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ABSTRACT
Distributed graph platforms like Pregel have used vertex-
centric programming models to process the growing corpus
of graph datasets using commodity clusters. The irregular
structure of graphs cause load imbalances across machines
operating on graph partitions, and this is exacerbated for
non-stationary graph algorithms such as traversals, where
not all parts of the graph are active at the same time. As a
result, such graph platforms, even as they scale, do not make
efficient use of distributed resources. Clouds offer elastic vir-
tual machines (VMs) that can be leveraged to improve the
resource utilization for such platforms and hence reduce the
monetary cost for their execution. In this paper, we propose
strategies for elastic placement of graph partitions on Cloud
VMs for a subgraph-centric programming model to reduce
the cost of execution compared to a static placement, even
as we minimize the increase in makespan. These strategies
are innovative in modeling the graph algorithm’s behavior
a priori using a metagraph sketch for the large graph. We
validate our strategies for several graphs, using runtime tra-
ces for their distributed execution of a Breadth First Search
(BFS) algorithms on our subgraph-centric GoFFish graph
platform. Our strategies are able to reduce the cost of exe-
cution by up to 42%, compared to a static placement, while
achieving a makespan that is within 29% of the optimal.

Categories and Subject Descriptors
[Networks]: Cloud computing; [Computing methodo-
logies]: Distributed computing methodologies; [Computing
methodologies]: Planning and scheduling

General Terms
Design, Performance, Experimentation

Keywords
Graph processing, Elastic Scheduling, Big Data, Cloud Com-
puting, Distributed System
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1. INTRODUCTION
Graph algorithms are challenging to design, program and

execute in parallel due to their irregular nature. There has
been a rapid growth of large graph datasets, ranging from
social networks [3] and knowledge graphs [2], to power and
road infrastructure graphs 1 and connectivity of the Inter-
net of Things. At the same time, there has been a push
toward developing Big Data platforms for graph processing
on commodity clusters and Clouds. Distributed graph pro-
gramming models such as Google’s Pregel [13] and Graph-
Lab [11] leverage an intuitive vertex-centric approach to spe-
cifying graph algorithms, where users specify the logic for a
single vertex and this is executed in parallel across all ver-
tices, with message passing or state transfer between them.
These have been extended to other component-centric va-
riants [20,21] that execute iteratively using a Bulk Synchro-
nous Parallel (BSP) model. However, despite their use of
commodity clusters, there has not been work on effectively
leveraging elastic Cloud resources for such irregular graph
platforms.

Many of the newer graph platforms have been able to sca-
le with the size of the graph, but they do not necessarily
achieve a high efficiency of execution. For e.g., a vertex-
centric programming model like Pregel is nominally able to
achieve a balanced computation across different partitions
(machines) due to similar number of vertices on each parti-
tion [1,13], and edge-balanced partitioning has been attemp-
ted too [16]. But a balancing of the topology across machines
translates to a balanced CPU utilization of all the machines
only for stationary graph algorithms [10], where all vertices
or edges are actively computing during the entire algorithm.
Such algorithms, like PageRank or Bi-partite connectivity,
can achieve good load balancing across machines.

However, when the algorithm itself moves to different par-
ts of the graphs over different supersteps (iterations), the
load across different machines gets out of balance. Such non-
stationary algorithms [10] include traversals (e.g., breadth-
first search, single source shortest path) and centrality (e.g.
between-centrality) algorithms. For e.g., in BFS, the parti-
tion containing the source vertex is active in the first super-
step and as the traversal progresses, its neighboring parti-
tions get active in subsequent supersteps, and so on. As a
result, only a subset of the partitions are active at a time
with their host machine’s CPU being used, even as the other
machines holding inactive vertices are under-/un-used. For
example, the average utilization for BFS, using a subgraph-

1http://www.dis.uniroma1.it/challenge9/download.shtml
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centric model, over the USA Road Network (23M vertices,
85M edges) running on 8 machines is 35% (Fig. 2).

Cloud computing has been actively used by Big Data plat-
forms due to it easy access to commodity infrastructure.
One of its key benefits is the elastic access to resources, that
allows virtual machines (VMs) to be acquired and released
on-demand with a pay-as-you-go pricing. Infrastructure as
a Cloud (IaaS) rent out VMs by the hour (Amazon AWS) or
even by the minute (Google Compute and Microsoft Azure).
Irregular distributed graph algorithms, operating on large
graphs, can take 100’s of core-minutes to run on commodi-
ty hardware. Hence, this offers the opportunity to control
the VM elasticity such that only partitions that are active
take up VM resources, thereby reducing the monetary cost
of execution. There has been limited work on actively using
Cloud elasticity for graph platforms. We address this gap in
this paper by proposing partition activation and placement
strategies on Clouds for graph platforms.

Two key intuitions drive our approach: (1) We decouple
partitioning of the graph from their placement on VMs for
executing a particular algorithm; and (2) We utilize a me-
tagraph [6] sketch of the whole graph to a priori model the
progress of the algorithm onto various partitions, which gui-
des our placement strategy at each superstep. As a result,
for each superstep, we are able to activate VMs and place
relevant partitions on them, and conversely, deactivate VMs
without active partitions. In the process, we reduce the mo-
netary cost of execution on the Cloud with minimal impact
on the runtime of the algorithm.

The rest of this paper is organized as follows. In § 2 we
discuss related work on distributed graph processing and
partitioning strategies. In § 3, we review our prior work on
the GoFFish subgraph-centric distributed platform and the
concept of metagraphs, which are used in our approach and
evaluation. We define the system model considered and for-
malize the problem of partition placement onto VMs in § 4.
§ 5 introduces our proposed partition placement and VM ac-
tivation strategies. We validate these strategies in § 6 using
execution traces collected from real graphs for the Breadth
First Search (BFS) algorithm and evaluate the potential be-
nefits in reducing the VM cost. Lastly, in § 7 we present our
conclusions and discuss future work.

2. RELATED WORK
MapReduce has been a staple platform for Big Data pro-

cessing but graphs present challenges to its tuple-centric mo-
del. Its shortcomings for graph algorithms, which tend to be
iterative, are due to the repetitive costs for disk I/O, both
to reload the graph and to pass state, for each iteration [5].
To address this, Google’s Pregel [13] offers a vertex-centric
programming model that keeps the graph in memory, and
uses an iterative Bulk Synchronous Parallel (BSP) execution
model where messages are passed between vertices for state
transfer at superstep boundaries. Within a superstep, active
vertices execute their compute() method once, in parallel,
and this method has access to that vertex’s prior state and
any incoming messages from its neighbors from the previous
superstep.

All vertices are active when the Pregel application begins,
and a vertex can locally vote to halt as part of its compute
logic, when it “appears” to have finished. This makes it
inactive, and the compute method of an inactive vertex is
not invoked in a superstep. Inactive vertices can be revived

and active again when a new message is received by them at
a superstep. When all vertices are inactive in a superstep, a
global vote to halt is reached and the application terminates.

Pregel has spawned Apache Giraph [1] as an open sour-
ce implementation, and other optimizations to its program-
ming and execution models. Giraph++ [21], Blogel [22] and
our own work on GoFFish [20] coarsen the programming mo-
del to operate on partitions or subgraphs, with Giraph++
using partitions, GoFFish on subgraphs (weakly connected
components, WCC) and Blogel on either vertices or blocks
(WCC). This gives users more flexible access to graph com-
ponents that can lead to faster convergence, and also reduces
fine-grained vertex-level communication. This paper aims to
use elastic Cloud VMs for such component-centric systems.

Distributed graph processing systems divide the graph in-
to a number of partitions which are placed across machines
for execution. The quality of partitioning impacts the load
on a machine, cost of communication between vertices, and
the iterations required to converge. A variety of partitioning
techniques have been tried. Giraph’s default partitioner ha-
shes vertex IDs to machines, to balance the number vertices
per machine. Other approaches that balance the number ed-
ges per partition, for algorithms that are edge-bound, have
been tried [9]. GoFFish tries to balance the number of verti-
ces per partition while also minimizing the edge cuts between
partitions. This gives partitions with well-connected com-
ponents that suits its subgraph-centric model. Multi-level
partitioning schemes have also been identified to improve
the CPU utilization [4]. Blogel further uses special 2D par-
titoners for spatial graphs to improve the convergence time
for reachability algorithms.

However, unlike stationary algorithms [10] like PageRank
where all vertices are active on all supersteps, non-stationary
traversal algorithms like BFS have a varying frontier set of
vertices that are active in each iteration. This results in an
uneven workload across different machines. Hence, a sin-
gle partitioning scheme, however good its quality may be in
achieving some topological balancing, cannot offer compute
balancing across hosts, minimize communication and ensu-
re fast convergence, for all types of graphs and algorithms.
We address the lack of compute balancing for non-stationary
algorithms here, and the associated suboptimal Cloud costs.

Platforms like Mizan [10] partially address this imbalance
by performing vertex migration based on the number of out-
going and incoming messages to vertices and the execution
time of a vertex in a superstep. This identifies overloaded
machines at the end of each superstep, and the vertices to
migrate to less loaded machines. However, this runtime de-
cision causes additional coordination costs to decide and mo-
ve vertices, and re-synchronize before the next superstep’s
compute can be started. This can result in an increased ma-
kespan for non-stationary algorithms, which their results do
not document, and also affect its correctness [12].

GPS [16] too adopts dynamic re-partitioning to reduce
communication by co-locating vertices that communicate
beyond threshold onto the same machine while also balan-
cing the number of vertices per machine. It only takes in-
to account the outgoing messages from a vertex for this
decision, which is in-sufficient for load balancing in non-
stationary algorithms. Similarly, [18] tries to balance the
workload across the machines by an experimental study of
the graph algorithm and a prediction of the number of active
vertices in the next superstep to perform vertex migrations.



Such analytical and experimental predictions are difficult
and costly for new graphs or algorithms.

Two key distinctions between these works on vertex mi-
gration and ours is, (1) rather than balance the workload
across a static set of machines, we scale-out or -in the num-
ber of elastic VMs to match the workload on a superstep,
and (2) we use an a priori analysis of the graph algorithm on
a coarse metagraph to model the execution time of partitions
rapidly, and use this to decide both the number of VMs re-
quired and the placement of partitions on VMs. This static
planning of migration and scaling for each superstep helps
hide the migration costs by interleaving data movement with
compute, and can avoid increasing the makespan.

To our knowledge, there is no detailed, existing work on
the effective use of elastic VMs to execute component-centric
graph frameworks. Our prior work [15] briefly examines dy-
namic scaling of BSP workers on elastic VMs for a vertex-
centric model to reduce the cost of execution of the Between-
ness Centrality (BC) algorithm. This uses an intuition that
BC has a sinusoidal number of active vertices when laun-
ching traversals from multiple source vertices, and this can
be used to control the number of VMs. We generalize this
model in the current paper using the notion of metagraphs
than can be used for many graph algorithms, including BC,
and without needing to empirically observe the algorithm’s
execution on the whole graph.

There has also been some work on algorithmic analysis of
component-centric graph algorithms to guide their efficient
execution [17,23]. These identify desirable properties for al-
gorithms designed for distributed graph processing systems
like Pregel. Our work is complementary to such algorithmic
innovations, and such techniques can be applied to analyzing
the metagraph too.

Besides Pregel-like systems there are several other distri-
buted graph processing systems. GraphLab [11] uses an
asynchronous, though vertex-centric, programming model
where a vertex can directly access its neighboring vertex
and edge values, without the need for messaging. GraphLab
also adopts a fast repartitioning scheme that is user-driven.
Powergraph [8] follows a vertex based partitioning and re-
plication to distribute load based on edges. Sedge [24], is a
distributed graph querying system over a set of non overlap-
ping partitions, and it can reduce the communication costs
at runtime by creating new partitions or replicating them.
Trinity [19] is a distributed in-memory key-value store to
perform graph analytics such as path traversal on RDF da-
ta, which is treated as a graph. However, none of these di-
stributed graph processing systems are optimized for elastic
Cloud resources, which is the emphasis of this paper.

3. BACKGROUND
We use the GoFFish subgraph-centric graph programming

model to translate and validate our approach of using ela-
stic placement strategies for non-stationary graph algorith-
ms. As background, we give details on GoFFish’s graph
data distribution and execution model, and the ability to
construct a metagraph on top of large graphs to analyze the
execution of graph algorithms.

3.1 GoFFish Subgraph-centric Model
As described before, GoFFish [20] is a distributed gra-

ph processing framework that follows a BSP model to ex-
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Figure 1: Metagraph formation from partitioning
graph (left), and active subgraphs, along with VMs
used, during BFS execution in GoFFish (right).

ecute graph application written using a subgraph-centric
programming model.

Consider a directed graph G = 〈V,E〉 is partitioned into
m partitions using some relevant partitioning scheme that
reduces the edge cuts across partitions and balances vertices
in each, and these are distributed over n machines, such that
m ≥ n. A single machine can hold one or more partitions.
Partitions are vertex disjoint, meaning that a vertex belongs
to exactly one partition. Edges connecting vertices in dif-
ferent partitions are termed as remote edges, whereas those
having both source and sink vertices in the same partition
are called local edges. Within each partition, subgraphs are
formed by identifying weakly connected components, mea-
ning that a partition can have one or more subgraphs, and
no two vertices belonging to two different subgraphs are con-
nected by a local edge. For e.g., Fig. 1 (left) shows a graph
with 13 vertices and edges partitioned into three, with 4
subgraphs in all identified.

The compute() method defined by the user is applied to
each subgraph in a superstep, and the method has access to
all vertices, and local and remote edges in the subgraph. The
method can update the state of local and remote edges, and
pass messages to neighboring vertices or subgraphs connec-
ted through remote edges that are delivered at synchronized
superstep boundaries. For e.g., Fig. 1 (right) shows a BFS
that starts at a vertex present in subgraph 2, whose vertices
are traversed in superstep 1, followed by traversal of vertices
in neighboring subgraphs 1 and 3 in superstep 2, and their
neighbor, subgraph 4, in superstep 3. A subgraph may be
revisited too, or only a subset of its vertices be traversed,
depending on the algorithm. The subgraphs can vote to
halt and the execution stops when all subgraphs have voted
to halt and no messages are in-flight. This model can also
trivially implement a vertex-centric program.

3.2 Metagraphs for Algorithm Modeling
In our previous work [6], we have introduced the concept

of metagraph which is a coarse-grained sketch over large gra-
phs, and is naturally suited to analyze subgraph-oriented
graph applications. In a metagraph, each meta-vertex is a
disjoint subgraph (connected component) in the original gra-
ph, and meta-edges indicate remote edges that connect these
subgraphs. The meta-vertices can have attributes like the
number of local vertices and local edges that the subgraph



has, and the weight of the meta-edge can indicate the num-
ber of remote edges between the subgraphs. Fig. 1 (left)
shows a metagraph with 4 meta-vertices and 3 meta-edges.

Depending on the type of graph and the partitioning sche-
me, metagraphs have meta-vertices and meta-edges that
number several orders of magnitude smaller than the ori-
ginal graph. For e.g., we see metagraphs with 10’s or 100’s
of meta-vertices for graphs with millions of vertices [6]. As
a result, this coarse-grained approximation of the large gra-
ph helps us rapidly analyze the behavior of several traversal
algorithms, and can guide runtime operations.

For e.g., when performing a BFS using a subgraph-centric
model, our prior work [6] showed that the order in whi-
ch subgraph are potentially visited in each superstep can
be determined. This is done by performing a BFS from
the meta-vertex (subgraph) that holds the source vertex of
the BFS, and traversing to neighboring meta-vertices. Ea-
ch traversal is a superstep, and the meta-vertices visited
corresponds to the subgraph(s) that will be active in that
particular superstep. This is illustrated in Fig. 1 (right).

This information, combined with an analytical model of
the cost of a local BFS on a single subgraph, helped us
estimate the number of supersteps required for the algorithm
to converge. The metagraph is simple to construct, either
at graph partitioning time or by running a simple traversal
algorithm using GoFFish that take a few seconds for even
large graphs with millions of vertices. Also, the size of the
metagraph itself is small enough that it can be analyzed on
a single machine using a sequential algorithm.

In this paper, we reuse two important results from our
previous work [6] that supports our assumption of a priori
knowledge of the algorithm behavior. First, given the sub-
graph holding the source vertex and the metagraph, we can
accurately determine the superstep at which a subgraph will
be visited for the first time by a BFS and estimate the cost
for local BFS to be performed on it. Second, we can predict
the supersteps at which a subgraph may be revisited and
the BFS potentially repeated on it.

4. PROBLEM
We discuss the high level problem and the system model

as context, before giving a formal definition of our problem.

4.1 Decoupling Partitioning from Placement
Vertex and block-centric distributed graph platforms par-

tition a large graph into many partitions, and workers in
each host operate upon one or more partitions. These three
steps – that of partitioning a graph, placement of partitions
onto a host, and assigning workers (threads/processes) on
a machine to operate on partitions present on it – are loo-
sely coupled decisions. For e.g., Giraph by default hashes
a graph into as many partitions as requested by an appli-
cation at runtime. There are one or more workers on each
machine (equal to the number of mapper slots) and one or
more partitions are assigned to a worker, and pushed to its
machine. In GoFFish, we allow the user to specify the num-
ber of partitions to create at graph load time, allow multiple
partitions per machine – typically one per core, and allocate
two threads per core to operate on the partition, and each
thread works on one subgraph at a time within the parti-
tion. However, in both cases, once these bindings are made,
they are retained for all supersteps.
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Figure 2: CPU utilization % over different super-
steps, for US Road Network graph with 8 partitions
executing BFS across 8 cores using GoFFish.

In each BSP superstep, vertices/subgraphs in all or so-
me partitions may be actively performing computation. For
non-stationary algorithms, such as BFS or SSSP, the inac-
tive partitions, while taking up disk (and possibly memory)
space, do not contribute to the computational usage on these
machines. Fig. 2 shows the average utilization of the hosts
in each superstep when performing a BFS on a USRN graph
(Table 1) with 8 partitions, each using one core, on GoFFi-
sh. We see the CPU usage grow from 10% to 80% and drop
again, depending on the number of active subgraphs.

Our focus here will be on such non-stationary graph algori-
thms. Since the compute load on a machine varies with each
superstep as a result of which partitions on them are active
or not, it can be efficient to consolidate the computational
load of active partitions at each superstep on fewer (virtual)
machines in order to increase the utilization of these machi-
nes. In the context of Cloud Virtual Machines (VMs), this
also allows the VMs without any active partitions to be shut-
down, and stop incurring monetary costs. This is the thesis
of this paper, to explore how we can reduce the overall mo-
netary cost for running the graph algorithm with minimal
impact on the makespan of the algorithm, using partition
placement strategies on elastic VMs based on their activa-
tion schedule across supersteps, as compared to a traditional
hashing of partitions onto a static set of VMs.

4.2 System Model and Assumptions
There are several reasonable assumptions that have to be

satisfied in order for the above goal from being achieved.

• VM costing should be at a fine time granularity. Since the
graph algorithms may run from 10’s of seconds to 10’s of
minutes, elastic management of VMs will work only when
VMs themselves can be acquired, released and billed at
similar time scales. Both Google Compute and Micro-
soft Azure VMs allow billing at 1 VM-min increments,
with the former requiring a minimum billing of 10 VM-
mins. We use 1 core-min as the smallest billing increment
and unit of acquisition/release of small (1-core) VMs. We
also assume that the startup and shutdown times are suf-
ficiently small to not impact the costing or usage time
of VMs. In future, with light-weight containerization of
IaaS Clouds, even per-second billing may be possible.



• Framework support for elasticity. The distributed graph
platform should allow the persistence of state for a par-
tition and its migration to different VMs at runtime, at
superstep boundaries. Giraph support check-pointing of
messages and state at supersteps. Other vertex-centric
frameworks have also demonstrated this [10, 16]. GoFFi-
sh does not yet support this, though there is no design
limitation that prevents this. We also investigate place-
ment strategies that pin a partition to a single VM to
avoid the need for migration.
• Modeling graph algorithms. The (non-stationary) graph

algorithm itself should exhibit variable activation of parti-
tions at different supersteps. Stationary algorithms, whe-
re all partitions are active at all supersteps, are unlikely
to benefit. Also, we should be able to predict the acti-
vations of partitions for a priori planning at launch time
rather than runtime to avoid VM startup and data mo-
vement time from increasing the makespan, i.e. through
prior planning, we can hide these by interleaving them
with the compute time of a superstep. The meta-graph
approach [6] discussed above can enable this prediction.

4.3 Problem Definition
Let a directed graph G = 〈V,E〉 be partitioned into n

partitions, P1, P2, . . . , Pn. Say we are given a graph applica-
tion composed in a partition-centric manner, that takes m
supersteps to execute. Let there be a time function,

A : Pi × s→ τsi

that gives the computing time τsi taken to execute a partition
Pi in a superstep s ≤ m by a single exclusive virtual machine
(VM). Here, if the function maps to a time value of 0, that
partition is not active in that superstep.

The minimum makespan for this application is given by,

TMin =

m∑
s=1

τsMax , where τsMax =
n

max
i=1

(
τsi
)

i.e., the minimum time to execute this application is the
sum across all supersteps of the maximum computing taken
among all partitions in each superstep.

Say there is a partition placement function,

M : Pi × s→ υj

that maps each partition Pi for a superstep s uniquely onto
a virtual machine υj ∈ υ1, υ2, . . . , υl that can be used to
execute that partition in a superstep. Similarly, let a parti-

tion presence function M̂(i, s, j) return 1 if a partition i is
present in a VM j in superstep s, and 0 otherwise.

The actual makespan for the application is given by sum-
ming up for each superstep, the time taken by the VM hol-
ding partitions that together take the longest time to execute
sequentially in that superstep:

T =

m∑
s=1

(
l

max
j=1

( n∑
i=1

M̂(i, s, j) · τsi
))

If the cost for using a VM for a minimum time quanta δ is
γ, the cost for this execution lies between ΓMin and ΓMax,

ΓMin =

l∑
j=1

⌈∑m
s=1 M̂(i, s, j) · τsi

δ

⌉
· γ

ΓMax =

m∑
s=1

(⌈τsMax

δ

⌉
· | Υs | ·γ

)
where Υs is the set of active VMs in superstep s, and | Υs |
is the number of active VMs in that set,

Υs = {υj | M̂(i, s, j) = 1 for any 1 ≤ i ≤ n}

ΓMin gives the minimum cost for all the VMs if each of
their active times are summed over all supersteps and roun-
ded up to the nearest δ. This does not account for the cost
of turning off and restarting VMs that are inactive in in-
termediate supersteps, which would causes their billing to
be rounded up each time. Whereas, ΓMax gives the maxi-
mum cost required to run the application when each VM is
billed in each superstep, independently, based on only the
runtime of that superstep rounded up to the nearest δ. The
actual billing cost for the application Γ falls between ΓMax

and ΓMin. In practice, as we show, the actual value of Γ de-
pends on the strategy used to select and activate VMs when
making the placement decision.

Problem: Given a graph G and its partitions Pi, and
the time function A for a graph application, the problem
is to find a partition placement function M, that maps the
active partitions to VMs in each superstep, such that the
actual cost Γ to execute the application on the graph is
minimized while also minimizing the increase in the actual
makespan T above the minimum makespan TMin, i.e., find
M that minimizes Γ and (T − TMin).

As we shall discuss next, this can be modeled as an opti-
mization problem, similar to bin packing, with the primary
goal of reducing the cost of executing the application on ela-
stic VMs through intelligent partition placement, and the
secondary goal of reducing the increase in makespan above
the theoretical minimum makespan.

5. PARTITION PLACEMENT STRATEGIES

5.1 Default Strategy
The default “flat” partition placement strategy used in

GoFFish is to allocate as many cores (VMs) as the number
of partitions, with each 1-core VM exclusively operating on
a single partition for all supersteps of the application [4].
This placement function is given as:

M : Pi × s→ υi

where each partition Pi is placed in its own VM υi. The
advantage of this is that a partition is processed in as fast
as manner as possible on its own VM, given the partition-
centric programming model, and its makespan matches TMin.
It is also trivial to solve and implement this strategy in
practice, taking O(n) in time complexity for n partitions.

The actual billing cost for this strategy corresponds to
the ΓMax, and since all n VMs are kept active for the entire
duration of the application, the cost can be simplified as:

Γ = n ·
⌈TMin

δ

⌉
· γ

5.2 Optimal and First Fit Decreasing Heuri-
stics (OPT, FFD)

We reduce the given problem to a linear programming pro-
blem that gives the optimal number of VMs and the map-
ping of partitions to those VMs for each superstep, while



guaranteeing that the makespan does not increase beyond
the TMin. We set the necessary condition to retain the ma-
kespan at TMin by requiring that each superstep takes only
τsMax, which is the most time taken by any single partition
in a superstep if it has an exclusive VM. This is given as:

l
max
j=1

( n∑
i=1

M̂(i, s, j) · τsi
)

= τsMax, ∀1 ≤ s ≤ m

If we treat each VM as a bin that has a time capaci-
ty of τsMax in superstep s, we need to find a mapping M
for all partitions (given by their timing τsi ) onto the smal-
lest number of bins in each superstep. We can use linear
programming to solve this problem.

Two simplifying assumptions are made here to assure op-
timality. One is that there is no cost to reassign partitions
to VM between supersteps. This is unlikely in practice as
data movement of partitions between VM does incur time
cost, which affects both the makespan and the billing cost.
But it is useful to consider this optimal solution as a baseline
for comparison.

The linear programming problem can be solved using stan-
dard techniques [14], but it can be computationally costly to
get the optimal solution. We term this strategy as Optimal
(OPT). In addition, we use the heuristic First Fit Decreasing
(FFD) algorithm to approximately solve this optimization
problem with a lower complexity.

The pseudocode for FFD is given in Alg. 1, and it follows
a greedy approach. At each superstep s, we start with no
existing VMs and the partitions Pi are sorted in decreasing
order of their execution times for that superstep, τsi . In this
sorted order, we test if each partition’s execution time can
fit in an existing VM. If so, the partition is mapped to that
VM for this superstep, and the VM’s capacity decreased by
that partition’s execution time. If no VMs can hold this
partition, we create a new VM with capacity τsMax and map
the partition to this new VM, and decrement its capacity.

Time Complexity. OPT guarantees that the make-
span does not increase more than TMin while minimizing
the number of active VMs per superstep, which is expec-
ted to reduce the billing cost. The tight theoretical bound
for FFD relative to OPT on the number of active VMs is
(11/9 ·OPT +6/9) [7], but is faster to calculate. Sorting the
partitions requires O(n logn) time and mapping each to a
VM requires a linear scan of all VMs. For the ith partition,
a maximum of i VMs can exist. So VM mapping takes:

n∑
i=1

log i = O(

n∑
i=1

log i) = O(logn!) = O(n logn)

and each superstep takes O(n logn). The total complexity
of FFD for m supersteps is O(m× n logn)

Activation Strategy. Given the mapping function from
the placement strategy, we propose a VM activation strategy
to minimize the actual billing cost. This decides whether
each VM, at the end of a superstep, can be left running or
terminated for the next superstep. This is important since
billing rounds up to the nearest δ, and stopping a VM for
less than δ time and restarting it is costlier than retaining
that VM idly for that duration, i.e., if l VMs are used in a
superstep s, l − 1 in superstep s + 1, and again l VMs in
s + 2. If the duration of superstep s + 1 ≤ δ, it is cheaper
to retain l VMs for all 3 supersteps.

Algorithm 1 First Fit Decreasing algorithm

1: procedure FirstFitDecreasing(P,A, n,m) I
P is the set of n partitions. A is the time function that
gives τ values. m is the number of supersteps.

2: for s ≤ m do I iterate over supersteps
3: v[ ]← ∅ ; l = 0 I init list of VM capacities
4: p[ ]← SortDescending(P ) I Sort by τsi
5: for i ≤ n do I iterate over each partition
6: assigned ← false
7: for each j ≤ l and assigned = false do

I does VM j have capacity for partition i?
8: if v[j] ≥ τsp[i] then
9: M(p[i], s)← j I map Pi to vj

10: v[j] = v[j]− τsp[i] I ↓ capacity
11: assigned ← true
12: end if
13: end for
14: if assigned = false then
15: v[+ + l]← τsMax I create new VM
16: M(p[i], s)← l I do mapping
17: v[l] = v[l]− τsp[i] I reduce capacity
18: end if
19: end for I mapping done for superstep s
20: end for I mapping done for all supersteps
21: return M
22: end procedure

In our strategy, for each VM we do such a test, to see if
the time remaining in a VM before the next δ increment is
less than the time taken by the next superstep. If so, we
retain that VM and reuse it for that superstep rather than
create a new VM. Otherwise, if keeping that VM will cause
it to go past the δ boundary, we terminate it.

Data Movement Cost. As a variation of OPT, we also
evaluate these mapping if the data movement cost for mo-
ving a partition from one VM to another is considered. Cal-
led OPT-DM, this is more realistic when implementing OPT
(or FFD) on the Cloud without special means to rapidly mo-
ve or mount partitions between VMs. Here, the placement
algorithm itself remains the same, but when calculating the
billing cost, we include the time for data movement that
causes the VM’s billing to increase.

Specifically, we assume a shared persistent storage (like
AWS S3 or Azure BLOB store) where partitions are moved
to from VMs at the end of each superstep, and then before
the next superstep starts, they are copied to the set of VMs
that they are mapped to in that superstep. So each VM
pays the time cost for moving data in and out of it at the
start and end of a superstep, and is added to the billing cost.

5.3 Max Fit packing with Pinning (MF/P)
In this strategy, we avoid the data movement costs of

OPT-DM by “pinning” a partition to a particular VM, and
not changing the mapping after that. In other words, for a
partition Pi whose τsi > 0:

M : Pi × s→ υj =⇒ M : Pi × s′ → υj , ∀s′ > s

and hence, M̂(i, s, j) = 1 =⇒ M̂(i, s′, j) = 1, ∀s′ > s
Here, we use a strategy similar to FFD to greedily place

an unpinned partition onto an existing VM with the ma-
ximum available capacity in a superstep, if possible, and if
not possible, start a new VM. Once pinned, the partition



remains in that VM for the rest of the application. As a
result, there are no data transfer costs, which additionally
makes this simpler to implement.We term this as Max Fit
with Pinning (MF/P).

In FFD, the capacity of a VM in a superstep s was τsMax.
However, some of the VMs at the start of a superstep may
already have partitions pinned on them, some or all of which
may be active in this superstep. As a result, the makespan of
this superstep depends both on the largest (unpinned) par-
tition time, as well as the VM holding the largest cumulative
pinned partition times.

Let λs
j be the load on a VM j in superstep s, defined as:

λs
j =

∑n
i=1 M̂(i, s, j) · τsi , i.e., the cumulative time of all

partitions mapped to that VM. We redefine τsMax for MF/P
at the start of superstep s as:

τsMax = max
(

n
max
i=1

(
τsi
)
,

l
max
j=1

(
λs
j

) )
Here, the first term within the outer max function gives the
time taken by the largest partition in this superstep, while
the second term gives the largest of the total times taken by
all pinned partitions in a VM.

We skip the pseudocode for MF/P for brevity. Its key
distinctions from FFD are that the partitions do not migra-
te between VM across supersteps, the initial capacity of a
VM on a superstep is based on the largest partition in that
superstep as well as the pinned partitions, and we pick the
VM with the largest capacity for partition placement, rather
than the first VM that has adequate capacity. This results
in the following changes to Alg. 1. In Line 5, we only iterate
through partitions that are not already pinned in a previous
superstep. Those that are pinned retain their mapping. In
Line 7, rather than iterate through each VM’s capacity, we
only test the VM with the largest available capacity. And
lastly, in Line 15, we compute the value of τsMax based on
the updated function given above.

Note that this strategy does not guarantee a makespan
that matches TMin, as is obvious from the higher value of
τsMax. We retain the same VM activation strategy as used
in OPT to decide whether to keep a VM active or terminate
it at the end of every superstep. We retain the same VM
activation strategy as used in OPT to decide whether to keep
a VM active or terminate it at the end of every superstep.

Computational Complexity. The MF/P strategy maps
each partition exactly once and keeps this mapping throu-
ght the runtime of the application. For mapping a partition,
it finds the VM with the maximum capacity. If the parti-
tion fits in that VM, it maps the partition to that VM and
otherwise spins a new VM. Finding the VM with the maxi-
mum capacity requires linear time. So the asymptotic time
complexity of this algorithm across all supersteps is O(n2).

5.4 First Fit Lookahead, with Pinning (LA/P)
One of the potential downsides of MF/P is that it deci-

des to pinning a partition to a VM based only on the time
taken by the partition in the current superstep. Since par-
titions once pinned do not migrate, we may end up with a
placement that may be well-suited in the current superstep
but lead to under-performance in future supersteps. This
can result in several VM with pinned active partitions that
are unbalanced in a superstep, which can increase the ma-
kespan. Since the a priori prediction model can provide
partition timings for all supersteps, we can leverage this for

a more global planning across supersteps. To keep the pro-
blem tractable, we propose a variation of MF/P where the
partition information for the current superstep and the next
superstep are used to decide placement. Once decided, we
continue to pin a partition to a VM. We term this strategy
as Lookahead with Pinning (LA/P).

The intuition here is that we first map unpinned partitions
in a superstep, going from partitions the largest to the smal-
lest execution times. Then, when considering VMs to map
them to, we prefer VMs that have a higher capacity in the
next superstep, rather than consider the first VM with ade-
quate capacity (FFD) or the VM with the largest capacity
(MF/P), in the current superstep.

We use two rank values to decide this placement:
Current Rank for each active partition Pi (i.e. τsi >

0) in superstep s is the index of that partition when all
the active partitions are sorted in descending order of the
execution times, τsi .

Forward Rank for each active VM vj in superstep s (i.e.,
vj has some active partition in s pinned to it) is the index
of that VM when all the VMs are sorted in ascending order
of their load in the next superstep, λs+1

j .
Here again, we describe LA/P in terms of its distinctions

from FFD’s Alg. 1. In Line 5, we first sort the partitions
based on their current rank and only iterate unpinned par-
titions. Those that are pinned retain their mapping. In
Line 7, we sort the VMs based on their forward rank and
then iterate through them. The VM mapping, however, is
done only if the VM has adequate capacity in the current
superstep. The forward rank is also recalculated after each
new mapping in this superstep. And lastly, in Line 15, si-
milar to MF/P, we compute the value of τsMax based on the
updated function that considers pinning.

In LA/P too, we do not guarantee that the makespan does
not grow beyond TMin, and we use the same VM activation
strategy as FFD.

Computational Complexity. For each superstep, the
algorithm sorts n partitions based on their execution time
to calculate their current rank, taking O(n logn) time. For
each of the n partitions to be mapped, the VMs are sor-
ted based on their forward rank, that takes O(n logn) time.
This gives a total complexity of O(n logn+n2 logn)), which
is dominated by the latter term.

6. EVALUATION
We evaluate the different placement strategies for perfor-

ming SSSP (BFS) over undirected graphs on elastic VMs.
We initially run the graph algorithm over the different gra-
phs on a commodity cluster to get their partition timings
(A), and use this as input for simulating the application
execution using the strategies.

6.1 Setup and Datasets
We use 4 graphs that are partitioned into 8 or 40 parti-

tions, as noted: LIVJ/8P 2, USRN/8P 3, and ORKT/40P 4.
For the default strategy, we run the subgraph-centric SSSP/-
BFS application using GoFFish on a 24-node commodity
cluster connected by Gigabit Ethernet, and each partition is
allocated one AMD 3380 2.3 GHz core and 4 GB RAM, and

2http://snap.stanford.edu/data/soc-LiveJournal1.html
3http://www.dis.uniroma1.it/challenge9/download.shtml
4http://snap.stanford.edu/data/com-Orkut.html



Table 1: Datasets used

Graph (Name/Part.s) |V| |E| Dia.

LiveJournal (LIVJ/8P) 4.847M 68.993M 16
USA Road (USRN/8P) 23.947M 58.333M 6, 262
Orkut (ORKT/40P) 3.072M 234.370M 9

shares a 256 GB SSD on that node. We use CentOS 7 and
JDK v7. The graphs are partitioned using METIS with a
default load factor of 1.03 for vertex-balanced partitioning.

We use GoFFish’s logging framework to get the compute
time for each subgraph in a superstep, and calculate the
time for a partition as the sum all its subgraph times in
that superstep. This is used as the partition execution time
(A) passed to the strategies.

The placement strategies are scripted in Python v2.7, and
take as input A : Pi × s → τsi , along with the number of
partitions n and the supersteps m. The output generated
by the algorithms is the partition placement function M :
Pi × s → υj . From this mapping, we calculate the actual
makespan, billing cost, and other metrics described next.

6.2 Plots and Metrics
Makespan: Makespan is the total time taken by the gra-

ph application, as calculated for the mapping returned by
each strategy. It is calculated as the sum over all supersteps
of the time taken by the slowest VM in that superstep. This
is plotted for each graph in Figs. 3a–3c.

Cost in Core-Minutes: While makespan gives the ac-
tual runtime of the application, the actual billing cost de-
pends on how long each VM was active, and when they were
turned on and off, as decided both by the mapping and the
VM activation strategy. We use the mapping and activation
information to calculate the total core-mins for which the
VMs will be billed, using a 1-minute billing cycle, and roun-
ding up the VM cost to the nearest minute each time it is
turned off. This duplicates the actual billing logic used by
IaaS Cloud providers like Azure. The actual monetary cost
is just a multiplication of these core-mins by the per-minute
rate, which depends on the data center, VM size, etc. This
is plotted for each graph in Figs. 3d–3f.

Under-Utilization: In the BSP exection model used by
component-centric frameworks, VMs remain active for the
entire superstep even if some of them have completed pro-
cessing their partitions. We capture the wasted time due to
the slowest VM across all supersteps as under-utilization. It
is given as the difference between the core-minutes for which
VM were provisioned and the core-minutes for which they
actually processed partitions, i.e.,

m∑
s=1

(
τsMax· | Υs |

)
−

m∑
s=1

n∑
i=1

(
τsi
)

This is plotted for each graph in Figs. 3g–3i.
Core-Seconds: The core-mins cost uses a VM-minute

granularity billing model provided by cloud providers. We
attempt to highlight the relative benefits of the strategies if
such costing granularity constraints were not present, and
calculate the core-seconds for which VMs were provisioned
by each strategy. This is given by,

m∑
s=1

(
τsMax· | Υs |

)

This is plotted for each graph in Figs. 3j–3l.

6.3 Analysis
The time, cost and utilization values for OPT and FFD

are identical in all cases. So the FFD algo is a good enough
approximation for OPT while only taking 1 sec to run the
placement strategy for the largest graph ORKT/40P, com-
pared to 13 secs taken to calculate using OPT. Hence, FFD
can be chosen over OPT when performing online scheduling.

Further, the makespan for OPT and FFD are the same
as the default strategy in all cases and equals TMin, the
smallest possible makespan. Both these algorithms are suc-
cessfully able to provide adequate VMs for the required com-
putation on the active partitions to allow them to complete
without delay. Since they do not consider data movement
costs in a superstep, the only time spent is on the computa-
tion of the active partitions by an exclusive VM. Hence, the
secondary objective of not increasing the makespan above
TMin is also achieved. However, in practice, the partitions
will need to be moved between VMs across supersteps de-
pending on the placement mapping generated, so OPT-DM
is more plausible.

For LIVJ/8P, the makespan for MF/P is modestly hig-
her than the default, at 27 secs against 21 secs, and is the
same as LA/P (Fig. 3a). We observed here that the VM wi-
th maximum capacity for MF/P and the VM with highest
forward rank for LA/P turned out to be same, causing the
mapping performed by both the algorithms to be identical.

We also see that the core-mins for OPT, FFD, MF/P and
LA/P are all comparable, taking 6-8 core-mins (Fig. 3d).
This cost for MF/P and LA/P is smaller than the 8 core-
mins taken by the default strategy, saving 25% in cost.

Interestingly, MF/P and LA/P cost lesser than OPT and
FFD. This is because OPT and FFD guarantee that the
makespan will not rise beyond TMin, and as a result allocate
adequate VMs to meet this goal. But MF/P and LA/P do
not allow partition movement once they are pinned, and in
this case, all partitions are pinned at the end of the second
superstep. As a result, the number of active VMs at the
second superstep (6 VMs) is retained for the rest of the
supersteps, and this value is smaller than the peak number
of VMs used by OPT (8 VMs) which results in a higher cost.

However, we also see from the core-secs used (Fig. 3j)
that OPT and FFD use fewer VM cycles than MF/P and
LA/P (112 core-secs vs. 142 core-secs), even though this
does not reflect in a reduced cost for the VMs used due to
the core-min billing granularity.

When we consider the data movement costs for OPT-DM,
it takes a much longer time to complete compared to the de-
fault and other strategies, taking almost 7× longer and also
costing more due to this added time. A whole 11 core-mins
of this is under-utilized (Fig. 3g), due to data movement
when the CPU is mostly idle. It can be seen that in the
absence of this wastage, the cost would be comparable to
OPT and FFD.

For USRN/8P, we see that the makespan for MF/P and
LA/P are 6% slower than OPT (Fig. 3b). In MF/P and
LA/P strategies, all the partitions are pinned to VMs by
the third superstep itself. This causes the makespan to in-
crease due to multiple active partitions being on the same
VM in future supersteps, and hence increasing the sequen-
tially processing time of those partitions in a superstep. We
also see that the cost for LA/P is same as that of MF/P,
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Figure 3: Performance metrics of the three graphs for different placement strategies.

and those of OPT and FFD due to granualarity of billing.
The core-secs used by MF/P and LA/P at 227 core-secs

are much higher than 160 core-secs used by OPT and FFD.
But this is not reflected in the core-mins metrics as the
MF/P and LA/P algorithms retain a fixed number of VMs
after all partitions get pinned, while the OPT and FFD algo-
rithms end up using more VMs to meet the TMin makespan
constraint. For the same reason, the under-utilization, for
LA/P and MF/P is more compared to the OPT and FFD.

ORKT/40P is a large graph and takes 33 secs to run
using the default strategy (Fig. 3c), and with the cost being
40 core-mins (Fig. 3f). We see that OPT and FFD are able
to complete at a 40% cheaper cost than the default, saving
16 core-mins. Here again, LA/P and MF/P are modestly
cheaper than the default by 42% while having a small increa-

se in the makespan relative to TMin. The core-secs used by
LA/P of 854 core-secs approaches OPT’s 667 core-secs, and
is much smaller than the default’s 1, 330 core-secs (Fig. 3l).
As a result, the under-utilization too is low (Fig. 3f), wi-
th just 5 core-min wasted as compared to the default’s 13
wasted core-mins.

OPT-DM is worse than the default, both in makespan as
well as in cost. Given that ORKT is a large graph and each
partition has a size of ∼ 100 MB, the data movement cost
for each superstep adds up and causes an increase in both
makespan and cost.

In summary, we see that both MF/P and LA/P are com-
parable in terms of results, and offer practical strategies to
leverage elasticity of VM for partition placement. They are
6-29% slower than the default strategy, but 12-42% cheaper



and consistently use much fewer core-secs to execute than
the default. MF/P may be preferable for its simplicity.

The OPT and FFD strategies guarantee a makespan that
matches TMin and are the same or cheaper than the de-
fault on cost. They also out-perform all other strategies on
core-secs and under-utilization. However, they may not be
practical to implement because the data movement costs in
unlikely to be ignored. For graphs that are compactly sto-
red, or when if VMs mount the same shared network drive
(e.g., AWS’s Elastic Block Store (EBS) volumes), these algo-
rithms can be feasible in practice. But if näıvely transferring
data betweens VMs at the end of each superstep, OPT-DM
is much worse than all other strategies.

7. CONCLUSIONS & FUTURE WORK
In this paper, we have proposed to decouple the partitio-

ning and placement strategies for component-centric graph
frameworks to allow flexibility in scheduling them onto ela-
stic VMs that can prevent over-allocation of resources. We
have designed several partition placement strategies for gra-
ph applications whose runtime behavior can be modeled a
priori, motivated by our earlier work on meta-graph that
can help with coarse-grained static analysis.

These strategies that include OPT and FFD that are opti-
mal and heuristic formalizations that guarantee the theore-
tical minimum makespan, as achieved by the default model
of over-allocating one VM per partition, while reducing the
number of VM used. They also include greedy strategies,
MF/P and LA/P, that pin partitions to VMs to avoid data
movement, using information on partition timings and VM
loads at the current or subsequent supersteps.

The results show that the billing costs, based on reali-
stic IaaS Cloud models, are reduced with marginal increase
in makespan for the proposed strategies when evaluated on
three different real-world graphs. We also see a more signi-
ficant improvement in under-utilization and core-secs used,
which are orthogonal to the billing granularity.

Leveraging elasticity for distributed graph processing is
poorly explored in literature and there are several promising
avenues for future work. We propose to examine other non-
stationary graph algorithms such as betweenness-centrality
and independent-set. This includes the ability to model
them using meta-graphs and their benefits from elastic pla-
cement. There is scope for using look-ahead heuristics wi-
thout pinning to better leverage the additional knowledge.
The optimization goal itself can be modulated to explore the
trade-off between makespan and cost.

The minute-granularity is still too coarse for the graphs
and application considered, and the strategies may show im-
proved behavior on larger graphs where the makespan is
longer, and the core-mins cost much higher. Considering
containers such as Docker is also an alternative light-weight
“virtualization” that can be started and shutdown rapidly,
instead of heavy-weight VMs.

We also plan to examine the impact of the a priori predic-
tions being inaccurate – in our evaluation, we assume per-
fect knowledge of partition timings but that is unlikely even
using the meta-graph model. Here, the static placement
strategies proposed here will need to be complemented with
dynamic runtime information to update the placements.
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