
An Empirical Evaluation of How The Network Impacts
The Performance and Energy Efficiency in RAMCloud

Yacine Taleb⇤, Shadi Ibrahim⇤, Gabriel Antoniu⇤ and Toni Cortes†
⇤Inria Rennes Bretagne-Atlantique, Rennes, France

†Barcelona Supercomputing Center, Barcelona, Spain,
†Universitat Politècnica de Catalunya, Barcelona, Spain,

Email: ⇤first.last@inria.fr, †first.last@bsc.es

Abstract—In-memory storage systems emerged as a de-facto
building block for today’s large scale Web architectures and Big
Data processing frameworks. Many research and engineering
efforts have been dedicated to improve their performance and
memory efficiency. More recently, such systems can leverage
high-performance networks, e.g., Infiniband. To be able to
leverage these systems it is essential to understand the trade-
offs induced by the use of high-performance networks. This
paper aims to provide empirical evidence of the impact of
client’s location on the performance and energy consumption
of in-memory storage systems. Through a study carried on
RAMCloud, we focus on two settings: 1) clients are collocated
within the same network as the storage servers (with Infiniband
interconnects); 2) clients access the servers from a remote
network, through TCP/IP. We compare and discuss aspects
related to scalability and power consumption for these two
scenarios which correspond to different deployment models for
applications making use of in-memory cloud storage systems.

Keywords-In-memory storage, RAMCloud, Performance
evaluation, Energy efficiency

I. INTRODUCTION

Nowadays, web, mobile-apps, and gaming applications
are being used by millions of users at the same time.
Nevertheless, they must keep low latency access. To do so,
service providers, such as Amazon [1], strongly rely on in-
memory data stores and caches in order to keep low response
times.

The increasing size of main memories has lead to the ad-
vent of new types of storage systems. These systems propose
to keep all data in distributed main memories [2], [3], [4],
[5]. For example, Facebook built a distributed in-memory
key-value store using Memcached [6]. Twitter used Redis
and scaled it to 105TB of RAM [7]. In addition to exploiting
DRAM speed, they can offer: low-latency by relying on
high speed networks [4], [2], [8]. For instance, RAMCloud
leverages Infiniband and kernel-bypass to achieve durable
writes in 15µs. FaRM [9] utilizes RDMAs and thus can,
in average, complete a TCP-C transaction in less than a
millisecond.

High-performance networks are becoming more accessi-
ble in the Cloud [10] For example, Amazon is recently offer-
ing VM instances with the support of enhanced networking

[11](i.e., by using the Amazon EC2 Elastic Network Adap-
tor with up to 20Gbps of aggregate network bandwidth).
However, clients can access the storage in two setups: (1) in
a HPC-like setup, clients access the storage system through
the local network; (2) For Internet-based applications, which
are typically hosted in the Cloud, clients access the system
remotely through the typical TCP/IP stack. In this case
clients will have slower access to the system, and more
importantly it is not clear whether they will benefit or not
from the speed of the in-memory storage.

We argue that the type of network used by clients to access
the storage system impacts the performance. Moreover,
given that main memories of DRAM-based servers consume
between 25% up to 40% of the total energy of the servers
[17], it is as vital to understand the network impact on energy
efficiency as on performance.

With the increasing concerns about the energy issue in
today’s infrastructures [12], we propose in this work to
study the impact of the network on performance and energy
efficiency of a representative in-memory storage system,
namely RAMCloud [2], [13]. RAMCloud is now used in
various fields: analytics [14], or used as a low-latency
storage for SDNs [15], or for scientific workflows [16].
Through an experimental study carried on GRID’5000 [17],
we investigate the performance and energy consumption of
RAMCloud storage system in both cases where clients are
sharing the same network as the storage system and when
they are not. We find that location of the clients could be
a scalability and performance limiting factor of in-memory
storage systems. For example, 10 RAMCloud servers obtain
a throughput of up to 2 Million op/s when accessed by
90 clients who are using Infinband, while the throughput
is limited to 200K op/s for the same settings but when the
clients are connected to the cluster using TCP/IP.

The remainder of this paper is organized as follows:
Section II discusses why we chose RAMCloud and describes
it. Section III presents our experimental configuration and
the main findings of our experiments. Section V presents
related work. Finally, Section VI concludes this work.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 
DOI 10.1109/CCGRID.2017.127



II. BACKGROUND

In this section we motivate the choice of RAMCloud and
present its main features. Finally, we present a motivating
example on the relevance of our study.

A. A representative system: RAMCloud
Ideally, the main attributes that in-memory storage sys-

tems should provide are performance, durability, availability,
scalability, efficient memory usage, and energy efficiency.
Most of today’s systems target performance and memory
efficiency [18], [19], [20]. Durability and availability are also
important as they avoid application developers to backup
in-memory data in secondary storage and handle the syn-
chronization between the two levels of storage. On the
other hand, scalability is vital, especially with today’s high-
demand Web applications. They are accessed by millions of
clients in parallel. Therefore, large scale clustered storage
became a natural choice to cope with such high demand[6].

In contrast with most of the recent in-memory storage
systems, RAMCloud main claims are performance (low-
latency), durability, scalability, and memory efficiency. The
other closest system to provide all these features to be found
in the literature is FaRM [4]. Unfortunately it is neither
open-source nor publicly available.

B. The RAMCloud storage system
RAMCloud is an in-memory key-value store. The main

claims of RAMCloud are low-latency, fast-crash recovery,
and efficient memory usage. Operations on small objects
can be achieved in a few microseconds by using high per-
formance networks (e.g., Infiniband). Fast-crash recovery is
achieved by randomly replicating data to as many backups as
possible in the cluster then reconstructing data by exploiting
in parallel backups and recovery servers. Memory efficiency
is achieved through using DRAM as a log-structured mem-
ory and through efficient memory cleaning. Next we present
the main concepts and mechanisms of RAMCloud.

Architecture A RAMCloud’s cluster consists of three
entities : a coordinator maintaining meta-data information
about storage servers, backup servers, and data location; a
set of storage servers that expose their DRAM for the clients
as storage space; and backups that will store replicated
data in their DRAM temporarily and persist it to disk
asynchronously. Usually, storage servers and backups are
collocated. Thus a physical machine will run both storage
and backup services at the same time.

Data structures Data in RAMCloud is stored in a set of
tables. Each table can span multiple storage servers. A table
is partitioned into a set of tablets. A uniform hash function
distributes evenly the objects across tablets.

A server in RAMCloud uses a log-structured memory
to store its data. It uses a hash-table to index data. This
log-structured approach, coupled with a two level cleaning
approach, enable RAMCloud to use DRAM efficiently.The

log-structured memory of each server is divided into 8MB
segments. A server stores data in an append-only fashion.
Thus, to free unused space a log-cleaner is called whenever
a server reaches a certain memory utilization threshold. The
cleaner copies a segment’s live data into the free space (still
available in DRAM) and removes the old segment. As the
cleaner is called more often in memory, when data on disk
grows larger than a threshold the two-level cleaning starts,
this time cleaning data in both memory and disk at the same
time.

Data durability: It is one of the most important aspects
of RAMCloud, as it has impacted most of its design. In
RAMCloud data is present all time in DRAM. However,
durability is guaranteed by replicating data to remote disks.
More precisely, whenever a storage server receives a write
request, it appends the object into its latest free segment,
and forwards a replication request to the backup servers
randomly chosen for that segment. The server waits all
acknowledgements from backup servers to answer client’s
update request. Backup servers will keep a copy of this seg-
ment in DRAM until it fills, then flush the segment to disk
and remove it from DRAM. For each new segment, a random
backup in the cluster is chosen. This enables RAMCloud to
harness large-scale to enable fast crash recovery. Moreover,
when a server crashes, multiples servers will be involved in
the crash recovery, each one of them taking responsibility
of a set of segments to ensure even re-distribution of the
recovered data.

C. Location of the clients: Why is it important?
To understand the importance of the network, we plot Fig-

ure 1 that shows the two possible ways of using RAMCloud.
In Figure 1a the clients are sharing the same datacenter
network as the storage system. In this case the clients can
take full advantage of the storage system and benefit from
high speed networks (when available). A typical example
is a HPC setup or in-memory BigData analytics [21]. On
the other hand, a second use case is displayed in Figure
1b, where the clients use typical a TCP/IP network stack
to access the storage system. In this case clients will have
slower access to the system, and more importantly it is not
clear whether they will benefit or not from the speed of the
in-memory storage. This is the case for a Cloud deployment
for instance.

Through an experimental study, we attempt to answer this
question by reproducing both scenarios displayed in Figure
1. In Section IV we present insights about the performance
and energy efficiency of RAMCloud in both cases.

III. EXPERIMENTAL EVALUATION

A. Benchmark
We used the industry standard Yahoo! Cloud Serving

Benchmark (YCSB) benchmarking framework [22]. YCSB
is an open and extensible framework that allows to mimic



(a) Clients and servers share the same
network

(b) Clients access servers from outside the
datacenter

Figure 1: The two possible scenarios for accessing RAMCloud. Figure 1a refers to the case where the clients also use Infiniband transport. Figure 1b represents the case
where the clients are not collocated within the same datacenter with the storage servers. We refer to this case in RAMCloud as the one where the client uses TCP/IP

real-world workloads such as large scale web applications,
to benchmark key-value store systems. YCSB supports a
large number of databases and key-value stores, which is
convenient for comparing results with different systems.

Basically, one needs to fill the data-store with a YCSB
client. It is possible to specify the request distribution, i.e.,
uniform, zipfian, etc. Executing the workload consists of
running clients with a given workload specification, i.e.,
number of requests, distribution of requests, number of
threads per clients, etc.

B. Platform
The experiments were performed on the Grid’5000 [17]

testbed. The Grid’5000 platform provides researchers with
an infrastructure for large-scale experiments. It includes
9 geographical sites spread across French territory and 1
located in Luxembourg. We relied on Nancy’s site nodes to
carry our experiments. More specifically, the nodes we used
have 1 CPU Intel Xeon X3440, 4 cores/CPU, 16GB RAM,
and 298GB HDD. Additionally each one has an Infiniband-
20G and a Gigabit Ethernet card.

We have chosen these nodes as they offer capability to
monitor power consumption: 40 of these nodes are equipped
with PDUs which allow to retrieve power consumption
through an SNMP request.

Throughout all our experiments we make sure to reserve
the whole cluster which consists of 133 nodes, to avoid any
interference with other users of the platform. We dedicate the
40 nodes equipped with PDUs to run RAMCloud’s cluster,
i.e., master and backup services. We run YCSB clients on
the 90 different nodes to avoid any interference of any sort.
A single node is used to run the coordinator service.

C. Experiments’ Configuration
In our experiments each client runs on a single machine,

this helps us avoid interferences of any sort. Each node ran as
server and backup at the same time. We have fixed the mem-
ory used by a RAMCloud server to 10GB and the available
disk space to 80GB. We have fixed the memory size to an
acceptable limit to carry the whole data in the cluster. Before
running each benchmark, we pre-load 100K records of 1KB
in the cluster. Running the benchmark consists of launching
simultaneously one instance of a YCSB client on each client

node. Each client issues 100K requests, which corresponds
to the total number of records. Having an increasing number
of requests with the number of clients enabled us to study
concurrency impact’s on RAMCloud’s scalability. Having
each client generate 100K requests results in having 1M
requests with 10 clients for example, and 9M requests with
90 clients, which corresponds to 8.58GB of data requested
per run.

It is noteworthy that we use read-only workloads in
our experiments. Since our focus is on understanding how
the client location can impact the energy efficiency of the
system, read-only workloads are more suitable. Figure 2
shows the sequence diagram of update and read operations
in RAMCloud. When a client issues an update request it is
first processed by the server holding primary-replica. Then
the server creates a replication request to the servers holding
the secondary-replicas of the object being written. The client
gets the acknowledgement only after all secondary-replicas
have replied to the primary-replica. Therefore, update/insert
operations are not suitable in our study because of the intra-
cluster communication they induce between primary- and
secondary-replicas. On the other hand, read operations are
processed only by the primary-replica. In this case, there is
a client-server communication exclusively, which is better
suited for our study.

In our figures, each value corresponds to an average of 5
runs with the corresponding error bars. When changing the
cluster configuration (i.e., number of RAMCloud servers),
we remove all data stored on servers as well as in backups,
then we restart the RAMCloud servers and backups on the
whole cluster to avoid any interference with prior experi-
ments.

We configured RAMCloud with the option ServerSpan
equal to the size of the cluster. As RAMCloud does not
have a smart data distribution strategy, this option is used to
manually decide the distribution of data across the servers,
i.e., how many servers each table will span. Moreover, we
used uniform data distribution in YCSB clients to insert and
request data. At the end, all the data is evenly distributed
across the servers and each object is requested at the same
frequency.



Figure 2: Sequence diagram of read and update/insert operations in
RAMCloud. PR and SR stand for primary-replica and secondary-replica
respectively. Every entity is a running on a distinct machine in the cluster.

IV. RESULTS

A. Performance and scalability

10 20 30 60 90
0

0.5

1

1.5

2

·106

Number of clients

A
v
g
.
t
h
r
o
u
g
h
p
u
t
(
M
o
p
/
s
)

Infiniband

TCP

Figure 3: Total aggregated throughput as a factor of clients number with
a fixed cluster size of 10 nodes.

Peak performance: Figure 3 shows the aggregated
throughput for a 10 node cluster with both Infiniband and
TCP. A considerable gap can be observed in the throughput
achieved when clients access the system with Infiniband and
TCP. When running 10 clients with Infiniband, the system
achieves 7.38x more throughput compared to when clients
use TCP. Whenever increasing the number of clients the gap
widens and reaches 11.40x more throughput for Infiniband
cluster. What stands out here is the limited scalability of
TCP, for example between 60 and 90 clients while Infiniband
increases by a factor of 1.39x TCP only increases by 1.10x
from 60 to 90 clients. This suggests that since the transport

protocol is slowing down the operations, RAMCloud nodes
are subject to more concurrency, and thus scalability might
suffer.

10 20 30 40
0

2

4

6

8

10

12

Cluster size

S
c
a
l
a
b
i
l
i
t
y
f
a
c
t
o
r

Infiniband

TCP

Figure 4: Throughput scalability factor as a function of cluster’s size and
when running 90 clients. The blue line represents the expected increase in
throughput according to the baseline of 10 clients.

Scalability: To further investigate that behaviour we plot
in Figure 4 the scalability of each of the scenarios, i.e.,
varying the cluster size from 10 to 40 nodes and we fix the
clients to 90. The figure represents the ratio of throughput
increase when taking 10 clients as a baseline. When clients
are collocated with RAMCloud, it can achieve linear scal-
ability as we already showed in the previous section, even
under high concurrent accesses. On the other hand, we can
witness the difference widening between TCP scalability and
the expected ratio. For the cluster of 10 nodes with TCP the
scalability factor is 5.4 while the expected scalability factor
is 9. This difference reduced when increasing the cluster
size, for example it is 6.9 for 20 nodes and 7.3 for 30 nodes.
This confirms our observation about RAMCloud being less
scalable in throughput when accessed by TCP compared to
Infiniband. We suspect this is due to lesser load on resources
as we increase cluster size.

As expected, when clients are collocated on the same
network as RAMCloud it can achieve more throughput
compared to when clients access the system from a different
network. In the same lines, when clients are collocated with
RAMCloud it achieves better scalability.

B. Per-node power consumption
Energy overhead of RAMCloud: Figure 5 represents

the average power consumption of the cluster for the same
experiment described above. First, it is important to notice
the horizontal blue bar that represents the average power
consumed by the machines when idle, which is in average
50 Watts. The horizontal black dashed line represents the
average power per server when running the RAMCloud
service. There is an increase of 1.6X in the average power
consumed per node since RAMCloud hogs one core per
node, even when idle. This is due to the polling mechanism



10 20 30 60 90
0

20

40

60

80

100

120

Number of clients

P
o
w
e
r
c
o
n
s
u
m
p
t
i
o
n
(
w
a
t
t
s
)

Infiniband

TCP

Figure 5: Average power consumption per server in Watts. The cluster
size is fixed to 10. The horizontal blue line represents the average power
consumed by servers when idle. The horizontal dashed black line represents
the average power per server when RAMCloud is running and idle.

`````````Clients
Transport TCP IB

min — max min — max
0 25 — 25 25 — 25

10 52,933 — 54,543 44,193 — 53,391
20 55,044 — 57,244 46,985 — 57,921
30 56,638 — 58,943 40,534 — 46,960
60 59,917 — 62,234 47,974 — 62,235
90 65,129 — 67,676 50,626 — 65,958

Table I: The minimum and maximum of the average CPU usages
(in percentage) of all servers when running read-only workload on 10
RAMCloud servers.

of RAMCloud, which polls continuously requests from the
NIC in order to handle packets as fast as possible.

Impact of clients’ location on the power consumption:
In figure 5, when clients use Infiniband, we can see a stable
power consumption of 94Watts up to 60 clients, while it
increases a little bit when going up to 90 clients. More
likely, this is the point where the cluster starts demanding
more resources to cope with the load, which matches our
observation from section 1. If we look at the TCP cluster
power consumption the results are more surprising. First
we see that the average power consumption is increasing
constantly from 97Watts for 10 clients up to 109Watts
for 90 clients. Moreover, in all cases it is higher than the
Infiniband cluster average power consumption.

More CPU usage when using TCP: To understand why
the system consumes more power when accessed by TCP
compared Infiniband, we show table I. It represents the
minimum and maximum CPU usage with different numbers
of clients for a cluster of 10 RAMCloud servers. We remark
a slight additional maximum CPU usage when clients use
TCP compared to IB. What is more interesting is to see the
minimum CPU usage of the servers when clients use TCP
(bold) compared to when they use IB. There is between 9%
additional CPU usage and up to 15%. We have noted that

in some scenarios, servers reach the same maximum CPU
usage. More importantly, we observed high variation in CPU
usage in the case of Infiniband. For example, when running
10 clients, there is a 9% difference between the minimum
and maximum CPU usage when clients are using Infiniband.

As a result, when clients use TCP to access RAMCloud,
the system exhibits higher CPU usage compared to when
accessed through Infiniband. This increased CPU usage
results in additional average per-node power consumption.

C. The energy efficiency

10 20 30 60 90
0

20

40

60

80

100

Number of clients

E
n
e
r
g
y
C
o
n
s
u
m
p
t
i
o
n
(
K
J
o
u
l
e
s
) Infiniband

TCP

Figure 6: The total energy consumption when running read-only work-
load with a cluster of 10 nodes both with TCP and Infiniband

Impact on overall energy consumption: We plot figure
6 to show the overall energy consumption when clients
use both Infiniband and TCP. Up to 60 clients the average
difference is roughly 7X more energy consumed when
clients use TCP. The difference goes up to 9X when running
90 clients.

10 20 30 60 90

0

100

200

300

400

500

Number of clients

L
a
t
e
n
c
y
(
u
s
)

Infiniband

TCP

Figure 7: The latency per single operation when running read-only
workload with a cluster of 10 nodes both with TCP and Infiniband

Latency per operation: While figure 5 has shown that
accessing the system through TCP can result in more average
per-node power consumption compared to when accessed
through Infiniband, the expected difference in total energy



consumption is not as big as shown in figure 6. To explain
such a phenomena we plot Figure 7 which represents the
latency of a single operation for the same scenario, i.e.,
10 servers running up to 90 clients. When looking into
Infiniband’s cluster latency one can see a stable latency
around 40 µs. For TCP cluster the latency is stable around
315 µs up to 60 clients. It reaches more than 512 µs for 90
clients.

Consequently, when a client issues a request with TCP it
takes longer to be processed at the server level compared
to when it is issued with Infiniband. While this is not
surprising, it can explain the wide gap that appears in
figure 6 between the cases where clients access RAMCloud
through TCP and Infiniband.

10 20 30 40

0

0.5

1

1.5

2

2.5

·104

Number of servers

E
n
e
r
g
y
-
e
�
c
i
e
n
c
y
(
o
p
/
J
)

Infiniband

TCP

Figure 8: The energy efficiency when running read-only workload with
different number of servers both with TCP and Infiniband. The number of
clients is fixed to 90.

The energy efficiency Figure 8 represents the energy
efficiency of different number of RAMCloud servers when
running 90 clients. Consequently to the increased power
consumption and high latency when clients access the sys-
tem with TCP, the energy efficiency is very low compared
to when clients use Infiniband. In average the system has
10X better energy efficiency when accessed with Infiniband
compared to TCP.

To summarize, we find that RAMCloud has a better
energy efficiency when clients use Infiniband network to
access it compared to when they use TCP/IP. The reasons
are that when clients access RAMCloud through TCP, the
system has a higher CPU usage compared to when accessed
through Infiniband. Moreover, using TCP leads to higher
latencies, therefore the system has a much higher energy
consumption compared to when using Infiniband. All these
reasons contribute to the energy-inefficiency of the TCP
transport in RAMCloud.

V. RELATED WORK

Many research efforts have been dedicated to improve
the performance of in-memory storage systems. However,

very little visibility exists on their energy efficiency. More
specifically, the relation between the type of the network
used to access the system and the energy efficiency has
not been explored. Yet, there have been a lot of works
on improving the energy efficiency of disk-based storage
systems.

In-memory storage systems More and more companies
are adopting in-memory storage systems. Facebook lever-
aged Memcached to build a distributed in-memory key-value
store. Twitter used Redis and scaled it to 105TB of RAM.
Alternatively, a lot a academic work has been proposed
pushing the limits of performance of storage systems to a
next level. As an example MemC3 [19] is an enhancement of
Memcached. Through a set of engineering and algorithmic
improvements, it outperformed the original Memcached by
3x in terms of throughput. Mica [20] is an in-memory key-
value store that takes advantage of RDMAs (Remote Direct
Memory Access) and better parallelism handling. Similarly,
FaRM [4] is a distributed in-memory storage system based
on RDMAs and proposes transactional support.

Evaluating performance and energy efficiency of stor-
age systems Many studies have been conducted to charac-
terize the performance of storage systems and their work-
loads. In [23] a deep analysis is made on traces from
Facebook’s Memcached deployment and gives insight about
the characteristics of a large scale caching workload. In
another dimension, the work in [24] proposes to study the
throughput of six storage systems. In [25] authors explore
the energy-consistency trade-off and reveal that energy can
vary considerably according to the level of consistency.

However, our work complements the previous studies as it
shows that the location of the clients can play an important
role in the performance and energy efficiency of in-memory
storage systems.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented our efforts in understanding the
main factors impacting performance and energy efficiency in
in-memory storage system. We zoomed into the networking
technology impact on the RAMCloud storage system.

We confirmed foreseen results such as the scalability of
RAMCloud’s throughput when using Infiniband. However,
we discovered that using RAMCloud with TCP does not
scale as well as with Infiniband. This phenomena becomes
dramatic at high loads. Moreover, we discovered that using
TCP leads to more energy consumption compared to using
Infiniband. When investigating the issue, we remarked that it
was due to higher CPU occupation times whenever running
with TCP.

As future work we plan to complete the picture of the
main factors impacting performance and energy efficiency.
To do so we plan to break down the design principles of
RAMCloud such as the polling mechanism, log-structured
memory, replication, crash-recovery mechanism, and study



the impact of each of them on the performance and energy
efficiency. Doing so can help system designer to build more
energy-aware systems in the future. It can also open new
research opportunities in investigating the trade-offs between
energy efficiency and performance in in-memory storage
systems.

Our ultimate goal would be to model the performance and
energy consumption for in-memory storage systems. While
this is a very hard task, it can have a huge impact as it
can enable system designers to be aware of the impact of
each feature in their system on the performance and energy
consumption. Moreover, it can help system administrators
tune their system in order to achieve better energy efficiency.

ACKNOWLEDGMENT

This work has been supported by the BigStorage project,
funded by the European Union under the Marie Sklodowska-
Curie Actions (H2020-MSCA-ITN-2014-642963), by the
Spanish Government (grant SEV2015-1305 0493 of the
Severo Ochoa Program), by the Spanish Ministry of Science
and Innovation (contract TIN2015-65316), and by General-
itat de Catalunya (contract 2014-SGR-1051).

REFERENCES

[1] “Amazon ElastiCache,” https://aws.amazon.com/elasticache/,
2017, [Online; accessed January-2017].

[2] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast crash recovery in ramcloud,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11, 2011, pp. 29–41.

[3] “Riak,” www.basho.com/products/riak-kv/, 2017, [Online; ac-
cessed January-2017].

[4] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson,
“Farm: Fast remote memory,” in 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14),
Seattle, WA, Apr. 2014, pp. 401–414.

[5] “VoltDB,” https://www.voltdb.com/, 2017, [Online; accessed
January-2017].

[6] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani, “Scaling mem-
cache at facebook,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 13), Lombard, IL, 2013, pp. 385–398.

[7] M. Iravani, “How twitter uses redis to scale - 105tb ram,
39mm qps, 10,000+ instancess,” 2015. [Online]. Avail-
able: https://www.linkedin.com/pulse/how-twitter-uses-redis-
scale-105tb-ram-39mm-qps-10000-iravani

[8] Y. Wang, L. Zhang, J. Tan, M. Li, Y. Gao, X. Guerin,
X. Meng, and S. Meng, “Hydradb: A resilient rdma-driven
key-value middleware for in-memory cluster computing,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analy-
sis, ser. SC ’15, 2015, pp. 22:1–22:11. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807614

[9] Aleksandar Dragojevic, Dushyanth Narayanan, “No compro-
mises: distributed transactions with consistency, availability,
and performance,” in Symposium on Operating Systems Prin-
ciples (SOSP’15), 2015.

[10] “Microsoft Azure Cloud,”
https://azure.microsoft.com/pricing/details/cloud-services/,
2017, [Online; accessed January-2017].

[11] “Amazon enhanced networking,”
https://aws.amazon.com/ec2/instance-
types/enhancednetworking, 2017, [Online; accessedJanuary�
2017].

[12] “Energy consumption in US Datacenters,”
http://www.nrdc.org/energy/data-center-efficiency-
assessment.asp, 2016, [Online; accessed January-2017].

[13] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-
structured memory for dram-based storage,” in Proceedings
of the 12th USENIX Conference on File and Storage Tech-
nologies (FAST 14), Santa Clara, CA, 2014, pp. 1–16.

[14] C. Tinnefeld, D. Kossmann, M. Grund, J.-H. Boese,
F. Renkes, V. Sikka, and H. Plattner, “Elastic online ana-
lytical processing on ramcloud,” in Proceedings of the 16th
International Conference on Extending Database Technology,
ser. EDBT ’13, 2013, pp. 454–464.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,
and G. Parulkar, “Onos: Towards an open, distributed sdn
os,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’14, 2014, pp.
1–6.

[16] J. Blomer and G. Ganis, “Large-scale merging of histograms
using distributed in-memory computing,” Journal of Physics:
Conference Series, vol. 664, no. 9, p. 092003, 2015.

[17] “GRID’5000,” www.grid5000.fr/, 2017, [Online; accessed
January-2017].

[18] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads
to build a fast, cpu-efficient key-value store,” in Presented
as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), San Jose, CA, 2013, pp. 103–114.

[19] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Com-
pact and concurrent memcache with dumber caching and
smarter hashing,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 13), Lombard, IL, 2013, pp. 371–384.

[20] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica:
A holistic approach to fast in-memory key-value storage,” in
11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), Seattle, WA, Apr. 2014, pp. 429–
444.

[21] “Apache Spark,” https:// http://spark.apache.org/, 2017, [On-
line; accessed January-2017].

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proceedings of the 1st ACM Symposium on Cloud Computing,
ser. SoCC ’10, 2010, pp. 143–154.



[23] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-
value store,” in Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, ser. SIG-
METRICS ’12, 2012, pp. 53–64.

[24] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero,
H.-A. Jacobsen, and S. Mankovskii, “Solving big data chal-
lenges for enterprise application performance management,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1724–1735, Aug.
2012.

[25] H. E. Chihoub, S. Ibrahim, Y. Li, G. Antoniu, M. S. Prez,
and L. Boug, “Exploring energy-consistency trade-offs in
cassandra cloud storage system,” in 2015 27th International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2015, pp. 146–153.


