since in

the worst case (i.e. when shuffle blocks are not consumed)

only up to the maximum amount of permitted in-flight

shuffle data can accumulate, this simultaneously represents

an upper bound on the memory used to accumulate the

shuffle blocks. For the rest of this paper, we refer to this

upper bound as the in-flight reducer limit. It is important

to note that with an increasing number of cores per node,

the number of reducers increases as well, which may lead

to an explosion of overall memory utilization.

Given this context, we are faced with a difficult trade-off:

on one hand it is desirable to accumulate as many shuffle

blocks as possible in the background for each reducer,

because this lowers the risk of blocking the computation.

However, on the other hand it is important to minimize

the memory utilization by placing tight in-flight limits on

the reducers. In this paper, it is precisely this trade-off

that we address. Our goal is to design a memory-efficient

shuffle strategy that delivers high performance and is highly

scalable, while reducing the memory utilization as much as

possible within the hard upper bound given by the in-flight

limit. For simplicity, we assume that all co-located reducers

on the same node can trivially access each other’s shuffle

blocks (e.g. using shared memory or disks). Thus, the actual

problem we focus on is how to transfer the remote shuffle

blocks over the network.

III. RELATED WORK

How to optimize the performance of big data applications

has been extensively studied in the context of MapReduce.

Vertical scalability issued are explored in [6]. Overlapping

the map phase with the reduce phase efficiently such that

reducers do not lock out resources when idle is explored

in [7]. Some studies show that CPU also can become a

major bottleneck in big data analytics [8].

With respect to the storage layer and user data, improved

concurrency control through multi-versioning can improve

I/O data throughput significantly under concurrency com-

pared with HDFS, as demonstrated by BlobSeer [9]. In-



memory caching as an additional layer on top of the storage

layer is also gaining increasing attention recently [10].

With respect to data shuffling itself, the problem has been

explored from multiple perspectives. Theoretical consider-

ation was given in [11], where the authors present upper

and lower bounds on the parallel I/O complexity of the

shuffle phase. Low-level optimizations of the networking

layer where data shuffling is explored in the context of

high performance interconnects such as InfiniBand exist

both for MapReduce [12] and Spark [13]. Furthermore,

optimizations that are orthogonal to data transfers can be

an effective complement: compression [14], [15], natural

data redundancy [16], shuffle file consolidation [14].

IV. AN ADAPTIVE MEMORY-EFFICIENT SHUFFLE

BLOCK TRANSFER PROPOSAL

This section details our proposal for an adaptive shuffle

block transfer strategy that addresses the challenges intro-

duced in Section II. We focus on two aspects: (1) how to

select a remote node where to get the shuffle blocks from;

(2) when and how many shuffle blocks to fetch from the

selected node.

A. Shuffle block source selection

We use three criteria for selection, detailed below.

Load balancing of data transfers using node-level

coordination: In a large scale all-to-all parallel communi-

cation pattern, I/O bottlenecks are unavoidable due to the

interference between the data transfers and potential load

imbalances. As a result, it is important to coordinate the

reducers in such way that they are aware of each other’s

intent, which enables better planning of the data transfers

to avoid I/O bottlenecks. However, doing so is not without

drawbacks, as this introduces an additional synchronization

overhead that is necessary to facilitate collaboration. Since

from a computational perspective the reducers can progress

independently, there is no way to leverage an already

existing synchronization point context to exchange such ad-

ditional information (which is often the case for example in

bulk-synchronous applications that use barriers). To address

this trade-off, we propose to coordinate all reducers at node-

level using shared in-memory data structures that keep track

for each remote node of the total amount of in-flight data

generated by all co-located reducers. This local view of

the in-flight data can be used by the reducer to prioritize

the node with the minimal load in order to improve load

balancing. While this may not be globally optimal, it is an

effective compromise given the large number of co-located

reducers and the negligible performance overhead.

Prioritization based on node-level responsiveness:

Load balancing alone is not enough to mitigate I/O bot-

tlenecks: even if a node does not need to serve a lot

of requests, it can still be less responsive than a heavier

loaded node. This can happen because of multiple reasons:

starvation due to unfair allocation of I/O bandwidth, high

CPU utilization during the computation, etc. Furthermore,

since load is measured from a local perspective, lack of

responsiveness can simply happen because at the global

level the node is in fact heavily loaded but this was not

detected at local level. Thus, we propose to measure for all

remote nodes how much time the reducers block waiting

for its shuffle blocks. Based on this information, a moving

average can be calculated for each remote node based on

the most recent shuffle blocks. This effectively creates a

measure of how responsive each remote node is from a local

perspective, which enables the selection strategy to adapt

to the particular situation of each node independently (e.g.,

a remote node may look unresponsive to a node with fast

reducers but could be considered responsive otherwise).

Static circular load-balancing of the initial data

transfers: One important standing issue is how to assign

the initial fetch requests to the nodes: since there is no

historical information about waiting times and no node has

any in-flight pending requests, it is not possible to apply

the previous two principles right from the beginning. To

this end, we propose a third selection criteria that works as

follows: lacking any additional information, each reducer

prefers the remote node that is the closest successor to its

local node that actually has shuffle blocks still to be fetched.

Any predefined circular ordering of the nodes can be used,

as long as all reducers from all nodes agree on it. Using

this approach, reducers hosted on different nodes will prefer

different remote nodes with high probability, which reduces

the risk for I/O bottlenecks without any synchronization

overhead.

B. Data transfer planning

In a limitless configuration where shuffle blocks can

accumulate indefinitely before being consumed, the transfer

algorithm adopted by a reducer is trivial: send an initial

request that includes all shuffle blocks to each remote node

and start collecting the results. When there is an in-flight

limit in place, a request for a new shuffle block can be

issued only if the size of the request is smaller than the

in-flight limit. It is at this point when the selection strategy

of the remote node becomes important. Using the selection

strategy mentioned above, a trivial data transfer planning

strategy would simply issue a new request whenever the

in-flight size is below the in-flight limit. However, there

are several important disadvantages when adopting such a

trivial strategy, which we address below.

Shuffle block aggregation and request dispersal

based on in-flight increment: First, issuing a separate

request for each shuffle block can have a high overhead, es-

pecially if the size of the shuffle blocks is very small. Thus,

it may pay off to wait until a request can be formulated for

multiple blocks at once. Furthermore, it is also important to

spread the requests among multiple nodes in order to reduce

the risk of fluctuations and unresponsiveness that may

happen during the data transfers that cannot be anticipated

by the selection strategy. To this end, we define the in-flight

increment as the minimum size that a request needs to have



in order to be issued. A request is never issued if it is not

larger than the in-flight increment unless there are no more

shuffle blocks that can be grouped together. Furthermore,

a request is not allowed to be much larger than the in-

flight increment. Specifically, whenever the in-flight size

is below the in-flight limit minus the in-flight increment,

new fetch requests are scheduled repeatedly based on the

criteria introduced in Section IV-A until the in-flight limit

is filled. Since the in-flight size of the remote node changes

after each invocation, a different node is returned each

time with high probability. This enables multiple parallel

requests to different remote nodes, which reduces the risk

of I/O bottlenecks.

Memory-efficient elastic in-flight reducer limit: Sec-

ond, filling the whole capacity of the reducer up to its hard

in-flight limit constantly may be sub-optimal, especially if

the computation consumes the shuffle blocks at a slower

rate. Thus, it is important to adapt the data transfer rate

to the computation in such a way that it accumulates

as few shuffle blocks as possible without causing waits,

which minimizes the memory utilization. To this end, we

introduce an elastic scheme that works as follows: initially,

all reducers issue requests until they fill their hard in-flight

limit. However, once shuffle blocks start accumulating, each

reducer monitors the computation and records its average

wait time. If the wait time is much smaller than the average,

then its in-flight limit shrinks by the in-flight increment (but

cannot shrink to less than the in-flight increment itself),

otherwise it grows by the in-flight increment (without

surpassing the hard in-flight limit). This elastic in-flight

limit replaces the hard in-flight limit in all decisions.

Note that the in-flight increment can be optimized based

on the networking infrastructure (latency, throughput, pro-

tocol, etc.). In combination with the elastic in-flight limit,

each reducer effectively has a mechanism to adapt to its

own computation and optimize its own memory utilization

independently of the other reducers.

V. DISCUSSION

We have formed the design principles presented above

into a prototype shuffle data transfer strategy. We chose

Spark as the framework to illustrate this strategy on, due to

the large traction it received in recent production analytics

platforms and solutions. The implementation details and

experimental evaluations that demonstrate the benefits of

this proposal for real-life Spark applications are outside

the scope of this short paper and will be released in a

subsequent publication.

Furthermore, we believe our proposal can be also ex-

tended in two other directions. First, we decided to avoid

synchronization across nodes due to extra overhead. How-

ever, if this overhead can be masked by piggy-backing

extra information on top of regular shuffle block transfers,

then this could potentially be leveraged asynchronously for

better selection and transfer planning. Second, we did not

explore the interference between independent shuffles that

run concurrently or the result that shows better stability

of in-flight data. There are multiple interesting aspects

to explore in this context, such as how to co-optimize

independent shuffles or minimize interference with other

(Spark or non-Spark) workloads.

REFERENCES

[1] T. Hey, S. Tansley, and K. M. Tolle, Eds., The Fourth Paradigm:

Data-Intensive Scientific Discovery. Microsoft Research, 2009.
[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing

on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in NSDI’12: The 9th USENIX Symposium on Networked

Systems Design and Implementation, San Jose, USA, 2012, pp. 15–
28.

[4] G. Graefe, “Encapsulation of parallelism in the volcano query
processing system,” in SIGMOD ’90: The 1990 ACM SIGMOD In-

ternational Conference on Management of Data. Atlantic City,USA:
ACM, 1990, pp. 102–111.

[5] C. Baru and G. Fecteau, “An overview of db2 parallel edition,”
SIGMOD Rec., vol. 24, no. 2, pp. 460–462, May 1995.

[6] B. Nicolae, “Understanding Vertical Scalability of I/O Virtualization
for MapReduce Workloads: Challenges and Opportunities,” in Big-

DataCloud ’13: 2nd Workshop on Big Data Management in Clouds

(held in conjunction with EuroPar’13), Aachen, Germany, 2013.
[7] J. Tan, A. Chin, Z. Z. Hu, Y. Hu, S. Meng, X. Meng, and L. Zhang,

“Dynmr: Dynamic mapreduce with reducetask interleaving and map-
task backfilling,” in EuroSys ’14: Proceedings of the Ninth European

Conference on Computer Systems. Amsterdam, The Netherlands:
ACM, 2014, pp. 2:1–2:14.

[8] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in
NSDI’15: The 12th USENIX Conference on Networked Systems

Design and Implementation, Oakland, USA, 2015, pp. 293–307.
[9] B. Nicolae, D. Moise, G. Antoniu, L. Bougé, and M. Dorier,

“BlobSeer: Bringing high throughput under heavy concurrency to
Hadoop Map/Reduce applications,” in IPDPS ’10: Proc. 24th IEEE

International Parallel and Distributed Processing Symposium, At-
lanta, USA, 2010, pp. 1–12.

[10] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, Memory Speed Storage for Cluster Computing Frame-
works,” in SOCC ’14: Proceedings of the ACM Symposium on Cloud

Computing, Seattle, USA, 2014, pp. 6:1–6:15.
[11] G. Greiner and R. Jacob, “The efficiency of mapreduce in parallel

external memory,” in LATIN’12: Proceedings of the 10th Latin Amer-

ican International Conference on Theoretical Informatics, Arequipa,
Peru, 2012, pp. 433–445.

[12] M. W.-u. Rahman, X. Lu, N. S. Islam, and D. K. D. Panda,
“HOMR: A Hybrid Approach to Exploit Maximum Overlapping
in MapReduce over High Performance Interconnects,” in ICS ’14:

Proceedings of the 28th ACM International Conference on Super-

computing, Munich, Germany, 2014, pp. 33–42.
[13] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,

“Accelerating Spark with RDMA for Big Data Processing: Early
Experiences,” in HOTI’14: IEEE 22nd Annual Symposium on High-

Performance Interconnects, Mountain View, USA, 2014, pp. 9–16.
[14] A. Davidson and A. Or, “Optimizing shuffle performance in spark,”

University of California, Berkeley - Department of Electrical Engi-
neering and Computer Sciences, Tech. Rep., 2013.

[15] B. Nicolae, “On the benefits of transparent compression for cost-
effective cloud data storage,” Transactions on Large-Scale Data- and

Knowledge-Centered Systems, vol. 3, pp. 167–184, 2011.
[16] ——, “Leveraging naturally distributed data redundancy to reduce

collective I/O replication overhead,” in IPDPS ’15: 29th IEEE

International Parallel and Distributed Processing Symposium, Hy-
derabad, India, 2015, pp. 1023–1032.


